

REPORT OF MEASUREMENT

CERTIFICATION

Product : Security/Remote Control Transmitter(Car Alarm)

Applicant : Dong Yang Security Electronics Co.

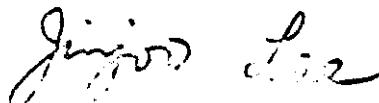
Grantee Name : Dong Yang Security Electronics Co.

FCC ID. : HH8-DYHOP200-TX

Trade Name : THORN

Model No. : THORN 77

Report No. : 341-032


Date : June 24, 1998

KOREA ACADEMY OF INDUSTRIAL TECHNOLOGY(KAITECH)

Address : 222-13, Guro-Dong, Guro-Gu, Seoul, Korea

Tel. : (02)860-1462~7, Telefax : (02)860~1468

JINJOO LEE, Ph.D

President

Korea Institute of Industrial Technology

TABLE OF CONTENTS

I. GENERAL INFORMATION	1
1. Applicant's Name and Mailing Address	
2. Manufacturer's Name and Mailing Address	
3. Equipment Descriptions	
4. Rules and Regulations	
5. Measuring Procedure	
6. Date of Measurement	
7. Statement of Compliance	
II. GENERAL REQUIREMENTS OF THE EUT	2
1. Labelling Requirement (Section 15.19)	
2. Information to User (Sections 15.21)	
3. Special Accessories (Section 15.27)	
4. Compliant Conditions (Section 15.231)	
5. Modification of the Equipment Under Test	
III. INPUT POWER MEASUREMENT (Section 15.31).....	4
IV. RADIATED EMISSION MEASUREMENT (Section 15.231).....	5-11
1. Test Procedure	
2. Photograph for the worst case configuration	
3. Sample Calculation	
4. Measurement Data	
5. Reference Data	
V. OCCUPIED BANDWIDTH MEASUREMENT (Section 15.231).....	12
VI. TEST EQUIPMENTS USED FOR FCC COMPLIANCE TESTING.....	13

ATTACHMENTS

1. Proposed FCC ID. Label
2. Manual for Installation and Operating Instruction
3. Block Diagram & Schematic Diagram
4. Description of Circuit Function
5. Photographs: See the illustration of photographs attached

I. GENERAL INFORMATION

1. Applicant's Name and Mailing Address : Dong Yang Security Electronics Co.
Block 45, Lot 6, Namdong Industrial Comp. 435-6, Nonhyun-Dong,
Namdong-Ku, Inchon, Korea 405-300

2. Manufacturer's Name and Mailing Address : Dong Yang Security Electronics Co.
Block 45, Lot 6, Namdong Industrial Comp. 435-6, Nonhyun-Dong,
Namdong-Ku, Inchon, Korea 405-300

3. Equipment Descriptions

3.1 Operating Frequency : 303MHz

3.2 Type of Emission : Pulse Code Signal

3.3 Power Supply : DC 12.0V (Battery)

3.4 Additional Information ;

- Oscillator used : 303MHz LC oscillator

- I.C. used : HSC-300(Microchip)

4. Rules and Regulations : FCC Part 15, Subpart C

5. Measuring Procedure : ANSI C63.4-1992

6. Date of Measurement

6.1 Conducted Emission : Not Applicable

6.2 Radiated Emission : June 19, 1998

7. Statement of Compliance

We, KAITECH, HEREBY STATE THAT the measurements shown in this report were made in accordance with the procedures indicated and the emission emitted by this equipment was found to be within the limits applicable.

Measured by ;

S. J. KmSeok-Jin Kim
Senior Engineer

Review by ;

Chang-Ho KoChang-Ho Ko
Team Leader
EMC Team

II. GENERAL REQUIREMENTS OF THE EUT

1. Labelling Requirement (Section 15.19)

This device complies with Part 15 of the FCC Rules.

Operation is subject to the following two conditions :

(1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

1.1 Location on Enclosure : Manual for Installation and Operating Instruction

1.2 How Applied : Printing

2. Information to User (Section 15.21)

The following or similar statements were provided in the manual for user instruction.
Please refer page 1 of the attached manual for details.

CAUTION : Any changes or modifications in construction of this device which are not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment.

3. Special Accessories (Section 15.27)

3.1 Were the special Accessories provided? yes, no

3.2 If yes, details for the special accessories are as follows :

3.3 If yes, were the appropriate instructions provided on the first page of the text concerned with the device? yes, no

3.4 Are these accessories provided of the type which can be readily obtained from multiple retail outlets? yes, no

And therfore does the manual specify what additional components or accessories are required to used in order to comply with the Rules?

yes, no

4. Compliant Conditions (Section 15.231)

4.1 Was the EUT used for continuous transmissions, such as voice or video, and data transmission ? yes, no

4.2 Was the EUT manually operated ?

yes, no

If yes, did the EUT employ a switch that would automatically deactivate the transmitter within not more than 5 seconds of being released ?

yes, no

4.3 Was the EUT automatically activated ?

yes, no

If yes, did the EUT cease transmission within 5 seconds after deactivation ?

yes, no

4.4 Was the EUT used for periodic transmissions at regular predetermined intervals ?

yes, no

5. Modification of the Equipment Under Test

Any modifications were not made to the EUT during the testing since the test results were found of be complied with the FCC Rules with the EUT in the as received condition

Modification(s) was(were) made to the EUT in order to make it meet FCC Rules since it had shown non-compliance for some test items in the course of our testing.

- Status of non-compliance :

- Details of Modifications :

III. INPUT POWER MEASUREMENT (Section 15.31)

INPUT POWER
22.53 mW

Note : 1. Input Power : $P_{\text{ave}} = (P_p \times D)_{\text{pulse}} + P_d$

Where, P_p : Input Peak Power ($= V \times I_p$)

P_d : Input DC Power ($= V \times I_d$)

D : Duty Cycle ($= \tau_{\text{eff}} \times \text{PRF}$)

Measured Input Voltage (V) = 12.20 DCV

Measured Input Peak Current (I_p) = 1.40 mA

Measured Input Bias Current (I_d) = 1.38 mA

Measured An Effective Pulse Width (τ_{eff}) = 0.40 msec

Measured Pulse Repetition Frequency (PRF) = 833 Hz

2. Input current was measured using the current probe and the oscilloscope.

3. τ_{eff} and PRF were measured using the spectrum analyzer.

$$4. P_p = \underline{12.20 \text{ DCV}} \times \underline{1.40 \text{ mA}} = \underline{17.08 \text{ mW}}$$

$$P_d = \underline{12.20 \text{ DCV}} \times \underline{1.38 \text{ mA}} = \underline{16.84 \text{ mW}}$$

$$D = \underline{0.40 \text{ msec}} \times \underline{833 \text{ Hz}} = \underline{0.333}$$

IV. RADIATED EMISSION MEASUREMENT (Section 15.231)**1. Test Procedure****1.1 Preliminary Testing for Reference**

This transmitter(EUT) is designed to deactivate after 25 seconds automatically although the operating button is not released. And a non-metallic test jig for convenience operating was used.

Preliminary testing was performed in a KAITECH absorber-lined room to determine the emission characteristics of the EUT. The EUT was placed on the wooden table which has dimensions of 0.8 meters in height, 1 meter in length and 1.5 meters in width. Receiving antenna(Biconical antenna : 30 to 300MHz, Log-periodic antenna : 200 to 1000MHz or Horn Antenna : 1 to 18GHz) was placed at the distance of 1 meter from the EUT.

The measurement was performed with three buttons respectively. An attempt was made to maximize the emission level with the various configurations of the EUT. The position of the EUT was horizontally or vertically changed to find the worst case configuration.

Emissions level from the EUT with various configurations were examined on a Spectrum Analyzer connected with a RF amplifier and graphed by a plotter.

1.2 Final Radiated Emission Test at a Absorber-Lined Room

The final measurement of radiated field strength was carried out in a KAITECH Absorber-Lined Room that was listed up at FCC according to the "Radiated Emissions Testing" procedure specified by ANSI C63.4.

Based on the test results in preliminary test, measurement was made in same test set up and configuration which produced maximum emission level. Receiving antenna was installed at 3-meter distance from the EUT, and was connected to an EMI receiver or spectrum analyzer with a RF amplifier.

Turntable was rotated through 360 degrees and receiving antenna height was varied from 1 to 4 meters above the ground plane to read maximum emission level.

If necessary, the radiated emission measurements could be performed at a closer distance than specified distance to ensure higher accuracy and their results were extrapolated to the specified distance using an inverse linear distance extrapolation factor(20dB/decade) as per Section 15.31(f).

The maximum emission level from the EUT occurred when EUT was set to Button upper in such configuration as shown in the following photograph.

The field strengths were calculated as follows :

- E_{peak} (dB) = $E_{reading}$ (dB) + a_p + Ant. Factor & Cable Loss (dB)

- To get the average voltage values in the one complete pulse train blanking intervals,

$$E_{avg.} (\mu V) = \frac{E_{peak} (\mu V) \times \text{Total pulse time of transmitter in the one complete pulse train (sec)}}{T_t (\text{sec})}$$

where,

$$\begin{aligned} \text{Pulse desensitization } (a_p) &= 20\log(\tau_{eff} \times B \times K), \text{ HP AN150-2 (page 14)} \\ &= 0 \text{ (See 1.4)} \end{aligned}$$

$$\begin{aligned} \text{Total pulse time of transmitter} \\ \text{in the one complete pulse} \\ \text{train} &= 42.80 \text{ msec} \text{ (See the graph of page 11)} \end{aligned}$$

$$\begin{aligned} \text{One complete pulse train} \\ \text{time including blanking} \\ \text{interval (T}_t\text{)} &= 110.0 \text{ msec} \text{ (See graphs of page 11)} \end{aligned}$$

For example :

the average values at 303.1 MHz

Spectrum Analyzer measured values	:	86.5	dB
- Preamplifier	:	30.0	dB
+ Pulse Desensitization (a_p)	:	0.0	dB
+ Ant.Factor & Cable Loss	:	21.4	dB

$$\begin{aligned} \text{Voltage Peak Levels} &: 77.9 \text{ dB}\mu V \\ (= 7852.4 \mu V) & \end{aligned}$$

Voltage Average Levels

$$\begin{aligned} E_{avg.} &= \frac{E_{peak} \times \text{Total pulse time of transmitter}}{T_t} \\ &= \frac{7852.4 \mu V \times 42.80 \text{ msec}}{110.0 \text{ msec}} = 3055.3 \mu V \end{aligned}$$

4. Measurement Data

- Measurement Button : Button Upper
- Resolution Bandwidth : Peak (3dB Bandwidth : 100kHz for 1GHz below)
Peak (3dB Bandwidth : 1MHz for 1GHz over)
- Measurement Distance : 3 Meter

Note

*	D.M.	: Detect Mode (P : Peak, Q : Quasi-Peak, A : Average)
	A.P.	: Antenna Polarization (H : Horizontal, V : Vertical)
	A.F.	: Antenna Factor
	C.L.	: Cable Loss
	A.G.	: Amplifier Gain
	D.C.F.	: Distance Correction Factor

** Margin (dB) = Emission Level (dB) - Limit (dB)

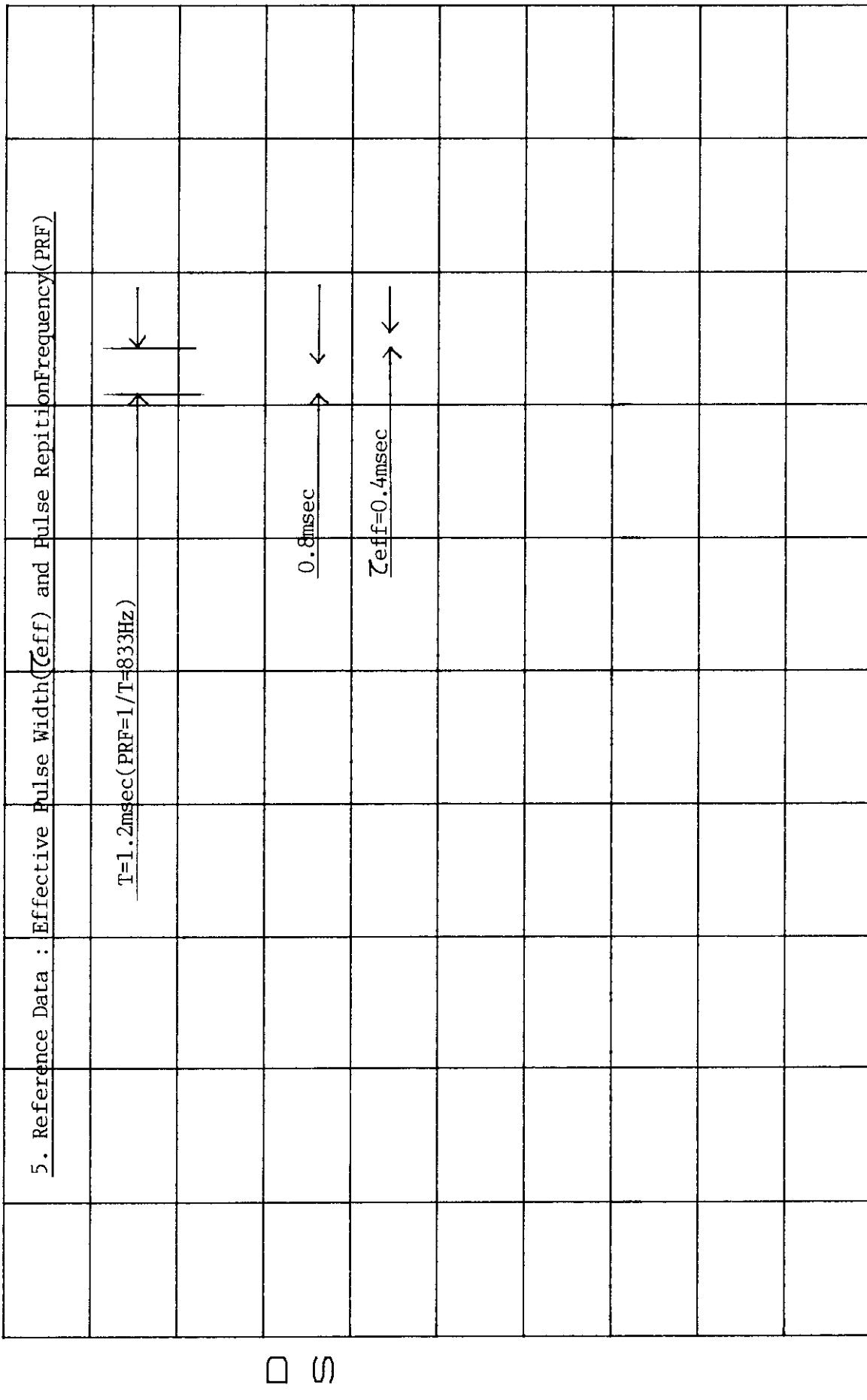
*** The measured values of emission at these frequencies were 25dB below the permitted level.

**** < means less than. The observed spectrum analyzer noise floor level with RF preamplifier(Model No. : 8347A) was 32.0 dB μ V/m

Note :

(1) Fundamental emissions from the intentional radiators were not located within any of frequency bands described in section 15.205(a) listed below ;

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.25
0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.1775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2655-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	
13.36-13.41			

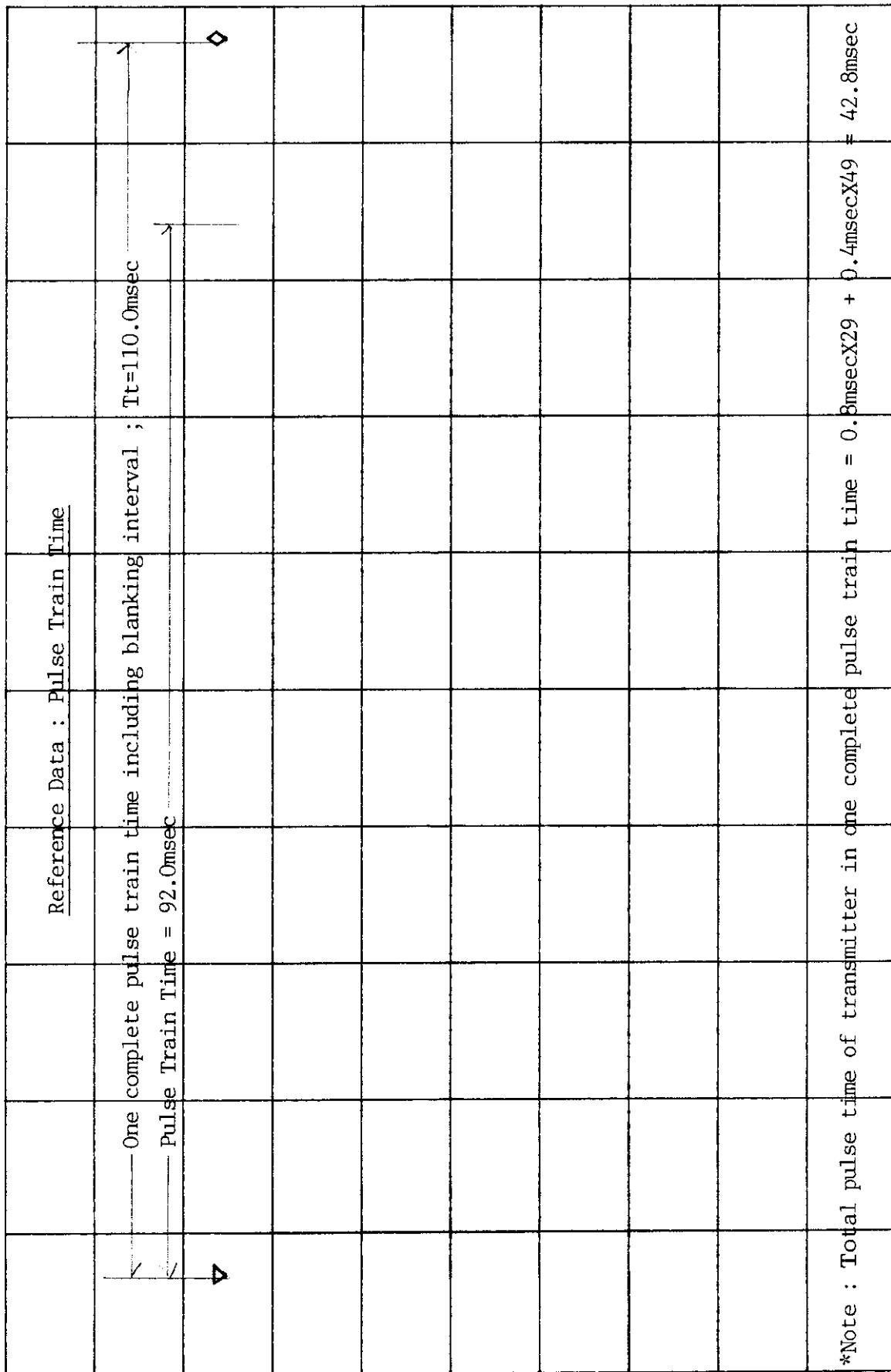

The field strength of emissions appearing within above frequency bands did not exceed the limits shown in section 15.209. At frequency equal to or less than 1000MHz, compliance with the limits section 15.209 was demonstrated using measurement employing a CISPR quasi-peak detector. Above 1000MHz, demonstrated based on the average value of the measured emissions.

(2) If the intentional radiator was operated under the radiated emission limits of the general requirements of section 15.209, it's fundamental emissions were not located in the frequency bands 54-72MHz, 76-88MHz, 174-216MHz, 470-860MHz.

(3) The level of any unwanted emissions from an intentional radiator did not exceed the level of the fundamental emission.

(4) Radiated and spurious emissions were checked from 30MHz to 3GHz. And all other emissions not reported on data were more than 25 dB below the permitted level.

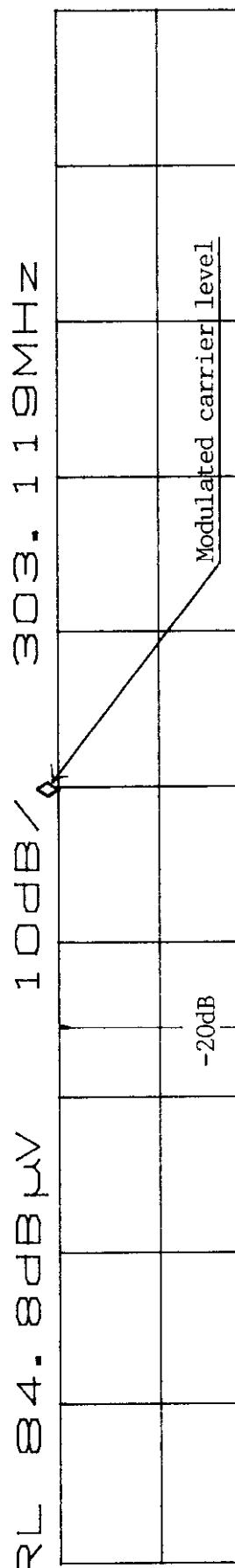
RL 107.0dB μ V 10dB/


CENTER 303.122333MHz SPAN 0Hz
*RBW 2.0MHz *VBW 3.0MHz *SWP 35ms

ATTEN 10dB

ΔMKR - 17dB

RL 107.0dB UV


10dB / 110ms

CENTER 303.122333MHz
*RBW 2.0MHz *VBW 3.0MHz

SPAN 0Hz

*SWP 120ms

V. OCCUPIED BANDWIDTH (Section 15.231)

1. Carrier Frequency = 303.119MHz
2. The bandwidth of emission shall be no wider than 0.25% of center frequency.
3. Limit : less than 0.758MHz (303.119×0.0025)

← 0.758MHz →

CENTER 303.122MHz
 *RBW 3.0kHz *VBW 10kHz

SPAN 1.894MHz
 *SWP 5.0sec

VI. TEST EQUIPMENT USED FOR FCC COMPLIANCE TESTING

<u>Equipment</u>	<u>Model No.</u>	<u>Manufacturer</u>	<u>Serial No.</u>	<u>Effective Cal. Duration</u>
[] EMI Receiver (20MHz-1GHz)	ESVS30	R & S	830516/002	07/04/97-07/04/98
[x] Spectrum Analyzer (9kHz-26.5GHz)	8563A	H. P.	3222A02069	01/30/98-01/30/99
[] Spectrum Analyzer (100Hz-22GHz)	8566B	H. P.	3014A07057	05/29/98-05/29/99
[] Quasi-Peak Adapter (10kHz-1GHz)	85650A	H. P.	3107A01511	05/29/98-05/29/99
[] RF-Preselector (20Hz-2GHz)	85685A	H. P.	3010A01181	05/29/98-05/29/99
[] Test Receiver (9kHz-30MHz)	ESH3	R & S	860905/001	07/04/97-07/04/98
[x] Pre-Amplifier (0.1-3000MHz, 30dB)	8347A	H. P.	2834A00543	05/29/98-05/29/99
[] Pre-Amplifier (1-26.5GHz, 35dB)	8449B	H. P.	3008A00302	06/30/97-06/30/98
[] LISN(50Ω, 50μH) (10kHz-100MHz)	3825/2	EMCO	9010-1710	-
[] LISN(50Ω, 50μH) (10kHz-100MHz)	3825/2	EMCO	9011-1720	-
[x] Plotter	7470A	H. P.	3104A21292	-
[x] Tuned Dipole Ant. (30MHz-300MHz)	VHA 9103	Schwarzbeck	-	*
[x] Tuned Dipole Ant. (300MHz-1GHz)	UHA 9105	Schwarzbeck	-	*
[x] Biconical Ant. (20MHz-200MHz)	BBA9106	Schwarzbeck	-	*
[x] Log Periodic Ant. (200MHz-1GHz)	3146	EMCO	-	*
[x] Horn Ant. (1GHz-18GHz)	3115	EMCO	-	*
[x] Oscilloscope	TDS540	Tektronix	B023930	09/26/97-09/26/98
[x] Volt Meter	3438A	H.P.	1717A-00613	05/29/98-05/29/99
[] DC Power Supply	6206B	H.P.	1145A04822	-
[x] Shielded Room (5.0m x 4.5m)		SIN-MYUNG	-	-

* Each set of antennas has been calibrated to ensure correlation with ANSI C63.5 standard.
The calibration of antennas is traceable to Korea Standard Research Institute(KSRI).