

TEST REPORT

Date: 2012-06-15 Report No.: 68.870.12.024.01F

Shenzhen Yichen Technology Development Co., LTD 5F, No.1, Honghualing 2nd Industrial Zone, Xili Town, Nanshan District, 518055 Shenzhen, Guangdong, People's Republic Of China.	
Model name: Brand name: Model no.:	Intelligent Wireless Router O JCG JHR-N926R, JHR-N936R, JHR-N946R, JHR-N956R, JHR-N966R, JHR-976R, JHR-986R, JHR-996R
FCCID:	HHOYC002
2012-06-01	
2012-06-01 to 2012-06-11	
FCC Part 15 Subpart C, Section 15.247	
The submitted product <u>COMPLIED</u> with the requirements of Federal Communications Commission [FCC] Rules and Regulations Part 15. The tests were performed in accordance with the standards described above and on Section 2.2 in this Test Report.	
	Approved by:-
	Shenzhen Yich 5F, No.1, Hong Nanshan Distric People's Reput Model name: Brand name: Model no.: FCCID: 2012-06-01 2012-06-01 to 2 FCC Part 15 St The submitted requirements o Commission [F 15. The tests w the standards c in this Test Rep

John Zhi Project Engineer Wireless & Telecom department Nicolas Cheng Project Manager Wireless & Telecom department

CONTENT:

	Cover	Page 1 of 80
10	Concrat Details	1 age 2-0 01 00
<u>1.0</u>		
1.1	Test Laboratory	Page 4 of 80
1.2	Applicant Details	Page 4 of 80
1.3	Equipment Under Test [EUT]	Page 5 of 80
1.4	Related Submittal(s) Grants	Page 5 of 80
<u>2.0</u>	Technical Details	
2.1	Investigations Requested	Page 6 of 80
2.2	Test Standards and Results Summary	Page 6 of 80
<u>3.0</u>	Test Methodology	
3.1	Radiated Emission	Page 7 of 80
3.2	Field Strength Calculation	Page 7 of 80
3.3	Conducted Emission	Page 7 of 80
<u>4.0</u>	Test Results	
4.1	6dB Bandwidth Measurement	Page 8-24 of 80
4.2	Power Spectral Density	Page 25-38 of 80
4.3	Band Edge Measurement	Page 39-48 of 80
4.4	Maximum Output Power	Page 49-62 of 80
4.5	Out of Band Emissions and Emissions in Restricted Bands	Page 63-73 of 80
4.6	Conducted Emission on AC Mains	Page 74-78 of 80
<u>5.0</u>	RF Exposure Compliance Requirement	Page 79 of 80
6.0	List of Measurement Equipments	Page 80 of 80

Page 2 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China. Report No.: 68.870.12.024.01F

Appendix A

Photos of Test Setup

Appendix B

External EUT Photos

Appendix C

Internal EUT Photos

Page 3 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

<u>1.0</u> **General Details**

1.1 **Test Laboratory**

SEM.Test Compliance Services Co., Ltd. EMC Laboratory registered by FCC with FCC Registration Number: 994117

Test By: Susan Su

1.2 **Applicant Details** Applicant

Shenzhen Yichen Technology Development Co., LTD 5F, No.1, Honghualing 2nd Industrial Zone, Xili Town, Nanshan District, 518055 Shenzhen, Guangdong, People's Republic Of China.

Manufacturers

Shenzhen Yichen Technology Development Co., LTD 5F, No.1, Honghualing 2nd Industrial Zone, Xili Town, Nanshan District, 518055 Shenzhen, Guangdong, People's Republic Of China.

1.3 Equipment Under Test [EUT]

Description of EUT	
Product Description:	Intelligent Wireless Router
Model No.:	JHR-N926R, JHR-N936R, JHR-N946R,
	JHR-N956R, JHR-N966R, JHR-976R, JHR-986R,
	JHR-996R
Brand Name:	€ [°] JCG
FCCID:	HHOYC002
Rating:	DC12V, 1A powered by AC/DC adapter
·	Model : HKA01212010-2F, XKD-C1000IC12.0-12W
Operated Frequency:	2412 -2462 MHz
Modulation:	BPSK, QPSK, CCK and OFDM (BPSK/QPSK/16-QAM/
	64-QAM)
No. of Operated Channel:	11 (802.11b/g/nHT20)
	7 (802.11nHT40)
Data Rate:	802.11b: 1, 2, 5.5, 11Mbps;
	802.11g: 6, 9, 12, 24, 36, 48, 54Mbps;
	802.11nH120: MCS0-15, Support up to 150Mbps
	802.11nH140: MCS0-15, Support up to 300Mbps
Accessories and Auxiliary Equipments:	AC/DC power adaptor.
Antenna Type:	2x4dBi Fixed Antenna
Manufacture of Antenna:	SHENZHEN FLY ELECTRONIC CO., LTD
Antenna Gain:	4dBi
Antenna Model:	N/A

General Operation of EUT

The Equipment Under Test (EUT) is a Intelligent Wireless Router System operated at 2.4GHz. DSSS for IEEE 802.11b; OFDM for IEEE 802.11g/n Operation Principle: This Systems using embedded MIMO RF transceiver consists of two receivers and two transmitters used to form a complete 2.4GHz ISM band Wireless LAN application. The EUT shall be simultaneous transmission at the antenna 0 and antenna 1 for 802.11g, 802.11n HT20 or HT40, 802.11b mode shall be transmission only single antenna (antenna 0 or antenna 1).

As per client declaration, the model JHR-N936R, JHR-N946R, JHR-N956R, JHR-N966R, JHR-976R, JHR-986R, JHR-996R, which utilize the identical circuit design, PCB layout, shielding and interface with the model JHR-N926R, only the cosmetic is difference. Therefore the mainly perform test on JHR-N926R model.

Description of Test Modes

The EUT has been tested under operating condition. Software used to control the EUT for staying in continuous transmitting and receiving mode is programmed.

IEEE802.11b: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 1Mbps data rate (worst case) are chosen for the final testing.

IEEE802.11g: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with 6Mbps data rate (the worst case) are chosen for the final testing.

IEEE802.11nHT20: Channel 1(2412MHz), Channel 6(2437MHz) and Channel 11(2462MHz) with MCS0 data rate (worst case) are chosen for the final testing.

IEEE802.11nHT40: Channel 3(2422MHz), Channel 6(2437MHz) and Channel 9(2452MHz) with MCS0 data rate (the worst case) are chosen for the final testing.

1.4 Related Submittal(s) Grants

This is a signal application subject to Certificate Authorization.

Page 5 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

2.0 Technical Details

2.1 Investigations Requested

Perform ElectroMagnetic Interference measurement in accordance with FCC 47CFR [Codes of Federal Regulations] Part 15: 2009 and ANSI C63.4: 2003 for FCC Verification

2.2 Test Standards and Results Summary Tables

Test Condition	Test Requirement	Test Re	esult
		Pass	N/A
Number of Frequency Hopping	Section 15.247 (a1)		
6dB Bandwidth Measurement	Section 15.247 (a2)		
Power Spectral Density	Section 15.247 (e)	\boxtimes	
Pseudorandom Hopping Algorithm	Section 15.247 (a1)		
Band Edge Measurement	Section 15.247		
Maximum Output Power	Section 15.247 (b3)		
Out of Band Emission	Section 15.247 (d)		
Radiated Emission in Restricted Band	Section 15.247 (d)		
Conducted Emission on AC Mains	Section 15.207		
RF Exposure	Section 15.247 (i)		
Antenna Requirement	Section 15.203	See note 1	

Note 1 : The EUT uses a permanently attached antenna, which in accordance to Section 15.203, is considered sufficient to comply with the provisions of this section.

Remark: N/A - Not Applicable

3.0 Test Methodology

3.1 Radiated Emission

The sample was placed 0.8m above the ground plane on a standard emission test site *. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages.

*On a standard emission test site with a metal ground plane filed with the FCC pursuant to section 2.948 of the FCC rules, with Registration Number: 994117.

3.2 Field Strength Calculation

The field strength at 3 m was established by adding the meter reading of the spectrum analyzer to the factors associated with antenna correction factor, cable loss, preamplifiers and filter attenuation.

The equation is expressed as follow:

FS = R + System Factor System Factor = AF + CF + FA – PA

Where FS = Net Field Strength in dBuV/m at 3 meters.

- R = Reading of Spectrum Analyzer / Test Receiver in dBuV.
- AF = Antenna Factor in dB.
- CF = Cable Attenuation Factor in dB.
- FA = Filter Attenuation Factor in dB.
- PA = Preamplifier Factor in dB.

FA and PA are only be used for the measuring frequency above 1 GHz.

3.3 Conducted Emissions

The test was performed in accordance with ANSI C63.4: 2003, with the following: initial measurements were performed in peak and average detection modes on the live line of personal computer, any emissions recorded within 30dB of the relevant limit lines were re-measured using quasi-peak and average detection on the live and neutral lines with the worst case recorded in the table of results.

4.0 Test Results

4.1 6 dB Bandwidth Measurement

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 (a2) 2012-06-08 Transmitting continuously mode. Max Hold

Result: PASS

Test Setup:

The bandwidth is measured at an amplitude level reduced from the reference level by a specified ratio. The reference level is the level of the highest amplitude signal observed from the transmitter at the fundamental frequency. Once the reference level is established, the equipment is conditioned with typical modulating signal to produce the worst-case (i.e. the widest) bandwidth.

Antenna 0

For 802.11B Mode

Channel	Measured frequency (MHz)	6dB Bandwidth (MHz)
Lowest	2412	11.703
Middle	2437	11.932
Highest	2462	11.953

This result is used for checking the systems using digital modulation techniques may operate in the 2400–2483.5 MHz.

Limits for 6 dB bandwidth [Section 15.247 (a2)]:

The minimum 6 dB bandwidth shall be at least 500 kHz.

For 802.11B Mode Result data graph shows 6 dB bandwidth, CF = 2.412GHz, BW = 11.703 MHz

* Agilent			Meas Setup
Ch Freq 2.412 Occupied Bandwidth	GHz	Trig Free	AvgNumber 10
Span 29.40225000	MHz		Ava Mode
Ref20/dBm Atten:	30 dB		<u>Exp</u> Repeat
#Peak Log 10		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Max Hold On Off
dB/			Occ BW % Pwr 99.00 %
Center 2.412 GHz #Res BW 300 kHz	#VBW 3 MHz	Span 29.4 MHz Sweep 4 ms (401 pts)	OBW Span 29.4022500 MHz
Occupied Bandwidt	h 0 21 MH 2	исс ВЖ ХРыг 99.00 X х dB –6.00 dB	x dB _6.00 dB
Transmit Freq Error x dB Bandwidth 1	15.552 kHz 1.703 MHz		Optimize Ref Level
A:\SCREN800.GIF file sav	ed		

Result data graph shows 6 dB bandwidth, CF = 2.437GHz, BW = 11.932MHz

Result data graph shows 6 dB bandwidth, CF = 2.462GHz, BW = 11.953MHz

For 802.11G Mode

Channel	Measured frequency (MHz)	6dB Bandwidth (MHz)
Lowest	2412	16.219
Middle	2437	16.251
Highest	2462	16.556

This result is used for checking the systems using digital modulation techniques may operate in the 2400–2483.5 MHz.

Limits for 6 dB bandwidth [Section 15.247 (a2)]:

The minimum 6 dB bandwidth shall be at least 500 kHz.

For 802.11G Mode

Result data graph shows 6 dB bandwidth, CF = 2.412GHz, BW = 16.219 MHz

Result data graph shows 6 dB bandwidth, CF = 2.437GHz, BW = 16.251MHz

Result data graph shows 6 dB bandwidth, CF = 2.462GHz, BW = 16.556MHz

For 802.11N HT20 Mode

Channel	Measured frequency (MHz)	6dB Bandwidth (MHz)
Lowest	2412	16.160
Middle	2437	16.489
Highest	2462	16.699

This result is used for checking the systems using digital modulation techniques may operate in the 2400–2483.5 MHz.

Limits for 6 dB bandwidth [Section 15.247 (a2)]:

The minimum 6 dB bandwidth shall be at least 500 kHz.

For 802.11N HT20 Mode

Result data graph shows 6 dB bandwidth, CF = 2.412GHz, BW = 16.160 MHz

Result data graph shows 6 dB bandwidth, CF = 2.437GHz, BW = 16.489MHz

Result data graph shows 6 dB bandwidth, CF = 2.462GHz, BW = 16.699MHz

For 802.11N HT40 Mode

Channel	Measured frequency (MHz)	6dB Bandwidth (MHz)
Lowest	2422	35.080
Middle	2437	34.386
Highest	2452	34.760

This result is used for checking the systems using digital modulation techniques may operate in the 2400–2483.5 MHz.

Limits for 6 dB bandwidth [Section 15.247 (a2)]:

The minimum 6 dB bandwidth shall be at least 500 kHz.

For 802.11N HT40 Mode

Result data graph shows 6 dB bandwidth, CF = 2.422GHz, BW = 35.080 MHz

Result data graph shows 6 dB bandwidth, CF = 2.437GHz, BW = 34.386MHz

Result data graph shows 6 dB bandwidth, CF = 2.452GHz, BW = 34.760MHz

Antenna 1

For 802.11B Mode

Channel	Measured frequency (MHz)	6dB Bandwidth (MHz)
Lowest	2412	11.907
Middle	2437	11.854
Highest	2462	11.958

This result is used for checking the systems using digital modulation techniques may operate in the 2400–2483.5 MHz.

Limits for 6 dB bandwidth [Section 15.247 (a2)]:

The minimum 6 dB bandwidth shall be at least 500 kHz.

For 802.11B Mode

Result data graph shows 6 dB bandwidth, CF = 2.412GHz, BW = 11.907 MHz

Agilent Trace/View Ch Freq 2.437 GHz Trig Free Trace Occupied Bandwidth 2 Center 2.437000000 GHz **Clear Write** Ref 20 dBm Atten 30 dB #Peak Max Hold Log **\$** \$ 10 dB/ Min Hold View Center 2.437 GHz Span 30 MHz #Res BW 300 kHz #VBW 3 MHz Sweep 4 ms (401 pts) Occupied Bandwidth Blank Occ BW % Pwr 99.00 % x dB -6.00 dB 14.5640 MHz More -16.819 kHz Transmit Freq Error 1 of 2 x dB Bandwidth 11.854 MHz A:\SCREN858.GIF file saved

Result data graph shows 6 dB bandwidth, CF = 2.437GHz, BW = 11.854MHz

Result data graph shows 6 dB bandwidth, CF = 2.462GHz, BW = 11.958MHz

For 802.11G Mode

Channel	Measured frequency (MHz)	6dB Bandwidth (MHz)
Lowest	2412	16.078
Middle	2437	16.108
Highest	2462	16.081

This result is used for checking the systems using digital modulation techniques may operate in the 2400–2483.5 MHz.

Limits for 6 dB bandwidth [Section 15.247 (a2)]:

The minimum 6 dB bandwidth shall be at least 500 kHz.

For 802.11G Mode

Result data graph shows 6 dB bandwidth, CF = 2.412GHz, BW = 16.078MHz

Agilent Meas Setup Ch Freq 2.437 GHz Trig Free Avg Number 10Occupied Bandwidth 0n Off Center 2.437000000 GHz Avg Mode <u>Exp</u> Repeat Ref 20 dBm Atten 30 dB #Peak Max Hold Log 0n Off Ŷć 0 ⇒ 10 dB/ Occ BW % Pwr 99.00 2 **OBW** Span 30.0000000 MHz Center 2.437 GHz Span 30 MHz #Res BW 300 kHz #VBW 3 MHz Sweep 4 ms (401 pts) x dB Occupied Bandwidth Occ BW % Pwr 99.00 % -6.00 dB x dB -6.00 dB 16.3740 MHz Optimize -16.281 kHz Transmit Freq Error Ref Level x dB Bandwidth 16.108 MHz \SCREN861.GIF file saved

Result data graph shows 6 dB bandwidth, CF = 2.437GHz, BW = 16.108MHz

Result data graph shows 6 dB bandwidth, CF = 2.462GHz, BW = 16.081MHz

For 802.11N HT20 Mode

Channel	Measured frequency (MHz)	6dB Bandwidth (MHz)
Lowest	2412	16.579
Middle	2437	16.603
Highest	2462	16.504

This result is used for checking the systems using digital modulation techniques may operate in the 2400–2483.5 MHz.

Limits for 6 dB bandwidth [Section 15.247 (a2)]:

The minimum 6 dB bandwidth shall be at least 500 kHz.

For 802.11N HT20 Mode

Result data graph shows 6 dB bandwidth, CF = 2.412GHz, BW = 16.579 MHz

🔆 Agilent		Meas Setup
Ch Freq 2.412 GHz Occupied Bandwidth		Trig Free Avg Number
Center 2.412000000 GHz	2	<u> </u>
Ref 20 dBm Atten 30 dB		HVG Mode Exp Repeat
#Peak Log 10	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Max Hold On Off
dB/		Occ BW % Pwr 99.00 %
Center 2.412 GHz #Res BW 300 kHz #VBk	Si 3 MHz Sweep 4 ms	OBW Span Oan 30 MHz (401 pts)
Occupied Bandwidth 17.2693 MHz	Осс ВМ % Рwr Z xdB	99.00 % -6.00 dB
Transmit Freq Error 11.560 kH × dB Bandwidth 16.579 MH	z Iz	Optimize Ref Level
A:\SCREN863.GIF file saved		

Result data graph shows 6 dB bandwidth, CF = 2.437GHz, BW = 16.603MHz

Result data graph shows 6 dB bandwidth, CF = 2.462GHz, BW = 16.504MHz

For 802.11N HT40 Mode

Channel	Measured frequency (MHz)	6dB Bandwidth (MHz)		
Lowest	2422	34.679		
Middle	2437	34.410		
Highest	2452	38.720		

This result is used for checking the systems using digital modulation techniques may operate in the 2400–2483.5 MHz.

Limits for 6 dB bandwidth [Section 15.247 (a2)]:

The minimum 6 dB bandwidth shall be at least 500 kHz.

For 802.11N HT40 Mode

Result data graph shows 6 dB bandwidth, CF = 2.422GHz, BW = 34.679 MHz

Result data graph shows 6 dB bandwidth, CF = 2.437GHz, BW = 34.410MHz

Result data graph shows 6 dB bandwidth, CF = 2.452GHz, BW = 38.720MHz

4.2 Power Spectral Density

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 (e) 2012-06-08 Transmitting continuously mode Average

Result : PASS

Measured Result :

For 802.11b

Test mode	Test channel	Antenna 0 Reading dBm/100kHz	Antenna 1 Reading dBm/100kHz	Antenna 0 Corrected dBm/3kHz	Antenna 1 Corrected dBm/3kHz	Limit dBm/3kHz
802.11b	Low channel (2412MHz)	-7.093	-11.990	-22.293	-27.190	8
	Mid channel (2437MHz)	-8.110	-12.710	-23.310	-27.910	8
	High channel (2462MHz)	-8.159	-11.760	-23.359	-26.960	8

For 802.11g

Test mode	Test channel	Antenna 0 Reading dBm/100kHz	Antenna 1 Reading dBm/100kHz	Corrected dBm/3kHz	Limit dBm/3kHz
	Low channel (2412MHz)	-12.98	-13.13	-25.24	8
802.11g	Middle channel (2437MHz)	-13.60	-13.62	-25.80	8
	High channel (2462MHz)	-13.97	-14.69	-26.50	8

For 802.11n HT20/HT40

Test mode	Test channel	Antenna 0 Reading dBm/100kHz	Antenna 1 Reading dBm/100kHz	Corrected dBm/3kHz	Limit dBm/3kHz
802.11n HT20 (MCS0)	Low channel (2412MHz)	-13.18	-12.97	-25.26	8
	Middle channel (2437MHz)	-13.71	-13.35	-25.72	8
	High channel (2462MHz)	-14.47	-14.81	-26.83	8
802.11n HT40 (MCS0)	Low channel (2422MHz)	-16.17	-16.74	-28.64	8
	Middle channel (2437MHz)	-17.02	-17.23	-29.31	8
	High channel (2452MHz)	-17.33	-17.73	-29.72	8

Note:

- 1. The EUT shall be simultaneous transmission at the Antenna 0 and Antenna 1 for 802.11g, 802.11n HT20 or HT40, 802.11b mode shall be transmission only single Antenna (Antenna 0 or Antenna 1).
- 2. Scale the observed power level to an equivalent value in 3 kHz by adjusting (reducing) the measured power by a bandwidth correction factor (BWCF) where $BWCF = 10\log (3 \text{ kHz}/100 \text{ kHz} = -15.2 \text{ dB})$.

Above testing data is included of 0.5dB cable loss which between antenna port and spectrum.

Limits for power spectral density [Section 15.247 (e)]:

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

Antenna 0 For 802.11B Mode

Result data graph shows Low channel power spectrum density is -7.903dBm at 100kHz RBW

Result data graph shows middle channel power spectrum density is -8.11dBm at 100kHz RBW

Result data graph shows high channel power spectrum density is -8.159dBm at 100kHz RBW

For 802.11G Mode Result data graph shows Low channel power spectrum density is -12.98dBm at 100kHz RBW

Result data graph shows middle channel power spectrum density is -13.6dBm at 100kHz RBW

Page 28 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

Result data graph shows high channel power spectrum density is -13.97dBm at 100kHz RBW

Result data graph shows Low channel power spectrum density is -13.18dBm at 100kHz RBW

Result data graph shows middle channel power spectrum density is -13.71dBm at 100kHz RBW

Result data graph shows high channel power spectrum density is -14.47dBm at 100kHz RBW

Page 30 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

For 802.11HT40 Mode Result data graph shows Low channel power spectrum density is -16.17dBm at 100kHz RBW

Result data graph shows middle channel power spectrum density is -17.02dBm at 100kHz RBW

Page 31 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

🔆 Agilent									Peak Search
						Mkr1	2.452	00 GHz	
Ref 20 dBm	Atten	30 dB		1			-17.3	3 dBm	Meas Tools
+nvy Lng									neas roois,
10									
dB/									Next Peak
			:						
	and the second second second	manuly	many	>	John Martin	Marine and a state			Next PK Right
and some			V	V		Y	and the second	morener	
									Next Pk Left
M1 S2									
									Min Search
Mark	er	~							Pk-Pk Search
2.45	2000000	ЬНZ							
-17.	33 dBm								Have
Center 2.452	GHz						Span (36 MHz	nore 1 of 2
#Res BW 100 k	(Hz	VB	M 300 I	≺Нz	#<	Gweep 4	s (40	1 pts)	
A:\SCREN823	.GIF file sa	ved							

Result data graph shows high channel power spectrum density is -17.33dBm at 100kHz RBW

Antenna 1 For 802.11B Mode

Result data graph shows middle channel power spectrum density is -11.99dBm at 100kHz RBW

Result data graph shows high channel power spectrum density is -12.71dBm at 100kHz RBW

For 802.11G Mode

Result data graph shows Low channel power spectrum density is -13.13dBm at 100kHz RBW

Result data graph shows middle channel power spectrum density is -13.62dBm at 100kHz RBW

Result data graph shows high channel power spectrum density is -14.69dBm at 100kHz RBW

Agilent Peak Search 2.410740 GHz Mkr1 -12.97 dBm Ref 20 dBm Atten 30 dB Meas Tools+ #Avg Log 10 dB/ Next Peak Å VVV Next Pk Right M Next Pk Left M1 S2 S3 FC Min Search ĤΑ Marker Pk-Pk Search 2.410740000 GHz -12.97 dBm More Center 2.412 GHz Span 18 MHz 1 of 2 #Res BW 100 kHz VBW 300 kHz #Sweep 4 s (401 pts) SCREN876.GIF file saved

For 802.11HT20 Mode Result data graph shows Low channel power spectrum density is -12.97dBm at 100kHz RBW

Result data graph shows middle channel power spectrum density is -13.35dBm at 100kHz RBW

Page 36 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

Result data graph shows high channel power spectrum density is -14.81dBm at 100kHz RBW

For 802.11HT40 Mode

Result data graph shows Low channel power spectrum density is -16.74dBm at 100kHz RBW

Page 37 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

Result data graph shows middle channel power spectrum density is -17.23dBm at 100kHz RBW

Result data graph shows high channel power spectrum density is -17.73dBm at 100kHz RBW

Page 38 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

4.3 Band Edge Measurement

Test Requirement: Test Date: Mode of Operation: Detector Function: FCC part 15 section 15.247 2012-06-07 Transmitting continuously mode. Max Hold

Result: PASS

Measured Result :

Refer to the diagram and table, it shows the frequency of lower band edge and upper band edge is 2.412GHz and 2.462GHz separately.

Limits of Band Edge for Carrier Frequencies Operated within the Bands [Section 15.247]:

The carrier frequencies should operate within 2400-2483.5MHz.

Result data graph shows the frequency of lowest channel. For 802.11B Low Channel Mode (Antenna 0):

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	49.75	-11.72	38.03	74.00	-35.97	peak
2	2390.000	51.70	-11.75	39.95	74.00	-34.05	peak
3	2397.100	67.33	-11.75	55.58	74.00	-18.42	peak
4	2400.000	65.96	-11.75	54.21	74.00	-19.79	peak
5	2412.960	108.00	-11.76	96.24	fundam	ental	peak

Page 39 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

For 802.11B High Channel Mode

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	47.04	-11.78	35.26	74.00	-38.74	peak
2	2500.000	45.94	-11.78	34.16	74.00	-39.84	peak

For 802.11B Low Channel Mode (Antenna 1):

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	51.41	-11.72	39.69	74.00	-34.31	peak
2	2359.660	54.64	-11.74	42.90	74.00	-31.10	peak
3	2390.000	52.74	-11.75	40.99	74.00	-33.01	peak
4	2400.000	63.93	-11.75	52.18	74.00	-21.82	peak
5	2412.180	106.12	-11.75	94.37	fundam	ental	peak

For 802.11B High Channel Mode

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	47.99	-11.78	36.21	74.00	-37.79	peak
2	2500.000	46.27	-11.78	34.49	74.00	-39.51	peak

For 802.11G Low Channel Mode

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	51.10	-11.72	39.38	74.00	-34.62	peak
2	2390.000	57.48	-11.75	45.73	74.00	-28.27	peak
3	2400.000	69.07	-11.75	57.32	74.00	-16.68	peak
4	2410.620	108.27	-11.75	96.52	fundam	ental	peak

For 802.11B High Channel Mode

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	47.59	-11.78	35.81	74.00	-38.19	Peak
2	2500.000	47.99	-11.78	36.21	74.00	-37.79	Peak

For 802.11N HT20 Low Channel Mode

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	58.35	-11.72	46.63	74.00	-27.37	peak
2	2390.000	72.35	-11.75	60.60	74.00	-13.40	peak
3	2400.000	82.22	-11.75	70.47	74.00	-3.53	peak
5	2413.220	107.71	-11.76	95.95	fundam	ental	peak

For 802.11N HT20 High Channel Mode

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	62.38	-11.78	50.60	74.00	-23.40	Peak
2	2500.000	57.33	-11.78	45.55	74.00	-28.45	Peak

For 802.11N HT40 Low Channel Mode

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2310.000	52.85	-11.72	41.13	74.00	-32.87	peak
2	2390.000	65.71	-11.75	53.96	74.00	-20.04	peak
3	2400.000	65.65	-11.75	53.90	74.00	-20.10	peak
4	2413.320	105.38	-11.76	93.62	fundam	ental	peak

For 802.11N HT40 High Channel Mode

No.	Frequency	Reading	Correct	Result	Limit	Margin	Remark
	(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	
1	2483.500	55.15	-11.78	43.37	74.00	-30.63	Peak
2	2500.000	47.88	-11.78	36.10	74.00	-37.90	Peak

4.4 Maximum Output Power

Test Requirement: Test Method: Test Date: Mode of Operation: Detector Function: Measurement BW: FCC part 15 section 15.247 (b3) ANSI C63.4:2003 2012-06-08 Transmitting continuously mode. Average RBW 1MHz ; VBW 3MHz

Test Procedure :

According to section 15.247(b)-power output of the KDB-558074 (2012), the method #1 of the power output option2 was used, the following is the measurement procedure.

1. Set span to encompass the entire emission bandwidth (EBW) of the signal.

2. Set RBW = 1 MHz, Set VBW \geq 3 MHz.

4. Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode.

5. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run".

6. Trace average 100 traces in power averaging mode.

7. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges.

Result : PASS

Transmitting Mode: Transmits continuously

For 802.11b/g

Test mode	Frequency MHz	Reading Antenna 0 (dBm)	Reading Antenna 1 (dBm)	Output power Antenna 0 (W)	Output power Antenna 1 (W)	Total Power (W)	Limit W
802 11b	2412	9.54	9.19	0.00899	0.00830	/	1
(1M)	2437	8.81	8.79	0.00760	0.00757	/	1
(1111)	2462	8.21	8.27	0.00662	0.00671	/	1
<u>902.11</u> ~	2412	5.54	5.72	0.00358	0.00373	0.00731	1
602.11g	2437	5.04	5.29	0.00319	0.00338	0.00657	1
(011)	2462	4.64	4.60	0.00291	0.00288	0.00579	1

For 802.11n HT20/HT40

Test mode	Frequency MHz	Reading Antenna 0 (dBm)	Reading Antenna 1 (dBm)	Output power Antenna 0 (W)	Output power Antenna 1 (W)	Total Power (W)	Limit W
802.11n	2412	5.79	5.67	0.00379	0.00369	0.00748	1
HT20	2437	5.40	5.03	0.00347	0.00318	0.00665	1
(MCS0)	2462	4.76	4.12	0.00299	0.00258	0.00557	1
802.11n	2422	5.10	5.65	0.00324	0.003673	0.00691	1
HT40	2437	4.66	5.05	0.00292	0.00320	0.00612	1
(MCS0)	2452	4.43	4.39	0.00277	0.00275	0.00552	1

Note: The EUT shall be simultaneous transmission at the Antenna 0 and Antenna 1 for 802.11g, 802.11n HT20 or HT40, 802.11b mode shall be transmission only single Antenna (Antenna 0 or Antenna 1). Above testing data is included of 0.5dB cable loss which between antenna port and spectrum.

Limits for Maximum Output Power [Section 15.247 (b3)]:

For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

For 802.11B 1Mbps Mode (Antenna 0) Result data graph shows Low channel conducted power = 9.54dBm

Result data graph shows middle channel conducted power = 8.81dBm

Result data graph shows high channel conducted power = 8.21dBm

For 802.11G 6Mbps Mode

Result data graph shows Low channel conducted power = 5.45dBm

Result data graph shows middle channel conducted power = 5.04dBm

Result data graph shows high channel conducted power = 4.64dBm

For 802.11N HT20 MCS0Mbps Mode Result data graph shows Low channel conducted power = 5.79dBm

Result data graph shows middle channel conducted power = 5.40dBm

Agilent Trace/View Ch Freq 2.462 GHz Trig Free Trace Averages: 100 Channel Power 2 Center 2.462000000 GHz **Clear Write** Atten 30 dB Ref 20 dBm #Avg Max Hold Log 10 dB/ Min Hold View Center 2.462 GHz Span <u>30 MHz</u> #Res BW 1 MHz Sweep 8 ms (401 pts) #VBW 3 MHz Channel Power **Power Spectral Density** Blank -67.79 dBm/Hz /18.0000 MHz 4.76 dBm More 1 of 2 A:\SCREN788.GIF file saved

Result data graph shows high channel conducted power = 4.76dBm

For 802.11N HT40 MCS0 Mbps Mode

Result data graph shows middle channel conducted power = 4.66dBm

Result data graph shows high channel conducted power = 4.43dBm

For 802.11B 1Mbps Mode (Antenna 1) Result data graph shows Low channel conducted power = 9.19dBm

Result data graph shows middle channel conducted power = 8.79dBm

Result data graph shows high channel conducted power = 8.27dBm

For 802.11G 6Mbps Mode

Result data graph shows Low channel conducted power = 5.72dBm

Result data graph shows middle channel conducted power = 5.29dBm

Result data graph shows high channel conducted power = 4.60dBm

For 802.11N HT20 MCS0Mbps Mode Result data graph shows Low channel conducted power = 5.67dBm

Result data graph shows middle channel conducted power = 5.03dBm

Agilent Trace/View Ch Freq 2.462 GHz Trig Free Trace Channel Power Averages: 100 2 Center 2.462000000 GHz **Clear Write** Atten 30 dB Ref 20 dBm #Avg Max Hold Log 10 dB/ Min Hold View Center 2.462 GHz Span <u>30 MHz</u> #Res BW 1 MHz #VBW 3 MHz Sweep 8 ms (401 pts) **Power Spectral Density** Blank Channel Power 4.12 dBm /18.0000 MHz -68.43 dBm/Hz More 1 of 2 A:\SCREN846.GIF file saved

Result data graph shows high channel conducted power = 4.12dBm

For 802.11N HT40 MCS0 Mbps Mode Result data graph shows Low channel conducted power = 5.65dBm

Result data graph shows middle channel conducted power = 5.05dBm

Result data graph shows high channel conducted power = 4.39dBm

4.5 Out of Band Emissions and Emissions in Restricted Bands

Test Requirement: Test Method: Test Date: Mode of Operation: Detector Function: Measurement BW: FCC part 15 section 15.247 (d) ANSI C63.4:2003 2012-06-07 Transmitting continuously mode. Peak RBW 100KHz ; VBW 300KHz

Test Setup:

Result : PASS

Out of Frequency Band Emissions:

For out of band emissions that are close to or exceed 20dB attenuation requirement, and emission falls into restricted band, radiated emission was performed in order to show compliance with the general radiated emission requirement.

Result Summary:

Refer to Figure 10 to 11 for the emission data graph, result shows that the significant emissions detected are with more than 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power.

Limits for Out of Frequency Band Emission [Section 15.247 (d)]:

In any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power. Attenuation below the general limits specified in Section 15.209(a) is not required.

Frequency (MHz)	Field Strength [µV/m]	Field Strength [dBμV/m]
30-88	100	40.0
88-216	150	43.5
216-960	200	46.0
Above 960	500	54.0

Limit for Radiated Emission Falling in Restricted Bands [Section 15.209]:

Radiated emissions, which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209.

The emission limits shown in the above table are based on measurement employing a CISPR quasi-peak detector and above 1000MHz are based on measurements employing an average detector.

Result : PASS

All Emission and Emissions Fall into Restricted Band were recorded as below:

For IEEE 802.11b Mode

Frequency	Reading	Correct	Result	Limit	Margin	Remark	Polarization			
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)					
Lowest Channel										
124.5690	32.68	4.53	37.21	43.50	-6.29	peak	Н			
176.8878	28.50	3.73	32.23	43.50	-11.27	peak	Н			
249.4250	30.54	7.27	37.81	46.00	-8.19	peak	Н			
642.8613	23.77	15.14	38.91	46.00	-7.09	peak	Н			
33.0950	24.34	8.56	32.90	40.00	-7.10	peak	V			
51.4807	25.60	6.49	32.09	40.00	-7.91	peak	V			
57.9993	27.89	5.87	33.76	40.00	-6.24	peak	V			
69.1141	30.89	2.80	33.69	40.00	-6.31	peak	V			
124.5690	28.77	4.53	33.30	43.50	-10.20	peak	V			
900.1474	22.87	19.38	42.25	46.00	-3.75	peak	V			
			Anter	nna O						
4832.823	51.23	-3.85	47.38	74.00	-26.62	peak	Н			
4832.823	38.18	-3.85	34.33	54.00	-19.67	AVG	Н			
8861.783	47.74	3.72	51.46	74.00	-22.54	peak	Н			
8905.934	35.55	3.81	39.36	54.00	-14.64	AVG	Н			
4832.823	59.33	-3.85	55.48	74.00	-18.52	peak	V			
4832.823	45.79	-3.85	41.94	54.00	-12.06	AVG	V			
8905.934	47.92	3.81	51.73	74.00	-22.27	peak	V			
8905.934	35.70	3.81	39.51	54.00	-14.49	AVG	V			
			Anter	nna 1						
4954.419	46.87	-3.50	43.37	74.00	-30.63	peak	Н			
5181.052	34.10	-2.70	31.40	54.00	-22.60	AVG	Н			
8905.934	34.96	3.81	38.77	54.00	-15.23	AVG	Н			
8950.306	46.58	3.90	50.48	74.00	-23.52	peak	Н			
4832.823	51.97	-3.85	48.12	74.00	-25.88	peak	V			
4832.823	37.52	-3.85	33.67	54.00	-20.33	AVG	V			
8905.934	34.96	3.81	38.77	54.00	-15.23	AVG	V			
8994.898	46.68	3.99	50.67	74.00	-23.33	peak	V			

Frequency	Reading	Correct	Result	Limit	Margin	Remark	Polarization		
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)	A Cillar K	1 Jiai izatioli		
Middle Channel									
124.5690	32.32	4.53	36.85	43.50	-6.65	peak	Н		
178.1327	28.78	3.74	32.52	43.50	-10.98	peak	Н		
251.1804	28.44	7.34	35.78	46.00	-10.22	peak	Н		
642.8613	21.36	15.14	36.50	46.00	-9.50	peak	Н		
900.1474	17.72	19.38	37.10	46.00	-8.90	peak	Н		
39.4372	23.65	9.60	33.25	40.00	-6.75	peak	V		
51.8430	26.80	6.45	33.25	40.00	-6.75	peak	V		
57.9993	25.57	5.87	31.44	40.00	-8.56	peak	V		
124.5690	30.79	4.53	35.32	43.50	-8.18	peak	V		
249.4250	28.02	7.27	35.29	46.00	-10.71	peak	V		
900.1474	20.52	19.38	39.90	46.00	-6.10	peak	V		
Antenna 0									
4881.099	49.19	-3.71	45.48	74.00	-28.52	peak	Н		
4881.099	36.67	-3.71	32.96	54.00	-21.04	AVG	Н		
8861.783	47.40	3.72	51.12	74.00	-22.88	peak	Н		
8905.934	35.35	3.81	39.16	54.00	-14.84	AVG	Н		
4881.099	57.78	-3.71	54.07	74.00	-19.93	peak	V		
4881.099	43.37	-3.71	39.66	54.00	-14.34	AVG	V		
8861.783	47.65	3.72	51.37	74.00	-22.63	peak	V		
8905.934	35.38	3.81	39.19	54.00	-14.81	AVG	V		
			Anter	nna 1					
5155.367	47.22	-2.79	44.43	74.00	-29.57	peak	Н		
5391.193	34.99	-1.92	33.07	54.00	-20.93	AVG	Н		
8905.934	46.92	3.81	50.73	74.00	-23.27	peak	Н		
8905.934	34.90	3.81	38.71	54.00	-15.29	AVG	Н		
4881.099	50.90	-3.71	47.19	74.00	-26.81	peak	V		
4881.099	36.60	-3.71	32.89	54.00	-21.11	AVG	V		
8905.934	34.99	3.81	38.80	54.00	-15.20	AVG	V		
8950.306	47.07	3.90	50.97	74.00	-23.03	peak	V		

For IEEE 802.11b Mode

Frequency	Reading	Correct	Recult	Limit	Margin	Romark	Polarization		
(MHz)	(dBuV/m)	dB/m	(dRuV/m)	(dBuV/m)	(dR)	NUMATK			
Highest Channel									
124.5690	32.14	4.53	36.67	43.50	-6.83	peak	Н		
178.1327	29.90	3.74	33.64	43.50	-9.86	peak	Н		
249.4250	28.84	7.27	36.11	46.00	-9.89	peak	Н		
642.8613	21.67	15.14	36.81	46.00	-9.19	peak	Н		
900.1474	19.88	19.38	39.26	46.00	-6.74	peak	Н		
32.4059	24.36	8.44	32.80	40.00	-7.20	peak	V		
57.9993	27.14	5.87	33.01	40.00	-6.99	peak	V		
69.1141	31.09	2.80	33.89	40.00	-6.11	peak	V		
124.5690	29.49	4.53	34.02	43.50	-9.48	peak	V		
642.8613	20.82	15.14	35.96	46.00	-10.04	peak	V		
900.1474	23.67	19.38	43.05	46.00	-2.95	peak	V		
Antenna 0									
4929.857	48.32	-3.57	44.75	74.00	-29.25	peak	Н		
4929.857	36.06	-3.57	32.49	54.00	-21.51	AVG	Н		
8905.934	48.04	3.81	51.85	74.00	-22.15	peak	Н		
8905.934	35.36	3.81	39.17	54.00	-14.83	AVG	Н		
4929.857	53.87	-3.57	50.30	74.00	-23.70	peak	V		
4929.857	40.95	-3.57	37.38	54.00	-16.62	AVG	V		
8861.783	47.71	3.72	51.43	74.00	-22.57	peak	V		
8905.934	35.29	3.81	39.10	54.00	-14.90	AVG	V		
			Anter	nna 1					
4507.999	45.78	-4.79	40.99	74.00	-33.01	peak	Н		
4979.103	34.38	-3.43	30.95	54.00	-23.05	AVG	Н		
8905.934	46.53	3.81	50.34	74.00	-23.66	peak	Н		
8905.934	34.80	3.81	38.61	54.00	-15.39	AVG	Н		
4929.857	49.12	-3.57	45.55	54.00	-8.45	peak	V		
4929.857	35.87	-3.57	32.30	74.00	-41.70	AVG	V		
8905.934	46.54	3.81	50.35	54.00	-3.65	peak	V		
8905.934	34.45	3.81	38.26	74.00	-35.74	AVG	V		

For IEEE 802.11g Mode

Frequency	Reading	Correct	Result	Limit	Margin	Remark	Polarization			
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)					
124.5690	33.14	4.53	37.67	43.50	-5.83	peak	H			
249.4250	30.76	7.27	38.03	46.00	-7.97	peak	H			
499.4247	24.92	12.18	37.10	46.00	-8.90	peak	H			
900.1474	20.81	19.38	40.19	46.00	-5.81	peak	H			
4832.823	47.40	-3.85	43.55	74.00	-30.45	peak	H			
4832.823	35.53	-3.85	31.68	54.00	-22.32	AVG	H			
8905.934	47.59	3.81	51.40	74.00	-22.60	peak	Н			
8905.934	35.30	3.81	39.11	54.00	-14.89	AVG	Н			
33.0950	23.60	8.56	32.16	40.00	-7.84	peak	V			
51.8430	25.64	6.45	32.09	40.00	-7.91	peak	V			
57.9993	26.15	5.87	32.02	40.00	-7.98	peak	V			
124.5690	29.64	4.53	34.17	43.50	-9.33	peak	V			
249.4250	24.00	7.27	31.27	46.00	-14.73	peak	V			
900.1474	23.21	19.38	42.59	46.00	-3.41	peak	V			
4832.823	54.73	-3.85	50.88	74.00	-23.12	peak	V			
4832.823	40.02	-3.85	36.17	54.00	-17.83	AVG	V			
8905.934	47.68	3.81	51.49	74.00	-22.51	peak	V			
8905.934	35.42	3.81	39.23	54.00	-14.77	AVG	V			
			Middle (Channel						
32.4059	21.81	8.44	30.25	40.00	-9.75	peak	Н			
124.5690	33.95	4.53	38.48	43.50	-5.02	peak	Н			
251.1804	29.26	7.34	36.60	46.00	-9.40	peak	Н			
900.1474	18.39	19.38	37.77	46.00	-8.23	peak	Н			
4905.418	47.04	-3.65	43.39	74.00	-30.61	peak	Н			
4905.418	34.67	-3.65	31.02	54.00	-22.98	AVG	Н			
8861.783	47.38	3.72	51.10	74.00	-22.90	peak	Н			
8905.934	35.36	3.81	39.17	54.00	-14.83	AVG	Н			
38.8879	22.49	9.50	31.99	40.00	-8.01	peak	V			
57.9993	26.19	5.87	32.06	40.00	-7.94	peak	V			
69.6005	29.57	2.65	32.22	40.00	-7.78	peak	V			
124.5690	28.84	4.53	33.37	43.50	-10.13	peak	V			
251.1804	23.56	7.34	30.90	46.00	-15.10	peak	V			
900.1474	22.73	19.38	42.11	46.00	-3.89	peak	V			
4881.099	53.49	-3.71	49.78	74.00	-24.22	peak	V			
4881.099	37.94	-3.71	34.23	54.00	-19.77	ÂVG	V			
8861.783	47.36	3.72	51.08	74.00	-22.92	peak	V			
8905.934	35.32	3.81	39.13	54.00	-14.87	AVG	V			
	1		Highest	Channel			1			
124.5690	33.59	4.53	38.12	43.50	-5.38	peak	Н			
251.1804	28.45	7.34	35.79	46.00	-10.21	peak	Н			
297.2241	22.47	10.04	32.51	46.00	-13.49	peak	Н			
499.4247	23.59	12.18	35.77	46.00	-10.23	peak	Н			
642.8613	20.14	15.14	35.28	46.00	-10.72	peak	Н			
900.1474	20.98	19.38	40.36	46.00	-5.64	peak	H			
4954.419	34.85	-3.50	31.35	54.00	-22.65	AVG	H			
5003.909	47.59	-3.36	44.23	74.00	-29.77	peak	H			
8905.934	47.23	3.81	51.04	74.00	-22.96	peak	H			
8905.934	35.30	3.81	39.11	54.00	-14.89	AVG	H			
37.5479	22.50	9.29	31.79	40.00	-8.21	peak	V			

69.1141	29.26	2.80	32.06	40.00	-7.94	peak	V
124.5690	26.73	4.53	31.26	43.50	-12.24	peak	V
249.4250	23.05	7.27	30.32	46.00	-15.68	peak	V
642.8613	21.76	15.14	36.90	46.00	-9.10	peak	V
900.1474	19.97	19.38	39.35	46.00	-6.65	peak	V
4929.857	50.88	-3.57	47.31	74.00	-26.69	peak	V
4929.857	36.69	-3.57	33.12	54.00	-20.88	AVG	V
8861.783	47.71	3.72	51.43	74.00	-22.57	peak	V
8905.934	35.31	3.81	39.12	54.00	-14.88	AVG	V

For IEEE 802.11n/HT20 Mode

Frequency	Reading	Correct	Result	Limit	Margin	Remark	Polarization		
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)				
Lowest Channel									
124.5690	34.29	4.53	38.82	43.50	-4.68	peak	Н		
176.8878	27.59	3.73	31.32	43.50	-12.18	peak	Н		
251.1804	28.84	7.34	36.18	46.00	-9.82	peak	Н		
499.4247	24.34	12.18	36.52	46.00	-9.48	peak	Н		
900.1474	20.57	19.38	39.95	46.00	-6.05	peak	Н		
4929.857	35.05	-3.57	31.48	54.00	-22.52	AVG	Н		
5003.909	47.27	-3.36	43.91	74.00	-30.09	peak	Н		
8905.934	47.39	3.81	51.20	74.00	-22.80	peak	Н		
8905.934	35.23	3.81	39.04	54.00	-14.96	AVG	Н		
36.7662	22.64	9.16	31.80	40.00	-8.20	peak	V		
51.8430	27.03	6.45	33.48	40.00	-6.52	peak	V		
58.4074	25.01	5.83	30.84	40.00	-9.16	peak	V		
124.5690	28.97	4.53	33.50	43.50	-10.00	peak	V		
251.1804	25.94	7.34	33.28	46.00	-12.72	peak	V		
900.1474	21.53	19.38	40.91	46.00	-5.09	peak	V		
4832.823	51.95	-3.85	48.10	74.00	-25.90	peak	V		
4832.823	38.46	-3.85	34.61	54.00	-19.39	AVG	V		
8861.783	47.76	3.72	51.48	74.00	-22.52	peak	V		
8905.934	35.32	3.81	39.13	54.00	-14.87	AVG	V		
			Middle (Channel					
32.4059	21.59	8.44	30.03	40.00	-9.97	peak	Н		
124.5690	33.04	4.53	37.57	43.50	-5.93	peak	Н		
251.1804	28.62	7.34	35.96	46.00	-10.04	peak	Н		
499.4247	20.19	12.18	32.37	46.00	-13.63	peak	Н		
900.1474	18.88	19.38	38.26	46.00	-7.74	peak	Н		
4954.419	46.81	-3.50	43.31	74.00	-30.69	peak	Н		
4979.103	34.91	-3.43	31.48	54.00	-22.52	AVG	Н		
8861.783	35.19	3.72	38.91	54.00	-15.09	AVG	Н		
8950.306	48.07	3.90	51.97	74.00	-22.03	peak	Н		
34.5173	24.83	8.80	33.63	40.00	-6.37	peak	V		
51.8430	26.07	6.45	32.52	40.00	-7.48	peak	V		
60.0691	24.36	5.67	30.03	40.00	-9.97	peak	V		
124.5690	30.02	4.53	34.55	43.50	-8.95	peak	V		
251.1804	25.63	7.34	32.97	46.00	-13.03	peak	V		
900.1474	20.12	19.38	39.50	46.00	-6.50	peak	V		
4832.823	51.95	-3.85	48.10	74.00	-25.90	peak	V		
4832.823	38.46	-3.85	34.61	54.00	-19.39	AVG	V		
8905.934	48.10	3.81	51.91	74.00	-22.09	peak	V		
8905.934	35.40	3.81	39.21	54.00	-14.79	AVG	V		
			Highest	Channel					
33.0950	20.31	8.56	28.87	40.00	-11.13	peak	Н		
124.5690	28.48	4.53	33.01	43.50	-10.49	peak	Н		
251.1804	28.48	7.34	35.82	46.00	-10.18	peak	Н		
4929.857	34.85	-3.57	31.28	54.00	-22.72	AVG	Н		
4979.103	46.77	-3.43	43.34	74.00	-30.66	peak	Н		
8905.934	49.06	3.81	52.87	74.00	-21.13	peak	Н		
8905.934	35.30	3.81	39.11	54.00	-14.89	AVG	Н		
32.4059	24.76	8.44	33.20	40.00	-6.80	peak	V		
51.8430	25.83	6.45	32.28	40.00	-7.72	peak	V		

Page 70 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

69.1141	28.37	2.80	31.17	40.00	-8.83	peak	V
124.5690	30.28	4.53	34.81	43.50	-8.69	peak	V
249.4250	22.95	7.27	30.22	46.00	-15.78	peak	V
900.1474	24.82	19.38	44.20	46.00	-1.80	peak	V
4929.857	35.96	-3.57	32.39	54.00	-21.61	AVG	V
4954.419	47.40	-3.50	43.90	74.00	-30.10	peak	V
8861.783	47.97	3.72	51.69	74.00	-22.31	peak	V
8905.934	35.17	3.81	38.98	54.00	-15.02	AVG	V

For IEEE 802.11n/HT40 Mode

Frequency	Reading	Correct	Result	Limit	Margin	Remark	Polarization		
(MHz)	(dBuV/m)	dB/m	(dBuV/m)	(dBuV/m)	(dB)				
Lowest Channel									
124.5690	33.84	4.53	38.37	43.50	-5.13	peak	Н		
178.1327	28.83	3.74	32.57	43.50	-10.93	peak	Н		
249.4250	25.12	7.27	32.39	46.00	-13.61	peak	H		
499.4247	20.60	12.18	32.78	46.00	-13.22	peak	H		
4954.419	47.30	-3.50	43.80	74.00	-30.20	peak	H		
4954.419	34.78	-3.50	31.28	54.00	-22.72	AVG	H		
8905.934	35.29	3.81	39.10	54.00	-14.90	AVG	H		
8994.898	47.36	3.99	51.35	74.00	-22.65	peak	H		
34.5173	22.28	8.80	31.08	40.00	-8.92	peak	V		
51.8430	25.33	6.45	31.78	40.00	-8.22	peak	V		
57.9993	26.95	5.87	32.82	40.00	-7.18	peak	V		
69.1141	28.78	2.80	31.58	40.00	-8.42	peak	V		
642.8613	20.17	15.14	35.31	46.00	-10.69	peak	V		
900.1474	21.95	19.38	41.33	46.00	-4.67	peak	V		
4954.419	46.75	-3.50	43.25	74.00	-30.75	peak	V		
4954.419	34.75	-3.50	31.25	54.00	-22.75	AVG	V		
8905.934	47.20	3.81	51.01	74.00	-22.99	peak	V		
8905.934	35.25	3.81	39.06	54.00	-14.94	AVG	V		
21.0546	20.02	0.27	Middle (Channel	10.70	1	TT		
31.9546	20.93	8.37	29.30	40.00	-10.70	реак	H		
124.5690	34.27	4.53	38.80	43.50	-4. /0	реак	H		
251.1804	27.97	7.34	35.31	46.00	-10.69	peak	H		
734.4913	16.10	17.68	33.78	46.00	-12.22	peak	H		
900.1474	17.67	19.38	37.05	46.00	-8.95	peak	H		
4979.103	34.68	-3.43	31.25	54.00	-22.75	AVG	H		
5003.909	46.94	-5.50	43.58	74.00	-30.42	реак	H		
8905.934	47.48	3.81	51.29	74.00	-22.71	реак	H		
8905.934	35.16	3.81	38.97	54.00	-15.03	AVG	H		
51.9420	24.04	9.04	33.08	40.00	-0.92	реак	V		
51.8430	25.38	6.45 5.92	31.83	40.00	-8.17	реак	V		
58.4074	27.98	5.83	33.81	40.00	-6.19	реак	V		
08.0310	28.74	2.96	31.70	40.00	-8.30	реак	V		
042.8013	20.98	15.14	30.12	46.00	-9.88	реак	V		
900.1474	21.45	19.38	40.83	46.00	-5.17	реак	V		
4881.099	48.00	-3./1	44.95	74.00	-29.05	реак	V		
4881.099	30.11	-3./1	32.40	54.00	-21.00	AVG	V		
8905.934	35.24	3.81	<u> </u>	54.00	-14.95	AVG	V		
8950.306	46.91	3.90	50.81	74.00 Channal	-23.19	реак	v		
22 4050	20.80	Q 11	nignest		10.67	naalt	Ц		
124 5600	20.09	0.44	27.33	40.00	7 10	peak	п 		
251 1904	28 20	4.33	26.02	45.50	-7.19	peak	11 11		
231.1604	20.00	10.29	27.65	40.00	-7.70	peak	11 [1		
4005 419	10.27	3 65	/2.05	74.00	-0.33	peak	п 		
4903.418	47.40	-3.03	43.81	74.00	-30.19				
4754.419 8005 024	34.00	-5.50	38.02	54.00	-22.04	AVG	п 		
8050 206	18 15	3.01	52.92	74.00	-13.08	neel	п 		
33,0050	40.1J 25.10	3.90 8.56	32.03	/4.00	6 25	peak	11 V		
51.8430	25.19	6.50	31.07	40.00	-0.23	peak	V		
51.0450	45.54	0.45	51.7/	40.00	-0.05	реак	v		

Page 72 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

69.1141	28.30	2.80	31.10	40.00	-8.90	peak	V
124.5690	27.72	4.53	32.25	43.50	-11.25	peak	V
642.8613	19.50	15.14	34.64	46.00	-11.36	peak	V
900.1474	18.72	19.38	38.10	46.00	-7.90	peak	V
4905.418	35.63	-3.65	31.98	54.00	-22.02	AVG	V
4929.857	46.84	-3.57	43.27	74.00	-30.73	peak	V
8861.783	47.30	3.72	51.02	74.00	-22.98	peak	V
8905.934	35.15	3.81	38.96	54.00	-15.04	AVG	V

Remark: Only background noise was measured from 12GHz-26GHz.

Result Summary:

1) Communication mode: All other emissions are more than 20dB below FCC part 15.209 limit.

2) No further spurious emissions found between 30 MHz and lowest internal used/generated frequency and from 30MHz to 1GHz.

3) Test data is base on the worst case lowest channel's emission data graph from 30MHz-26GHz.

Remarks:

1. "*" Radiated emissions which fall in the restricted bands as defined in Section 15.205(a).

2. Emission level with more than 20dB below the FCC required limit is not mentioned in table.

3. Delta to Limit = Field strength $(dB\mu V/m) - Limit (dB\mu V/m)$.

4. Calculated measurement uncertainty: 9kHz -30MHz: 1.8dB. 30MHz -1GHz: 5.2dB. 1GHz -18GHz: 5.1dB.

4.6 Conducted Emissions (0.15MHz to 30MHz)

Test Requirement: Test Method: Test Date: Mode of Operation: Detector Function: Measurement BW: Worst Case Channel: FCC part 15 Section 15.207 Class B ANSI C63.4:2003 2012-06-07 Transmitting continuously mode CISPR Quasi Peak 100 kHz 802.11b Lowest Channel 1Mbps

Results: PASS

- Refer following the result data graph.

Limits for Conducted Emission [Section 15.207]:

Frequency Range	Quasi-Peak Limit	Average Limit	
[MHz]	[dBµV]	[dBµV]	
0.15-0.5	66 to 56*	56 to 46*	
0.5-5.0	56	46	
5.0-30.0	60	50	

* Decreases with the logarithm of the frequency.

Remarks:

Calculated measurement uncertainty: ±2.8dB

Result data graph shows the conducted emission (Live and Neutral). For Adapter 1: HKA01212010-2F

Page 75 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

Frequency	Detector	Phase	Result	Limit	Margin
(MHz)	(QP/AV)		(dBµV)	(dBµV)	_
0.154	QP	L	52.11	65.77	-13.66
0.822	AV	L	41.00	46.00	-5.00
0.838	QP	L	49.26	56.00	-6.74
17.694	AV	L	35.96	50.00	-14.04
17.698	QP	L	43.23	60.00	-16.77
0.202	QP	Ν	53.91	63.52	-9.61
0.398	AV	Ν	35.72	47.89	-12.17
0.786	QP	Ν	50.18	56.00	-5.82
0.838	AV	Ν	39.08	46.00	-6.92
2.194	QP	Ν	49.32	56.00	-6.68
3.958	AV	Ν	36.86	46.00	-9.14
8.954	QP	N	46.44	60.00	-13.56
23.130	AV	N	36.99	50.00	-13.01

Result data table shows the conducted emission (Live and Neutral).

Line Port ×, RBW 9 kHz 10 s MTAtt 10 dB AUTO dBµV 100 MHz MHz 10 90 1 PK махн 2 AV MAXH CDF 70 60 5DE 0 150 kHz 30 MHz Neutral Port RBW 9 kHz Ż 10 s MТ Att 10 dB AUTO dBµV 100 MHz 10 MHz 1 90 1 PK MAXH 80. 2 AV MAXH **FDE** 70 60 DB 10 0 30 MHz 150 kHz

Result data graph shows the conducted emission (Live and Neutral). For Adapter 2: XKD-C1000IC120-12.0W

Page 77 of 80 TÜV SÜD China. 6th Floor, H Hall, Century Craftwork Culture Square, No. 4001,Fuqiang Road, Futian District, Shenzhen, China.

Frequency	Detector	Phase	Result	Limit	Margin
(MHz)	(QP/AV)		(dBµV)	(dBµV)	
0.534	AV	L	35.49	46.00	-10.51
0.554	QP	L	44.71	56.00	-11.29
0.634	AV	L	36.34	46.00	-9.66
0.638	QP	L	46.97	56.00	-9.03
16.166	QP	L	50.02	60.00	-9.98
16.166	AV	L	44.50	50.00	-5.50
0.530	AV	N	35.30	46.00	-10.70
0.554	QP	Ν	44.98	56.00	-11.02
0.642	QP	N	46.58	56.00	-9.42
0.642	AV	N	36.55	46.00	-9.45
3.062	AV	Ν	31.28	46.00	-14.72
3.090	QP	N	37.72	56.00	-18.28
16.166	QP	N	50.42	59.99	-9.57
16.230	AV	N	46.27	50.00	-3.73

Result data table shows the conducted emission (Live and Neutral).

5.0 RF Exposure Compliance Requirement

Test Requirement:	FCC part 15 section 15.247 (i)
Test Method:	FCC part 15 section 1.1307 (b1)
	OET Bulletin 65, Edition 01-01

Results: PASS

Systems operation under the provision of this section shall be operated in a manner that ensures the public is not exposed to radio frequency energy levels in excess of the Commission's guideline,

The EUT is considered as a mobile device according to OET Bulletin 65, Edition 01-01, therefore distance to human body of min. 20cm is determined.

Frequency Band:	2.412GHz ~2.462GHz
Device Category:	 □ Portable (< 20cm separation) □ Mobile (>20cm separation) □ Others :
Exposure Classification:	 Occupational/ Controlled exposure General Population / Uncontrolled exposure
Max Transmit Power	22.59mW
Antenna Gain	4dBi (Numeric gain:2.51)
Evaluation Applied:	 ☑ MPE Evaluation ☑ SAR Evaluation

MPE calculation:

Refer to clause 4.4 of this test report, it shows that The maximum output power = 9.54dBm, The maximum radiated power(EIRP)=the maximum output power+ antenna gain =9.54dBm+4dBi=13.54dBm=22.59mW

The power density at 20cm from the antenna : = EIRP / 4π R^2 = 0.004496mW / cm^2

Limits for General Population/Uncontrolled Exposure [OET Bulletin 65, Edition 01-01]:

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/cm ²)	Averaging Time $ E ^2$, $ H ^2$ or S (minutes)
0.0.1.04	<i>c</i> 14	1.60	(100)*	20
0.3-1.34	614	1.63	$(100)^{*}$	30
1.34-30	824/f	2.19/f	$(180/f^2)^*$	30
30-300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100,000			1.0	30

6.0 List of Measurement Equipment

Radiated Emission

Manufacturer	Equipment	Model No.	Serial No.	Cal. Date	Due Date
R&S	Spectrum Analyzer	FSP30	836079/035	2012-03-28	2013-03-27
R&S	Test Receiver	ESI26	838786/013	2012-03-28	2013-03-27
Albatross Projects	Anechoic chamber	MCDC		2011-12-20	2012-12-19
SCHWARZBECK	Trilog Broadband Antenna	VULB9163	9163-333	2012-02-25	2013-02-24
ETS	Horn Antenna	3117	00086197	2012-02-25	2013-02-24
Agilent	Pre-amplifier	8447F	3113A06717	2012-03-28	2013-03-27
Compliance Direction	Pre-amplifier	PAP-0118	24002	2012-03-28	2013-03-27
Anechoic chamber	Albatross Projects	MCDC		2012-03-20	2013-03-19

Line Conducted

Manufacturer	Equipment	Model No.	Serial No.	Cal. Date	Due Date
Rohde & Schwarz	EMI Test Receiver	ESPI	101611	2012-03-28	2013-03-27
Schwarz beck	L.I.S.N	NSLK8126	8126-224	2012-03-28	2013-03-27
Rohde & Schwarz	Pulse Limiter	ESH3-Z2	100911	2012-03-28	2013-03-27
EMCO	AMN	3825/2	11967C	2012-03-28	2013-03-27
FCC	Current Probe	F-33-4	091684	2012-03-28	2013-03-27

N/A Not Applicable or Not Available