

FCC Radio Test Report

FCC ID: HFSQTA-LI7CS

Report No.	: BTL-FCCP-1-2107T083A
Equipment	: Notebook Computer
Model Name	: NL72LTE, NL72CT-LTE, LI7, LI7XXXXXXXXX, NL7XXXXXXXXX(The "X" Can be 0-9,A-Z, a-z, - or blank for the marketing purpose)
Brand Name	: Quanta, CTL
Applicant	: Quanta Computer Inc.
Address	: No. 188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan
Radio Function	: WCDMA Band V+ LTE Band 5
FCC Rule Part(s)	: 47 CRF FCC Part 22, Subpart H 47 CFR FCC Part 2
Measurement	: ANSI/TIA/EIA-603-E-2016
Procedure(s)	KDB 971168 D01 Power Meas License Digital Systems v03r01
Date of Receipt Date of Test Issued Date	: 2021/9/11 : 2021/9/11 ~ 2021/10/4 : 2021/11/1

The above equipment has been tested and found in compliance with the requirement of the above standards by BTL Inc.

Prepared by Supervisor **ac-MRA** Chalando **Testing Labo** 0659 Approved by Peter Chen, Vice Manager BTL Inc. No.18, Ln. 171, Sec. 2, Jiuzong Rd., Neihu Dist., Taipei City 114, Taiwan Tel: +886-2-2657-3299 Fax: +886-2-2657-3331 Web: www.newbtl.com

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. **BTL** shall have no liability for any declarations, inferences or generalizations drawn by the client or others from **BTL** issued reports.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements, and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

CONTENTS

REVI	SON HISTORY	5
1	SUMMARY OF TEST RESULTS	6
1.1	TEST FACILITY	7
1.2	MEASUREMENT UNCERTAINTY	7
1.3	TEST ENVIRONMENT CONDITIONS	7
2	GENERAL INFORMATION	8
2.1	DESCRIPTION OF EUT	8
2.2	TEST MODES	10
2.3	BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED	11
2.4	SUPPORT UNITS	11
3	AC POWER LINE CONDUCTED EMISSIONS TEST	12
3.1	LIMIT	12
3.2	TEST PROCEDURE	12
3.3	DEVIATION FROM TEST STANDARD	12
3.4	TEST SETUP	13
3.5	TEST RESULT	13
4	RF POWER OUTPUT TEST	14
4.1	LIMIT	14
4.2	TEST PROCEDURE	14
4.3	DEVIATION FROM TEST STANDARD	14
4.4	TEST SETUP	14
4.5	TEST RESULT	14
5	OCCUPIED BANDWIDTH MEASUREMENT	15
5.1	TEST PROCEDURE	15
5.2	DEVIATION FROM TEST STANDARD	15
5.3	TEST SETUP	15
5.4	TEST RESULT	15
6	CONDUCTED SPURIOUS EMISSIONS MEASUREMENT	16
6.1	LIMIT	16
6.2	TEST PROCEDURE	16
6.3	DEVIATION FROM TEST STANDARD	16
6.4	TEST SETUP	16
6.5	TEST RESULT	16
7	RADIATED SPURIOUS EMISSIONS TEST	17
7.1	LIMIT	17
7.2	TEST PROCEDURE	17
7.3	DEVIATION FROM TEST STANDARD	17
7.4	TEST SETUP	18
7.5	EUT OPERATING CONDITIONS	18
7.6	TEST RESULT	18
8	BAND EDGE MEASUREMENT	19
8.1	LIMIT	19
8.2	TEST PROCEDURE	19
8.3	DEVIATION FROM TEST STANDARD	19
8.4	TEST SETUP	19
8.5	TEST RESULT	19
9	PEAK TO AVERAGE RATIO MEASUREMENT	20
9.1	LIMIT	20

9.2	TEST	[PROCEDURE	20	
9.3	DEVI	20		
9.4	TEST	T SETUP	20	
9.5	TEST	T RESULT	20	
10	FREQU	ENCY STABILITY MEASUREMENT	21	
10.1	LIMIT	r	21	
10.2	TEST	[PROCEDURE	21	
10.3	DEVI	ATION FROM TEST STANDARD	21	
10.4	TEST	T SETUP	21	
10.5	TEST	T RESULT	21	
11	LIST OF	MEASURING EQUIPMENTS	22	
12	12 EUT TEST PHOTO			
13	EUT PH	IOTOS	24	
APPEND	DIX A	AC POWER LINE CONDUCTED EMISSIONS	25	
APPEND	IX B	RF POWER OUTPUT TEST	30	
APPEND	DIX C	OCCUPIED BANDWIDTH	48	
APPEND	DIX D	CONDUCTED SPURIOUS EMISSION	59	
APPEND	65			
APPEND	74			
APPEND	NX G	PEAK TO AVERAGE RATIO	80	
APPEND	NX H	FREQOENCY STABILITY	86	

REVISON HISTORY

Report No.	Version	Description	Issued Date
BTL-FCCP-1-2107T083A	R00	Original Report.	2021/10/13
BTL-FCCP-1-2107T083A	R01	Added one brand name.	2021/11/1

SUMMARY OF TEST RESULTS 1

Test procedures according to the technical standards.

FCC Clause No	Description	Test Result	Judgement	Remark
15.207	AC Power Line Conducted Emissions	APPENDIX A	Pass	
2.1046 22.913(a)(5)	RF Power Output	APPENDIX B	Pass	
2.1049	Occupied Bandwidth	APPENDIX C	Pass	
2.1051 22.917(a)	Conducted Spurious Emissions	APPENDIX D	Pass	
2.1053 22.917(a)	Radiated Spurious Emissions	APPENDIX E	Pass	
22.917(a)	Band Edge Measurements	APPENDIX F	Pass	
-	Peak To Average Ratio	APPENDIX G	Pass	Record Only
2.1055 22.355	Frequency Stability	APPENDIX H	Pass	

NOTE:

(1) "N/A" denotes test is not applicable in this Test Report.(2) The report format version is TP.1.1.1.

1.1 TEST FACILITY

The test facilities used to collect the test data in this report:

No. 68	3-1, Ln. 169, Se	ec. 2, D	atong Rd.,	Xizhi Dist.,	New Tai	pei City 221,	Taiwan	
The te	est sites and fa	cilities a	are covered	d under FCC	C RN: 67	4415 and DN	: TW0659	
\boxtimes	C05		CB08		CB11	\boxtimes	CB15	CB16
\boxtimes	SR05							

1.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expanded uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k} = 2$, providing a level of confidence of approximately **95**%. The measurement instrumentation uncertainty considerations contained in CISPR 16-4-2. The BTL measurement uncertainty is less than the CISPR 16-4-2 U_{cispr} requirement.

A. AC power line conducted emissions test:

Test Site	Method	Measurement Frequency Range	U (dB)
C05	CISPR	150 kHz ~ 30MHz	3.44

B. Radiated Spurious Emissions test :

Test Site	Test Site Measurement Frequency Range			
CB15	0.03 GHz ~ 0.2 GHz	4.17		
	0.2 GHz ~ 1 GHz	4.72		
	1 GHz ~ 6 GHz	5.21		
	6 GHz ~ 18 GHz	5.51		
	18 GHz ~ 26 GHz	3.69		
	26 GHz ~ 40 GHz	4.23		

NOTE:

Unless specifically mentioned, the uncertainty of measurement has not been taken into account to declare the compliance or non-compliance to the specification.

1.3 TEST ENVIRONMENT CONDITIONS

Test Item	Environment Condition	Test Voltage	Tested by
AC Power Line Conducted Emissions	24 °C, 51 %	AC 120V	Tim Lian
Output Power & ERP	24.6 °C, 67 % 25 °C, 52 %	AC 120V	Paul Shen Vincent Lee
Occupied Bandwidth	24.6 °C, 67 %	AC 120V	Paul Shen
Conducted Spurious Emissions	24.6 °C, 67 %	AC 120V	Paul Shen
Radiated Spurious Emissions	25 °C, 52 %	AC 120V	Vincent Lee
Band Edge	24.6 °C, 67 %	AC 120V	Paul Shen
Peak to Average Ratio	24.6 °C, 67 %	AC 120V	Paul Shen
Frequency Stability	Normal and Extreme		Paul Shen

2 GENERAL INFORMATION

2.1 DESCRIPTION OF EUT

Equipment	Notebook Compute	er		
Model Name	NL72LTE, NL72CT Can be 0-9.A-Z. a-	-LTE, LI7, LI7XXXXXXXXXX, NL7XXXXXXXXXX(The "X" z or blank for the marketing purpose)		
Brand Name	Quanta, CTL	,		
	Brand Name	Model Name		
Model Difference	Quanta	LI7, LI7XXXXXXXXXX (The "X" Can be 0-9,A-Z, a-z ,- or blank for the marketing purpose) NL72LTE, NL72CT-LTE, NL7XXXXXXXXXXX(The		
		"X" Can be 0-9,A-2, a-z ,- or blank for the marketing purpose)		
	Different model dis	tribute to different area.		
Power Source	DC voltage supplie	d from AC/DC Adapter.		
Power Adapter	LITEON / PA-1450	-50		
Power Adapter Power Rating	I/P: 100-240V~1.3/ O/P: 5.0V3.0A,	A 50/60Hz 9.0V3.0A, 12.0V3.0A, 15.0V3.0A, 20.0V2.25A		
WWAN Module	Fibocom / NL668-A	AM		
WCDMA IEMI No.	Call Control Operating flode Active Cell IIfSI: IIfEI(SU Pouer C End Initial Paging Parameters Current III Stat Guil Handovers Her EDC Last rec UE Info Clear UE Info	Call Setup Screen Rotive Cell Operating Hode Call Parms Outoutstate Call Porcessing Status Eservice Type: RB Test Node MSDPA Information Call Configs Outoutstate Outoutstate <td c<="" td=""></td>		
LTE IEMI No.	2021/09/22 13:33 <fundamental measurement:<br="">Parameter Measuring (Spect IMSI (DEC) IMSI (DEC) IMEI UE Categony PON Type PCC RSRP RSRQ SDC-1 RSRP RSRQ SDC-2 RSRQ RSQ RSRQ RSRQ RSRQ R RSQ R RSQ R R</fundamental>	Connected Output Main Phone-2 LTE Fundamental UE Report trum) UE Power : 21.4 dBm 001010123456788 Begont 867958050023740 A 4 IPv4v6 IPv4v6 Image: Connected of the second of th		

Test Model	NL72LTE						
Sample Status	Engineering \$	Engineering Sample					
	Mode	Band	UL Frequency (MHz)	DL Frequency (MHz)			
Operation Frequency	WCDMA	V	824 ~ 849	869 ~ 894			
	LTE	5	824 ~ 849	869 ~ 894			
EUT Modification(s)	N/A						

NOTE:

- (1) For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- (2) Channel List:

WCDMA Band V								
Test Frequency ID	UARFCN	Frequency of Uplink (MHz)	UARFCN	Frequency of Downlink (MHz)				
Low Range	4132	826.4	4357	871.4				
Mid Range	4183	836.6	4408	881.5				
High Range	4233	846.6	4458	891.6				

	LTE Band 5						
Test Frequency ID	Bandwidth (MHz)	N _{UL}	Frequency of Uplink (MHz)	N _{DL}	Frequency of Downlink (MHz)		
	1.4	20407	824.7	2407	869.7		
Low Pongo	3	20415	825.5	2415	870.5		
Low Kange	5	20425	826.5	2425	871.5		
	10	20450	829	2450	874		
Mid Range	1.4/3/5/10	20525	836.5	2525	881.5		
	1.4	20643	848.3	2643	893.3		
High Range	3	20635	847.5	2635	892.5		
	5	20625	846.5	2625	891.5		
	10	20600	844	2600	889		

(3) Table for Filed Antenna:

Antenna	Manufacturer	Part Number	Туре	Gain (dBi)	Note
Main	WNC	DQ6615GAU00 (81EAA615.GAU)	PIFA	-1.99	-
Aux	WNC	DQ6615GVU00 (81EAA615.GAV)	PIFA	-0.50	-

2.2 TEST MODES

WCDMA BAND V MODE							
Test Item	Available Channel	Tested Channel	Mode				
Output Power & ERP	4132 to 4233	4132, 4183, 4233	WCDMA, HSDPA, HSUPA				
Occupied Bandwidth	4132 to 4233	4132, 4183, 4233	WCDMA				
Conducted Spurious Emissions	4132 to 4233	4183	WCDMA				
Radiated Spurious Emissions	4132 to 4233	4183	WCDMA				
Band Edge	4132 to 4233	4132, 4233	WCDMA				
Peak to Average Ratio	4132 to 4233	4132, 4183, 4233	WCDMA				
Frequency Stability	4132 to 4233	4183	WCDMA				

		LTE BAI	ND 5 MODE		
Test Item	Available Channel	Tested Channel	Channel Bandwidth	Modulation	Mode
	20407 to 20643 20407, 20525, 20643 1.		1.4MHz	QPSK, 16QAM,64QAM	1RB/3RB/6RB
Output	20415 to 20635	20415, 20525, 20635	3MHz	QPSK, 16QAM,64QAM	1RB/8RB/15RB
ERP	20425 to 20625	20425, 20525, 20625	5MHz	QPSK, 16QAM,64QAM	1RB/12RB/25RB
	20450 to 20600	20450, 20525, 20600	10MHz	QPSK, 16QAM,64QAM	1RB/25RB/50RB
	20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK, 16QAM,64QAM	6RB
Occupied	20415 to 20635	20415, 20525, 20635	3MHz	QPSK, 16QAM,64QAM	15RB
Bandwidth	20425 to 20625 20425, 20525, 20625 5MHz		5MHz	QPSK, 16QAM,64QAM	25RB
	20450 to 20600 20450, 20525, 20600 10MHz		QPSK, 16QAM,64QAM	50RB	
Conducted	20407 to 20643	20525	1.4MHz	QPSK	1RB
Spurious	20425 to 20625	20525	5MHz	QPSK	1RB
Emissions	20450 to 20600	20525	10MHz	QPSK	1RB
Radiated	20407 to 20643	20525	1.4MHz	QPSK	1RB
Spurious	20425 to 20625	20525	5MHz	QPSK	1RB
Emissions	20450 to 20600	20525	10MHz	QPSK	1RB
	20407 to 20643	20407, 20643	1.4MHz	QPSK	1RB/6RB
Bond Edgo	20415 to 20635	20415, 20635	3MHz	QPSK	1RB/15RB
Banu Euge	20425 to 20625	20425, 20625	5MHz	QPSK	1RB/25RB
	20450 to 20600	20450, 20600	10MHz	QPSK	1RB/50RB
	20407 to 20643	20407, 20525, 20643	1.4MHz	QPSK, 16QAM,64QAM	1RB
Peak To	20415 to 20635	20415, 20525, 20635	3MHz	QPSK, 16QAM,64QAM	1RB
Ratio	20425 to 20625	20425, 20525, 20625	5MHz	QPSK, 16QAM,64QAM	1RB
	20450 to 20600	20450, 20525, 20600	10MHz	QPSK, 16QAM,64QAM	1RB
	20407 to 20643	20525	1.4MHz	QPSK	1RB
Frequency	20415 to 20635	20525	3MHz	QPSK	1RB
Stability	20425 to 20625	20525	5MHz	QPSK	1RB
	20450 to 20600	20525	10MHz	QPSK	1RB

2.3 BLOCK DIAGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Equipment letters and Cable numbers refer to item numbers described in the tables of clause 2.4.

2.4 SUPPORT UNITS

Item	Equipment	Brand	Model No.	Series No.	Remarks
Α	Adapter	LITEON	PA-1450-50	N/A	Supplied by test requester
Item	Shielded	Ferrite Core	Length	Cable Type	Remarks
1	N/A	N/A	1m	Power Cord	Supplied by test requester

3 AC POWER LINE CONDUCTED EMISSIONS TEST

3.1 LIMIT

Frequency	Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15 - 0.5	66 - 56 *	56 - 46 *	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

NOTE:

- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.
- (3) The test result calculated as following:
 - Measurement Value = Reading Level + Correct Factor
 - Correct Factor = Insertion Loss + Cable Loss + Attenuator Factor (if use)

Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
38.22	+	3.45	Π	41.67

Measurement Value		Limit Value		Margin Level
41.67	-	60	Ι	-18.33

The following table is the setting of the receiver.

Receiver Parameter	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 KHz

3.2 TEST PROCEDURE

a. The EUT was placed 0.8 m above the horizontal ground plane with the EUT being connected to the power mains through a line impedance stabilization network (LISN).

All other support equipment were powered from an additional LISN(s).

The LISN provides 50 Ohm/50uH of impedance for the measuring instrument.

- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle to keep the cable above 40 cm.
- Excess I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable will be terminated, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. The LISN is spaced at least 80 cm from the nearest part of the EUT chassis.
- e. For the actual test configuration, please refer to the related Item EUT TEST PHOTO.

NOTE:

- In the results, each reading is marked as Peak, QP or AVG per the detector used. BW=9 kHz (6 dB Bandwidth)
- (2) All readings are Peak unless otherwise stated QP or AVG in column of Note. Both the QP and the AVG readings must be less than the limit for compliance.

3.3 DEVIATION FROM TEST STANDARD

No deviation.

3.5 TEST RESULT

Please refer to the APPENDIX A.

4 RF POWER OUTPUT TEST

4.1 LIMIT

Mobile / Portable station are limited to 7 watts e.r.p.

4.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 5.

EIRP / ERP Power Measurement:

EIRP = Conducted Power + Antenna gain. ERP power = EIPR power - 2.15 dBi.

Conducted Power Measurement:

The EUT was set up for the maximum power with WCDMA and LTE link data modulation and link up with simulator. Set the EUT to transmit under low, middle and high channel and record the power level shown on simulator.

4.3 DEVIATION FROM TEST STANDARD

No deviation.

4.4 TEST SETUP

Conducted Power Measurement:

Communication	FUT
Simulator	201

4.5 TEST RESULT

Please refer to the APPENDIX B.

5 OCCUPIED BANDWIDTH MEASUREMENT

5.1 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 4.

- a. The EUT makes a call to the communication simulator. All measurements were done at low, middle and high operational frequency range. The communication simulator station system controlled a EUT to export maximum output power under transmission mode and specific channel frequency. Use OBW measurement function of Spectrum analyzer to measure 99 % occupied bandwidth and 26dB bandwidth.
- b. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- c. RBW=(1% ~ 5%)*EBW VBW≥3* RBW.
- d. Set spectrum analyzer with Peak detector.

5.2 DEVIATION FROM TEST STANDARD

No deviation.

5.3 TEST SETUP

Communication simulator

5.4 TEST RESULT

Please refer to the APPENDIX C

6 CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

6.1 LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least $43 + 10 \log(P) dB$. The emission limit equal to -13dBm.

6.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 6.

- a. The EUT was connected to spectrum analyzer and system simulator via a power divider.
- b. The band edges of low and high channels for the highest RF powers were measured. Set RBW>=1% EBW in the 1MHz band immediately outside and adjacent to the band edge.
- c. Set spectrum analyzer with Peak detector.
- d. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

6.3 DEVIATION FROM TEST STANDARD

No deviation.

6.4 TEST SETUP

6.5 TEST RESULT

Please refer to the APPENDIX D

7 RADIATED SPURIOUS EMISSIONS TEST

7.1 LIMIT

The power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. The emission limit equal to -13dBm.

NOTE:

(1) The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain(if use) Margin Level = Measurement Value - Limit Value

Calculation example:

Reading Level		Correct Factor		Measurement Value
-50.43	+	-2.11	=	-52.54

Measurement Value		Limit Value		Margin Level
-52.54	-	-13	Ш	-39.54

7.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 6.2.

- a. In the semi-anechoic chamber, EUT placed on the 0.8m height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The substitution horn antenna is substituted for EUT at the same position and signals generator export the CW signal to the substitution antenna via a TX cable. Rotated the Turn Table and moved receiving antenna to find the maximum radiation power. Adjust output power level of S.G to get a Value of spectrum reading equal to "Read Value" of step a. Record the power level of S.G
- c. EIRP = Output power level of S.G TX cable loss + Antenna gain of substitution horn.
- d. ERP can be calculated form EIRP by subtracting the gain of dipole, ERP = EIPR 2.15dBi.
- e. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1MHz/3MHz.

7.3 DEVIATION FROM TEST STANDARD

No deviation.

7.4 **TEST SETUP**

8 BAND EDGE MEASUREMENT

8.1 LIMIT

A Power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (P) by a factor of at least 43 + 10 log(P) dB. In the 1 MHz bands immediately outside and adjacent to the frequency block a resolution bandwidth of at least one percent of the emission bandwidth of the fundamental emission of the transmitter may be employed.

8.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 6.

- a. All measurements were done at low and high operational frequency range.
- b. Record the max trace plot into the test report.

8.3 DEVIATION FROM TEST STANDARD

No deviation.

Communication simulator

8.5 TEST RESULT

Please refer to the APPENDIX F

9 PEAK TO AVERAGE RATIO MEASUREMENT

9.1 LIMIT

In measuring transmissions in this band using an average power technique, the peak to-average ratio (PAR) of the transmission may not exceed 13 dB.

9.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 5.7.

- a. Set resolution/measurement bandwidth ≥ signal's occupied bandwidth;
- b. Set the number of counts to a value that stabilizes the measured CCDF curve;
- c. Record the maximum PAPR level associated with a probability of 0.1%.

9.3 DEVIATION FROM TEST STANDARD

No deviation.

9.4 TEST SETUP

Communication simulator

9.5 TEST RESULT

Please refer to the APPENDIX G

10 FREQUENCY STABILITY MEASUREMENT

10.1 LIMIT

 ± 1.5 ppm is for base and fixed station. ± 2.5 ppm is for mobile station.

10.2 TEST PROCEDURE

The testing follows FCC KDB 971168 v03r01 Section 9.

- a. Device is placed at the oven room. The oven room could control the temperatures and humidity. Power warm up is at least 15 min and power applied should perform before recording frequency error.
- b. EUT is connected the external power supply to control the DC input power. The test voltage range is from minimum to maximum working voltage. Each step shall be record the frequency error rate.
- c. The temperature range step is 10 degrees in this test items. All temperature levels shall be hold the ±0.5°C during the measurement testing. The each temperature step shall be at least 0.5 hours, consider the EUT could be test under the stability condition.
- d. The frequency error was recorded frequency error from the communication simulator.

10.3 DEVIATION FROM TEST STANDARD

No deviation.

10.4 TEST SETUP

10.5 TEST RESULT

Please refer to the APPENDIX H

11 LIST OF MEASURING EQUIPMENTS

	AC Power Line Conducted Emissions										
Item	Kind of Equipment	Manufacturer	anufacturer Type No. Serial No.			Calibrated Until					
1	TWO-LINE V-NETWORK	R&S	ENV216	101339	2021/3/10	2022/3/9					
2	Test Cable	EMCI	EMCRG58-BM-B M-9000	210501	2021/5/3	2022/5/2					
3	EMI Test Receiver	R&S	ESR 7	101433	2020/12/11	2021/12/10					
4	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A					

RF Power Output									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	8960 Series 10 Wireless Com Test Set	Agilent	E5515C	GB47390193	2021/7/23	2022/7/22			
2	Radio Communication Analyzer	Anritsu	MT8820C	6201381608	2021/1/7	2022/1/6			

Radiated Spurious Emissions									
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until			
1	Preamplifier	EMCI	EMC02325B	980217	2021/4/8	2022/4/7			
2	Preamplifier	EMCI	EMC012645B	980267	2021/4/8	2022/4/7			
3	Test Cable	EMCI	EMC-SM-SM-100 0	180809	2021/4/8	2022/4/7			
4	Test Cable	EMCI	EMC104-SM-SM- 3000	151205	2021/4/8	2022/4/7			
5	Test Cable	EMCI	EMC-SM-SM-700 0	180408	2021/4/8	2022/4/7			
6	MXE EMI Receiver	Agilent	N9038A	MY554200087	2021/5/27	2022/5/26			
7	Signal Analyzer	Agilent	N9010A	MY56480554	2021/8/25	2022/8/24			
8	Horn Ant	SCHWARZBECK	BBHA 9120D	9120D-1342	2021/6/2	2022/6/1			
9	Horn Ant	Schwarzbeck	BBHA 9170	BBHA 9170340	2021/7/9	2022/7/8			
10	Trilog-Broadband Antenna	Schwarzbeck	VULB 9168	VULB 9168-352	2021/8/11	2022/8/10			
11	5dB Attenuator	EMCI	EMCI-N-6-05	AT-N0625	2021/8/11	2022/8/10			
12	Measurement Software	EZ	EZ_EMC (Version NB-03A1-01)	N/A	N/A	N/A			
13	8960 Series 10 Wireless Com Test Set	Agilent	E5515C	GB47390193	2021/7/23	2022/7/22			
14	Radio Communication Analyzer (LTE)	Anritsu	MT8820C	6201381608	2021/1/7	2022/1/6			

Frequency Stability Measurement										
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until				
1	8960 Series 10 Wireless Com Test Set	Agilent	E5515C	GB47390193	2021/7/23	2022/7/22				
2	Radio Communication Analyzer	Anritsu	MT8820C	6201381608	2021/1/7	2022/1/6				
3	3 Thermal Chamber HOLINK H-T-1F-D BA03101701 2021/6/28 2022/6/27									
Others Conducted Measurement										

		••				
Item	Kind of Equipment	Manufacturer	Type No.	Serial No.	Calibrated Date	Calibrated Until
1	8960 Series 10 Wireless Com Test Set	Agilent	E5515C	GB47390193	2021/7/23	2022/7/22
2	Radio Communication Analyzer	Anritsu	MT8820C	6201381608	2021/1/7	2022/1/6
3	Spectrum Analyzer	R&S	FSP40	100129	2021/6/8	2022/6/7
4	Spectrum Analyzer	Agilent	N9010A	MY54200240	2021/5/27	2022/5/26

Remark: "N/A" denotes no model name, no serial no. or no calibration specified. All calibration period of equipment list is one year.

12 EUT TEST PHOTO

Please refer to document Appendix No.: TP-2107T083A-FCCP-1 (APPENDIX-TEST PHOTOS).

13 EUT PHOTOS

Please refer to document Appendix No.: EP-2107T083A-1 (APPENDIX-EUT PHOTOS).

APPENDIX A AC POWER LINE CONDUCTED EMISSIONS

est Mod	le	1	Normal						Tested Date	;	2021/9/17
est Fre	quenc	су -							Phase		Line
80.0	dBuV	,									
70											
60											
50	1			-							
	x	3 X									
40	2		5 X						9	11 X	
30	×	4 ×						7	τυ ×	12 X	
20			6 X					8 X			
10											
0											
-10											
-20.0											
U.1	50			0.5		(MHz)		5			30.000
lo. Mk	. F	req.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	N	/Hz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment		
1 *	0.1	770	38.01	9.72	47.73	64.63	-16.90	QP			
2	0.1	770	18.75	9.72	28.47	54.63	-26.16	AVG			
3	0.2	2355	32.10	9.72	41.82	62.25	-20.43	QP			
4	0.2	2355	12.74	9.72	22.46	52.25	-29.79	AVG			
5	0.3	525	22.74	9.72	32.46	58.90	-26.44	QP			
6	0.3	525	4.22	9.72	13.94	48.90	-34.96	AVG			
7	4.0	920	11.43	9.90	21.33	56.00	-34.67	QP			
8	4.0	920	3.46	9.90	13.36	46.00	-32.64	AVG			
9	10.0)433	21.11	10.11	31.22	60.00	-28.78	QP			
10	10.0)433	15.77	10.11	25.88	50.00	-24.12	AVG			
11	16.5	5930	21.65	10.20	31.85	60.00	-28.15	QP			

REMARKS:

16.5930

12

(1) Measurement Value = Reading Level + Correct Factor.(2) Margin Level = Measurement Value - Limit Value.

10.20

25.84

50.00 -24.16 AVG

15.64

est Mod	е	Ν	lormal						Tested Date	;	2021/9/17
est Freq	uenc	у -							Phase		Neutral
80.0	dBuV					1					
70 -											
60											
E0	1										
- UC	×	3									
40	2	^	5 X						9 Yo	11 X2	
30	x	4						, X	×	×	
20		×	6					8 X			
10 -			×								
0 -											
-10											
-20.0											
0.1	50		0	.5		(MHz)		5			30.000
o. Mk.	Fr	eq.	Reading Level	Correct Factor	Measure- ment	Limit	Over				
	М	Hz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment		
1 *	0.17	793	37.47	9.73	47.20	64.52	-17.32	QP			
2	0.1	793	19.87	9.73	29.60	54.52	-24.92	AVG			
3	0.23	355	31.62	9.72	41.34	62.25	-20.91	QP			
4	0.23	355	12.19	9.72	21.91	52.25	-30.34	AVG			
5	0.29	940	24.16	9.73	33.89	60.41	-26.52	QP			
6	0.29	940	4.42	9.73	14.15	50.41	-36.26	AVG			
7	4.01	155	16.13	9.91	26.04	56.00	-29.96	QP			
8	4.01	155	8.86	9.91	18.77	46.00	-27.23	AVG			
9	9.72	238	25.08	10.14	35.22	60.00	-24.78	QP			
0	9.72	238	20.04	10.14	30.18	50.00	-19.82	AVG			
1	16.3	568	24.47	10.28	34.75	60.00	-25.25	QP			

REMARKS:

16.3568

12

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

10.28

29.24

50.00 -20.76 AVG

18.96

3 | |

est Mod	est Mode														Tes	sted	Dat	e		20	21/9	9/17	
est Fred	luen	су	-												Pha	ase				Lin	ne		
80.0	dBu	v		1	í			1 1						1		1							
70																							
60																							
50	1 X	3			-									-									
40		x	5 X													9			11				
30	2 X	4 ×											3			ň ×	0		Ĭ2 Х				
20			6 X										x 8 X										
ρ																							
-10																							
-20.0																							
0.1	50				0.	5				(MH:	z)			5						;	30.00	D	
			R	eadir	ng	Cor	rect	Me	asure-														
No. Mk.	F	req.	L	evel		Fa	ctor	n	nent	Lin	nit	Över											
	1	MHz		dBu√		d	В	d	Bu∨	dBu	V	dB	De	tector	Ċ	omm	ent						
1 *	0.1	1748	3	35.94	-	9.	73	45	5.67	64.7	3 -	-19.06	G	₽P									
2	0.1	1748		15.04	-	9.	73	24	1.77	54.7	3.	-29.96	A	VG									
3	0.2	2355	3	31.32	2	9.	72	4′	1.04	62.2	:5 -	-21.21	G	۱P									
4	0.2	2355		12.15	5	9.	72	2′	1.87	52.2	:5 -	-30.38	А	VG									
5	0.2	2940	2	24.39)	9.	73	34	1.12	60.4	.1 -	-26.29	G	۱P									
6	0.2	2940		4.19		9.	73	13	3.92	50.4	-1 -	-36.49	Α	VG									
7	3.9	9525		10.61		9.	89	20).50	56.0	- 0	-35.50	G	۱P									
8	3.9	9525		2.87		9.	89	12	2.76	46.0	10 -	-33.24	A	VG									
9	9.6	6158	2	21.54	-	10	.10	31	1.64	60.0	10 -	-28.36	G	۱P									
10	9.6	6158	,	16.16	3	10	.10	26	5.26	50.0	10 -	-23.74	Α	VG									
11	17.0	0160	2	20.52	2	10	.20	30	0.72	60.0	10 -	-29.28	G	۱P									
12	17.0	0160	,	14.89)	10	.20	25	5.09	50.0	10 -	-24.91	A	VG									

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

<u>3ĩL</u>

est Mod	st Mode Idle								е	2021/9/17
est Freq	uency	-						Phase		Neutral
80.0	dBuV				1					
70										
БU -										
50	1 X 3									
40	×							9	11	
30	2 X							10 ×	12 X	
20					5 X	8				
10					Б К					
0										
-10										
-20.0	-0									20.000
0.13)U	Deeding		Magazira	(MHZ)		5			30.000
No. Mk.	Freq.	Level	Factor	ment	Limit	Over				
	MHz	dBu∨	dB	dBu∨	dBu∨	dB	Detector	Comment		
1 *	0.1770	37.46	9.73	47.19	64.63	-17.44	QP			
2	0.1770	18.13	9.73	27.86	54.63	-26.77	AVG			
3	0.2355	31.36	9.72	41.08	62.25	-21.17	QP			
4	0.2355	12.10	9.72	21.82	52.25	-30.43	AVG			
5	2.2853	13.11	9.79	22.90	56.00	-33.10	QP			
6	2.2853	4.60	9.79	14.39	46.00	-31.61	AVG			
7	3.9075	15.98	9.90	25.88	56.00	-30.12	QP			
8	3.9075	8.93	9.90	18.83	46.00	-27.17	AVG			
9	10.1625	25.35	10.15	35.50	60.00	-24.50	QP			
10	10.1625	20.18	10.15	30.33	50.00	-19.67	AVG			
11	16.5863	24.50	10.29	34.79	60.00	-25.21	QP			

REMARKS:

16.5863

12

(1) Measurement Value = Reading Level + Correct Factor.

10.29

29.22

50.00 -20.78 AVG

(2) Margin Level = Measurement Value - Limit Value.

18.93

APPENDIX B	RF POWER OUTPUT TEST	

Output Power (dBm):

Band	Mode	UL/DL Channel No.	Frequency(MHz)	Average power(dBm)
	Rel 99	4132/4357	826.4	22.89
WCDMA Band V		4183/4408	836.6	23.11
		4233/4458	846.6	23.08

Band	Sub-test	UL/DL Channel No.	Average power(dBm)
		4132/4357	22.85
	1	4183/4408	23.01
		4233/4458	23.04
		4132/4357	22.40
	2	4183/4408	22.56
		4233/4458	22.59
ISDEA V		4132/4357	21.90
	3	4183/4408	22.06
		4233/4458	22.09
		4132/4357	21.95
	4	4183/4408	22.11
		4233/4458	22.14

Band	Sub-test	UL/DL Channel No.	Average power(dBm)
		4132/4157	22.89
	1	4182/4407	23.05
		4233/4458	23.08
		4132/4157	21.01
	2	4182/4407	21.17
		4233/4458	21.20
HSUPA V		4132/4157	22.01
	3	4182/4407	22.17
		4233/4458	22.20
		4132/4157	21.03
	4	4182/4407	21.19
		4233/4458	21.22
		4132/4157	22.80
	5	4182/4407	22.96
		4233/4458	22,99

Band (MHz) Channel (MHz) (MHz) Mode (MHz) Allocation (MHz) Offset (MHz) MPR (dec) (MHz)	e power
5 1.4 20525 836.5 836.5 1 0 0 21.4 1 3 0 0 21.4 1 5 0 21.4 3 0 0 21.4 3 0 0 21.4 1 5 0 21.4 1 5 0 21.4 20407 824.7 6 0 1 21.4 1 3 3 0 21.4 3 3 0 21.4 1 3 3 0 1 21.4 3 3 1 20.7 1 1 3 1	sm)
5 1.4 20525 836.5	97
5 1.4 20525 836.5 836.5 1 0 2010 2011 2010 </td <td>age power (dBm) 21.97 21.88 21.66 21.97 21.88 21.66 21.97 21.88 21.66 21.03 21.15 21.11 20.73 21.15 21.11 20.73 20.12 21.82 21.88 21.82 21.88 21.84 20.96 20.91 20.96 20.91 20.50 21.71 21.76 21.71 21.76 21.71 21.76 20.89 20.89 20.89 20.89 20.89 20.89 20.89 20.89 20.89</td>	age power (dBm) 21.97 21.88 21.66 21.97 21.88 21.66 21.97 21.88 21.66 21.03 21.15 21.11 20.73 21.15 21.11 20.73 20.12 21.82 21.88 21.82 21.88 21.84 20.96 20.91 20.96 20.91 20.50 21.71 21.76 21.71 21.76 21.71 21.76 20.89 20.89 20.89 20.89 20.89 20.89 20.89 20.89 20.89
5 1.4 20525 836.5 QPSK 3 0 0 21.4 3 1 0 21.4 3 3 0 21.4 3 3 0 21.4 3 3 0 21.4 3 3 0 21.4 3 3 0 21.4 3 3 0 21.4 3 3 0 21.4 3 3 0 21.4 3 3 0 21.4 3 3 0 21.4 3 3 0 21.4 3 3 1 20.5 3 1 1 1 21.4 3 1 1 21.4 3 1 1 21.4 3 1 20.5 3 1 1 1 1 1 20.5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66
5 1.4 20525 836.5 836.5 1 0 21.4 0 21.4 0 21.4 0 21.4 0 21.4 0 21.4 0 21.4 0 21.4 0 21.4 0 21.4 0 1 21.4 0 1 21.4 1 0 1 21.4 1 0 1 21.4 1 0 1 21.4 1	97
5 1.4 20525 836.5 836.5 16QAM 3 3 0 21.0 1 21.1 1 1 1 21.1 21.1	88
5 1.4 20525 836.5 6 0 1 21.1 1 0 1 21.1 1 3 1 21.1 1 0 1 21.1 1 3 1 21.1 1 5 1 20.1 1 5 1 20.1 1 5 1 1 20.1 1 1 20.1 3 0 1 21.1 3 3 1 20.1 3 3 1 1 21.1 3 3 1 20.1 6 0 2 20.1 1 3 0 21.1 1 3 0 0 21.1 3 1 20.2 1 0 0 21.1 3 1 20.2 1 0 1 21.1 3 1 20.2 1 1 3 1 20.2	66
5 1.4 20407 824.7 1 0 1 21.1 1 3 1 21.2 1 3 1 21.2 1 5 1 20.0 3 0 1 21.2 1 5 1 20.2 3 1 1 21.2 3 0 1 21.2 3 1 1 20.2 6 0 2 20.0 6 0 2 20.2 6 0 0 21.4 1 3 0 21.4 1 5 0 21.4 1 3 0 21.4 1 3 0 0 21.4 1 3 0 21.4 1 0 0 21.4 1 0 21.4 1 1 0 1 21.0 1 1 1 1 1 1 1 1	03
5 1.4 20525 836.5 16QAM 1 3 1 21.1 1 5 1 20.2 3 3 1 20.2 6 0 2 20.7 3 3 1 20.2 6 0 2 20.7 6 0 2 20.7 1 3 0 0 21.4 3 3 0 21.4 1 3 0 0 21.4 1 3 0 21.4 1 3 0 0 21.4 1 3 0 21.4 3 3 0 0 21.4 1 3 0 21.4 1 3 0 0 21.4 3 1 0 21.4 1 1 3 1 0 21.4 3 1 1 1 1 1 1 1 1 1 <t< td=""><td>15</td></t<>	15
5 1.4 20525 836.5 16QAM 1 5 1 200.1 3 0 1 21.1 3 1 1 21.1 3 1 1 21.1 3 1 1 21.1 3 1 1 21.1 3 1 1 21.1 3 3 1 1 21.1 3 3 1 1 21.1 3 3 1 1 21.1 3 3 1 1 20.1 3 3 1 1 20.1 3 3 1 1 20.1 3 3 1 1 20.1 3 3 1 1 20.1 3 3 1 1 20.1 3 3 1 1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 20.1 </td <td>11</td>	11
5 1.4 20525 836.5 16QAM 3 0 1 21.1 3 1 1 20.2 6 0 2 20.2 6 0 2 20.2 6 0 2 20.2 6 0 2 20.2 6 0 2 20.2 1 3 3 1 0 0 21.8 1 3 0 0 21.8 1 5 0 21.8 1 3 1 0 21.8 1 1 2 1 2 3 3 0 0 21.8 1 3 1 2 1 3 1 1 2 1 3 3 1 <	73
5 1.4 20525 836.5 836.5 $ \begin{array}{r} 3 & 1 & 1 & 21. \\ 3 & 3 & 1 & 20. \\ 6 & 0 & 2 & 20. \\ 6 & 0 & 2 & 20. \\ 1 & 0 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 3 & 1 & 0 & 21. \\ 3 & 1 & 0 & 21. \\ 3 & 3 & 0 & 0 & 21. \\ 3 & 3 & 0 & 0 & 21. \\ 3 & 3 & 0 & 0 & 21. \\ 3 & 3 & 0 & 0 & 21. \\ 3 & 1 & 0 & 0 & 21. \\ 3 & 3 & 0 & 0 & 21. \\ 3 & 3 & 0 & 0 & 21. \\ 1 & 3 & 1 & 0 & 21. \\ 1 & 3 & 1 & 0 & 21. \\ 1 & 3 & 1 & 0 & 21. \\ 1 & 3 & 1 & 20. \\ 1 & 3 & 1 & 20. \\ 1 & 3 & 1 & 20. \\ 1 & 3 & 1 & 20. \\ 1 & 3 & 1 & 20. \\ 1 & 3 & 0 & 1 & 21. \\ 1 & 3 & 1 & 20. \\ 1 & 3 & 0 & 1 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 3 & 3 & 1 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 3 & 3 & 1 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 21. \\ 1 & 3 & 0 & 0 & 21. \\ 3 & 1 & 0 & 0 & 21. \\ 3 & 1 & 0 & 21. \\ 1 & 0 & 0 & 21. \\ 3 & 1 & 0 & 21. \\ 1 & 0 & 0 & 21. \\ 3 & 1 & 0 & 21. \\ 1 & 0 & 0 & 21. \\ 1 & 0 & 0 & 21. \\ 1 & 0 & 0 & 21. \\ 1 & 0 & 0 & 21. \\ 1 & 0 & 0 & 21. \\ 1 & 0 $	15
5 1.4 20525 836.5 836.5 $ \begin{array}{r} 3 & 3 & 1 & 20. \\ 6 & 0 & 2 & 20. \\ 1 & 0 & 0 & 21.8 \\ 1 & 3 & 0 & 21.8 \\ 1 & 3 & 0 & 21.8 \\ 1 & 3 & 0 & 21.8 \\ 1 & 5 & 0 & 21.8 \\ 1 & 5 & 0 & 21.8 \\ 3 & 3 & 0 & 0 & 21.8 \\ 3 & 3 & 0 & 0 & 21.8 \\ 3 & 3 & 0 & 0 & 21.8 \\ 3 & 3 & 0 & 0 & 21.8 \\ 3 & 3 & 0 & 0 & 21.8 \\ 3 & 3 & 0 & 0 & 21.8 \\ 3 & 3 & 0 & 0 & 21.8 \\ 3 & 3 & 0 & 0 & 21.8 \\ 1 & 0 & 1 & 20.8 \\ 1 & 3 & 1 & 0 & 21.8 \\ 1 & 3 & 1 & 20.9 \\ 1 & 3 & 1 & 20.9 \\ 1 & 3 & 0 & 1 & 21.0 \\ 3 & 3 & 1 & 1 & 20.9 \\ 1 & 3 & 0 & 1 & 21.0 \\ 3 & 3 & 1 & 1 & 20.9 \\ 1 & 3 & 0 & 1 & 21.0 \\ 3 & 3 & 1 & 1 & 20.9 \\ 1 & 3 & 0 & 1 & 21.0 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 1 & 20.9 \\ 1 & 3 & 0 & 21.3 \\ 1 & 1 & 20.9 \\ 1 & 3 & 0 & 21.3 \\ 1 & 1 & 20.9 \\ 1 & 3 & 0 & 21.3 \\ 1 & 1 & 20.9 \\ 3 & 3 & 1 & 1 & 20.9 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 3 & 0 & 21.3 \\ 1 & 0 & 21.3 \\ 1 & 3 & 0 & 0 & 21.3 \\ 1 & 0 & 0 & 21.3 \\ 1 & 0 & 0 & 21.3 \\ 1 & 0 & 0 & 21.3 $	11
5 1.4 20525 836.5	73
5 1.4 20525 836.5 Response of the second seco	.0.12 .1.82
5 1.4 20525 836.5 $ \begin{array}{c} 1 & 3 & 0 & 21.4 \\ 1 & 5 & 0 & 21.4 \\ 3 & 0 & 0 & 21.4 \\ 3 & 1 & 0 & 21.4 \\ 3 & 3 & 0 & 0 & 21.4 \\ 3 & 3 & 0 & 0 & 21.4 \\ 3 & 3 & 0 & 0 & 21.4 \\ 3 & 3 & 0 & 0 & 21.4 \\ 3 & 3 & 0 & 0 & 21.4 \\ 3 & 3 & 0 & 0 & 21.4 \\ 3 & 3 & 0 & 0 & 21.4 \\ 3 & 3 & 0 & 0 & 21.4 \\ 3 & 3 & 0 & 0 & 21.4 \\ 1 & 3 & 1 & 0 & 0 & 21.4 \\ 1 & 3 & 1 & 0 & 0 & 21.4 \\ 1 & 3 & 1 & 0 & 0 & 21.4 \\ 1 & 3 & 1 & 20.4 \\ 1 & 3 & 1 & 20.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 1 & 20.4 \\ 3 & 1 & 1 & 20.4 \\ 3 & 3 & 1 & 20.4 \\ 3 & 3 & 1 & 1 & 20.4 \\ 3 & 3 & 1 & 1 & 20.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 0 & 0 & 0 & 21.7 \\ 3 & 1 & 0 & 0 & 21.7 \\ 3 & 1 & 0 & 0 & 21.7 \\ 1 & 0 & 0 & 0 & 21.7 \\ 1 & 0 & 0 & 0 & 21.7 \\ 1 & 0 & 0 & 0 & 21.7 \\ 3 & 1 & 0 & 0 & 21.7 \\ 3 & 1 & 0 & 0 & 21.7 \\ 3 & 1 & 0 & 0 & 21.7 \\ 1 & 0 & 0 & 0 & 21.7 \\ $	82
5 1.4 20525 836.5 $ \begin{array}{c} 1 & 5 & 0 & 21.4 \\ 3 & 0 & 0 & 21.4 \\ 3 & 1 & 0 & 21.4 \\ 3 & 1 & 0 & 21.4 \\ 3 & 3 & 0 & 21.4 \\ 3 & 3 & 0 & 21.4 \\ 3 & 3 & 0 & 21.4 \\ 3 & 3 & 0 & 21.4 \\ 3 & 1 & 0 & 21.4 \\ 3 & 1 & 0 & 21.4 \\ 3 & 1 & 0 & 21.4 \\ 3 & 1 & 0 & 21.4 \\ 1 & 3 & 1 & 20.4 \\ 1 & 3 & 1 & 20.4 \\ 1 & 3 & 1 & 20.4 \\ 1 & 3 & 1 & 20.4 \\ 1 & 3 & 1 & 20.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 3 & 1 & 1 & 20.4 \\ 3 & 1 & 1 & 20.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 1 & 21.4 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 0 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ 1 & 3 & 1 & 0 & 21.7 \\ $	88
5 1.4 20525 836.5 Response of the second seco	84
5 1.4 20525 836.5 3	82
5 1.4 20525 836.5 33 3 0 21.4 1.4 20525 836.5 6 0 1 20.4 1.4 20525 836.5 1 0 1 20.4 1.4 1.4 1.4 1 1 1 1 20.4 1.4 1.4 1.4 1.4 1 1 1 1 1.4 1.4 1.4 1.4 1.4 1 1 1 1.5 1.4 1.4 1.4 1.4 1.4 1 1 1.6 1.6 1.4 1.4 1.4 1.4 1.4 1.4 1.6 1.6 1.4 1.4 1.4 1.4 1.4 1.4 1.6 1.6 1.4 1.4 1.4 1.4 1.4 1.6 1.6 1.4 1.4 1.4 1.4 1.7 1.7 1.4 1.4 1.4 1.7 1.7 1.7 1.4 1.4 1.7 1.7 1.4 1.4 1.4 1.7 1.7 1.7 1.4 1.4 1.7 1.7 1.7 1.7 1.7 <td>88</td>	88
5 1.4 20525 836.5 6 0 1 0 1 1 3 1 20.5 1 3 1 20.5 16QAM 3 0 1 21.0 1 5 1 20.5 1 20.5 16QAM 3 0 1 21.0 1 20.5 16QAM 3 0 1 20.5 1 1 20.5 1 1 1 1 1 1 1 1 1 1 1 1 1	84
1 0 1 21.0 16QAM 1 3 1 20.9 16QAM 3 0 1 21.0 1 5 1 20.9 3 1 1 20.9 3 3 1 20.9 3 3 1 20.9 3 3 1 20.9 3 3 1 20.9 3 3 1 20.9 3 3 1 20.9 1 3 0 21.7 1 3 0 21.7 1 3 0 21.7 1 3 0 21.7 1 3 0 21.7 1 3 0 21.7 1 3 0 21.7 3 1 0 21.7	88
1 3 1 20.9 16QAM 1 5 1 20.9 1 5 1 20.9 3 0 1 21.0 3 1 1 20.9 3 3 1 1 6 0 2 20.9 6 0 2 20.9 1 3 0 21.7 1 3 0 21.7 1 5 0 21.7 1 3 0 21.7 1 3 0 21.7 1 5 0 21.7 1 3 0 0 20.9 3 1 0 21.7	00
16QAM 1 5 1 20.9 16QAM 3 0 1 21.0 3 1 1 20.9 3 3 1 1 20.9 6 0 2 20.9 1 0 0 21.7 1 3 0 21.7 1 5 0 21.7 1 5 0 21.7 1 5 0 21.7 1 5 0 21.7 3 1 0 21.7 3 1 0 21.7	96
16QAM 3 0 1 21.0 3 1 1 20.9 3 3 1 20.9 6 0 2 20.9 1 0 0 21.7 1 3 0 21.7 1 5 0 21.7 1 5 0 21.7 1 5 0 21.7 1 5 0 21.7 3 1 0 21.7 3 1 0 21.7	91
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	00
3 3 1 20.9 6 0 2 20.9 1 0 0 21.7 1 3 0 21.7 1 5 0 21.7 1 5 0 21.7 3 1 0 21.7 3 1 0 21.7	96
6 0 2 20.9 1 0 0 21.7 1 3 0 21.7 1 5 0 21.7 1 5 0 21.7 3 0 0 21.7 3 1 0 21.7	91
1 0 0 21.1 1 3 0 21.2 1 5 0 21.2 1 5 0 21.2 1 5 0 21.2 3 1 0 21.2 3 1 0 21.2	50
1 3 0 21. 1 5 0 21. 1 5 0 21. 3 0 0 21.7 3 1 0 21.7	71
1 5 0 21.3 QPSK 3 0 0 21.7 3 1 0 21.7	<u>76</u>
	82
	71
	<u>10</u> 92
	<u>o∠</u> 77
	<u>//</u> 80
	09 95
	80
	80
	85
	89
	60

Band	BW	Channel	Frequency	Mode	UL RB	UL RB	MPR	Average power
Dana	(MHz)	Charmon	(MHz)	Mode	Allocation	Offset		(dBm)
					1	0	0	22.02
					1	8	0	21.93
					1	14	0	21.71
				QPSK	8	0	1	21.13
					8	4	1	20.97
					8	7	1	20.89
		20/15	825.5		15	0	1	21.08
		20413	020.0		1	0	1	21.20
					1	8	1	21.16
					1	14	1	20.78
				16QAM	8	0	2	20.03
					8	4	2	20.07
					8	7	2	19.74
					15	0	2	20.17
					1	0	0	21.87
		20525	836.5		1	8	0	21.93
	3				1	14	0	21.89
				QPSK	8	0	1	20.98
					8	4	1	20.97
					8	7	1	21.07
5					15	0	1	20.93
Ũ			000.0		1	0	1	21.05
				16QAM	1	8	1	21.01
					1	14	1	20.96
					8	0	2	19.88
					8	4	2	20.07
					8	7	2	19.92
					15	0	2	20.02
					1	0	0	21.76
					1	8	0	21.81
				0.001/	1	14	0	21.87
				QPSK	8	0	1	20.87
					8	4	1	20.85
					8	7	1	21.05
		20635	847.5		15	0	1	20.82
					1	0	1	20.94
					1	8	1	20.90
					1	14	1	20.94
				16QAM	8	0	2	19.77
					8	4	2	19.95
					8	7	2	19.90
					15	0	2	19.91

	,

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
					1	0	0	22.07
					1	12	0	21.98
					1	24	0	21.76
				QPSK	12	0	1	21.18
					12	7	1	21.02
					12	13	1	20.94
		20425	826.5		25	0	1	21.13
		20423	020.5		1	0	1	21.25
					1	12	1	21.21
					1	24	1	20.83
				16QAM	12	0	2	20.08
					12	7	2	20.12
					12	13	2	19.79
					25	0	2 20.22 0 21.92	20.22
5					1	0	0	21.92
					1	12	0	21.98
		20525			1	24	0	21.94
	5		836.5	QPSK	12	0	1	21.03
					12	7	1	21.02
					12	13	1	21.12
					25	0	1	20.98
				16QAM	1	0	1	21.10
					1	12	1	21.06
					1	24	1	21.01
					12	0	2	19.93
					12	7	2	20.12
					12	13	2	19.97
					25	0	2	20.07
					1	0	0	21.81
					1	12	0	21.86
					1	24	0	21.92
	1			QPSK	12	0	1	20.92
					12	7	1	20.90
					12	13	1	21.10
		20625	846.5		25	0	1	20.87
		20020	0.0.0		1	0	1	20.99
					1	12	1	20.95
					1	24	1	20.99
				16QAM	12	0	2	19.82
					12	7	2	20.00
					12	13	2	19.95
					25	0	2	19.96

Band	BW (MHz)	Channel	Frequency (MHz)	Mode	UL RB Allocation	UL RB Offset	MPR	Average power (dBm)
					1	0	0	22.44
					1	25	0	22.35
					1	49	0	22.03
				QPSK	25	0	1	21.23
					25	12	1	21.07
					25	25	1	20.99
		20450	829.0		50	0	1	21.18
		20430	023.0		1	0	1	21.30
					1	25	1	21.26
					1	49	1	20.88
				16QAM	25	0	2	20.13
					25	12	2	20.17
					25	25	2	19.84
					50	0	2	20.27
					1	0	0	22.46
					1	25	0	22.27
	10	20525			1	49	0	22.31
			836.5	QPSK	25	0	1	21.08
					25	12	1	21.07
					25	25	1	21.17
Б					50	0	1	21.03
5					1	0	1	21.15
					1	25	1	21.11
				16QAM	1	49	1	21.06
					25	0	2	19.98
					25	12	2	20.17
					25	25	2	20.02
					50	0	2	20.12
					1	0	0	22.16
					1	25	0	22.19
					1	49	0	22.22
				QPSK	25	0	1	20.97
					25	12	1	20.95
					25	25	1	21.15
		20600	944.0		50	0	1	20.92
		20000	044.0		1	0	1	21.04
					1	25	1	21.00
					1	49	1	21.04
				16QAM	25	0	2	19.87
					25	12	2	20.05
					25	25	2	20.00
					50	0	2	20.01

BL

ERP (dBm):

	Т	est Mo	de		W	CDM	A Ba	nd V			٦	lest Da	ate			202	1/9/17	
	Tes	st Char	nnel			CH	4357	7		Polarization						Vertical		
_		Temp				2	5°C			Hum.						52	2%	
40.0	dBn	n																_
F																		1
30																		
20																		
						:	1 X											
10																		1
0																		
-10																		
-20																		
-30																		
-40																		
-50																		
-60.0																		
790	6.400	804.42	812.4	14	820.	46	828.	48	836.	50	844.	52	852.5	4	860.	56	876.60	MHz
No		Mk.	Freq.		Rea	ding	Co	orrect	Me	easur	e-	Limit		Ove	r			
			MHz		dE	Sm Sm		dB		dBm		dBm		dB		Detector	Comm	ent
1		*	825.23	20	-19	.60	34	1.02		14.42		38.45		-24.0)3	peak		

REMARKS:

Measurement Value = Reading Level + Correct Factor.
 Margin Level = Measurement Value - Limit Value.

-	Fest Mo	de	WCDN	IA Band V		Test Da	ite	202	1/9/17	
Te	est Char	nnel	CH	4357		Polarizat	tion	Hori	zontal	
	Temp		2	5°C		Hum.		5	2%	
40.0 dB	m									_
30										
20				l.						
10										
0										
-10										
-20										
-30										
-40										
-50										
-60.0										
796.400	804.42	812.44	820.46	828.48	836.50	844.52	852.54 86	60.56	876.60	MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comm	ent
1	*	825.1517	-14.67	33.54	18.87	38.45	-19.58	peak		

-	Fest Mo	de	WCDN	IA Band V		Test Da	ite	202	1/9/17	
Te	est Char	nnel	CH	4407		Polarizat	tion	Ve	rtical	
	Temp		2	5°C		Hum.		5	2%	
40.0 dB	m									_
30										1
20					1					-
10					×					
										1
0										_
-10										-
-20										
-20										1
-30										_
-40										-
-50										
CO 0										
-6U.U	004 42	012 44	020 40	020 40	020 50	044 52	052.54 00	0.50	976 60	
No.400	004.42	512.44 Erog	Dooding	Corroct	Moocuro	limit		0.30	010.00	mn2
INU.	IVIK.	Fieq.	Level	Factor	ment	- LIIIII	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comm	ent
1	*	835.1820	-20.11	33.90	13.79	38.45	-24.66	peak		

-	Test Mo	de	WCDN	IA Band V		Test Da	te	202	1/9/17	
Te	est Char	nnel	CH	4407		Polarizat	ion	Hori	zontal	
	Temp		2	5°C		Hum.		5	2%	
40.0 dB	m									_
										1
30										1
20					1 X					-
10										
U										1
-10										
-20										_
-30										-
-40										1
-50										
-50										
-60.0										
796.400	804.42	812.44	820.46	828.48	836.50	844.52	852.54 86	0.56	876.60	MHz
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over			
			Level	Factor	ment					
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comm	ent
1	*	835.2917	-14.62	33.28	18.66	38.45	-19.79	peak		

3TL

-	Test Mo	de	WCDN	IA Band V		Test Da	ite	202	1/9/17	
Te	est Char	nnel	CH	4458		Polarizat	tion	Ve	rtical	
	Temp		2	5°C		Hum.		5	2%	
40.0 dB	m									_
										1
30										1
20										_
						1				
10										-
0										-
10										
-10										1
-20										
-20										
-30										
-40										_
-50										-
-60.0										
796.400	804.42	812.44	820.46	828.48	836.50	844.52	852.54 86	0.56	876.60	_ MHz
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
-		- 1	Level	Factor	ment					
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comm	ent
1	*	847.8216	-20.59	33.75	13.16	38.45	-25.29	peak		

REMARKS:

3TL

Test Channel CH4458 Polarization Horizontal 10 dBm 1 1 1 1 1 10 1 1 1 1 1 1 1 10 1		Test Mo	ode	WCDN	/IA Band V		Test Dat	е	202	1/9/17	
Temp 25°C Hum. 52% 40.0 dBm Image: Second s	1	est Char	nnel	CH	4458		Polarizati	on	Hori	zontal	
40.0 dBm 30 Image: Constraint of the second of		Temp		2	5°C		Hum.		5	2%	
30	40.0 d	Bm									_
30 1 1 1 20 1 1 1 10 1 1 1 0 1 1 1 10 1 1 1 0 1 1 1 10 1 1 1 10 1 1 1 10 1 1 1 10 1 1 1 10 1 1 1 10 1 1 1 11 1 1 1 10 1 1 1 11 1 1 1 110 1 1 1 1 110 1 1 1 1 1 110 1 1 1 1 1 1 110 1 1 1 1 1 1 1 120 1 1 1 1 1 1 1 130											1
20 1 1 10 1 1 0 1 1 -10 1 1 -10 1 1 -10 1 1 -10 1 1 -10 1 1 -10 1 1 -20 1 1 -30 1 1 1 -40 1 1 1 1 -50 1 1 1 1	30										1
20 1 1 1 1 1 10 1 1 1 1 1 1 0 1 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 0 1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	20						1				4
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
0	10										-
0											
-10	0										-
-10											
-20 -30 -40 -50	-10										1
-20 -30 -40 -50	20										
-30 -30	-20										1
-40 -50	-30										
-40 -50	-30										
-50	-40										_
-50											
	-50										-
cond	.co 0										
-00.4 796 A00 904 A2 912 AA 920 A6 929 A9 936 50 944 52 952 5A 960 56 976 60 Mi	-00.0 796.40	0 904.42	9 912 44	820 46	929 49	836 50 8	44.52 8	52 54 960	156	976 60	
No Mk Frog Dooding Corroct Mocouro Limit Over	130.40	0 004.42	Eroa	Doodina	Corroct	Mooouro	11.32 0			070.00	MILZ
NO. WK. FIEY. Reduing Correct MedSule- Limit Over	INO.	IVIK.	Fieq.	Level	Factor	ment		Over			
MHz dBm dB dBm dBm dB Detector Comment			MH7	dBm	dR	dBm	dBm	dB	Detector	Comm	ont
1 * 847 8403 -14.43 32.96 18.53 38.45 -19.92 peak	1	*	8/7 8/03	_1/ /3	32.06	18.53	38.45	-10.02	neak	Comm	GIIL

REMARKS:

	est Mo	de	LTE	Band 5		Test Da	ate	202	1/9/17	
Te	st Char	nnel	CH	20450		Polariza	tion	Ve	rtical	
	Temp		2	5°C		Hum		5	2%	
40.0 dB	m									_
30										
20			1 X							
10										1
0										_
-10										
-20										
-30										-
-40										
-50										-
-60.0										
799.000	806.50	814.00	821.50	829.00	836.50	844.00	851.50 8	59.00	874.00	MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure ment	- Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comm	ent
1	*	824.5800	-15.40	34.03	18.63	38.45	-19.82	peak		

1	est Mo	de	LTE	Band 5		Test Dat	e	202	1/9/17	
Te	st Char	nnel	CH	20450		Polarizati	on	Hori	zontal	
	Temp		2	5°C		Hum.		5	2%	
40.0 dB	m									_
30			1							1
20			×							
10										-
0										
-10										
-20										
-30										1
-40										-
-50										-
-60.0										
799.000	806.50	814.00	821.50	829.00	836.50 8	344.00 8	51.50 859	.00	874.00	MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comm	ent
1	*	824.5625	-10.71	33.55	22.84	38.45	-15.61	peak		

-	Fest Mo	de	LTE	Band 5		Test Da	te	202	1/9/17	
Te	est Char	nnel	CH	20525		Polarizat	ion	Ve	rtical	
	Temp		2	5°C		Hum.		5	2%	
40.0 dB	m									_
30										
20				1 X						-
10										-
U										1
-10										
-20										
-30										-
-40										
E0										
-30										1
-60.0										
799.000	806.50	814.00	821.50	829.00	836.50 8	344.00	851.50 859	9.00	874.00	MHz
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
			Level	Factor	ment					
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comm	ent
1	*	832.1400	-15.39	33.93	18.54	38.45	-19.91	peak		

-	Fest Mo	de	LTE	Band 5		Test Da	te	202	1/9/17	
Te	est Char	nnel	CH	20525		Polarizat	ion	Hori	zontal	
	Temp		2	5°C		Hum.		5	2%	
40.0 dB	m									_
										1
30										-
				1						
20				×						_
10										4
0										
-10										-
-20										-
-30										1
-40										1
-50										
-30										
-60.0										
799.000	806.50	814.00	821.50	829.00	836.50	844.00	851.50 859).00	874.00	MHz
No.	Mk.	Freq.	Reading	Correct	Measure	- Limit	Over			
			Level	Factor	ment					
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comm	ent
1	*	832.1125	-10.31	33.36	23.05	38.45	-15.40	peak		-

	Fest Mo	de	LTE	Band 5		Test Date	е	202	1/9/17	
Te	est Char	nnel	CH	20600		Polarizatio	on	Ve	rtical	
	Temp		2	5°C		Hum.		5	2%	
40.0 dB	m									_
30										
20					1 ×					-
10										
0										_
-10										
-20										
-30										-
40										
-40										1
-50										_
-60.0										
799.000	806.50	814.00	821.50	829.00	836.50 84	I4.00 8	51.50 859	.00	874.00	_ MHz
No.	Mk.	Freq.	Reading	Correct	Measure-	Limit	Over			
			Level	Factor	ment					
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comm	ent
1	*	839.5850	-15.90	33.84	17.94	38.45	-20.51	peak		

1	Fest Mo	de	LTE	Band 5		Test Date	9	202	1/9/17	
Te	est Char	nnel	CH	20600	F	Polarizatic	n	Hori	zontal	
	Temp		2	5°C		Hum.		5	2%	
40.0 dB	m									_
30										
20					×					_
10										
0										
-10										
-20										
-30										
-40										
-50										
-60.0	000 57								074.05	
799.000	806.50	814.00	821.50	829.00	836.50 84	4.00 85	01.50 859	.00	874.00	MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comm	ent
1	*	839.6475	-10.32	33.17	22.85	38.45	-15.60	peak		

APPENDIX C OCCUPIED BANDWIDTH

		WCDMA Ban QP	d V_WCDMA SK		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
4132	826.4	4.16	4132	826.4	4.80
4183	836.6	4.18	4183	836.3	4.76
4233	846.6	4.14	4233	846.6	4.74

		LTE Band	5_1.4M		
		QPS	к		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20407	824.7	1.0965	20407	824.7	1.258
20525	836.5	1.0988	20525	836.5	1.201
20643	848.3	1.0997	20643	848.3	1.241
		16QA	M		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20407	824.7	1.0934	20407	824.7	1.189
20525	836.5	1.1031	20525	836.5	1.230
20643	848.3	1.0988	20643	848.3	1.217

		LTE Band	15_3M		
		QPS	K		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20415	825.5	2.7117	20415	825.5	2.939
20525	836.5	2.7363	20525	836.5	2.934
20635	847.5	2.7117	20635	847.5	2.924
		16QA	M		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20415	825.5	2.7282	20415	825.5	2.940
20525	836.5	2.7011	20525	836.5	2.906
20635	847.5	2.7200	20635	847.5	2.942

		LTE Band	5 5M		
		QPS	SK		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20425	826.5	4.5164	20425	826.5	4.825
20525	836.5	4.5381	20525	836.5	4.837
20625	846.5	4.5203	20625	846.5	4.826
		16QA	M		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20425	826.5	4.5197	20425	826.5	4.887
20525	836.5	4.4976	20525	836.5	4.836
20625	846.5	4.5031	20625	846.5	4.823

		LTE Band	5_10M		
		QPS	K		-
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20450	829.0	8.8723	20450	829.0	9.452
20525	836.5	8.9585	20525	836.5	9.439
20600	844.0	8.9133	20600	844.0	9.494
		16QA	M		
Channel	Frequency (MHz)	99% Occupied Bandwidth (MHz)	Channel	Frequency (MHz)	26dB Bandwidth (MHz)
20450	829.0	8.9429	20450	829.0	9.410
20525	836.5	8.9700	20525	836.5	9.536
20600	844.0	8.9146	20600	844.0	9.420

APPENDIX D CONDUCTED SPURIOUS EMISSION

APPENDIX E RADIATED SPURIOUS EMISSIONS TEST

BIL

	Test Mode			W	CDM	IA Ba	nd V			7	Fest Da	te		2021/9/17			
	Test Cha	nnel			CH	4407	,			P	olarizat	ion			Vei	rtical	
	Temp)			2	5°C					Hum.				5	2%	
0.0	dBm																7
-10																	
-20												_					-
-30																	
-40																	
-50																	
-60	1		2 X	3 X							4 ×		5 X 6				
-70													X				
-80																	
-90																	
-100.0																	
30.00	0 127.00	224.	00	321.	DO	418.0	00	515.	00	612.	00	709.0)0 80	6.00		1000.00	MHz
No.	Mk.	Freq		Rea Le	ding vel	Co Fa	rrect ctor	Me	easure ment	-	Limit		Over				
		MHz	_	dE	ßm	(зB		dBm		dBm		dB	Dete	ector	Comm	ent
1		121.50)33	-63	.72	-0	.62	-	64.34		-13.00)	-51.34	ре	ak		
2	*	242.97	'96	-69	.59	7	.72	-	61.87		-13.00)	-48.87	pe	ak		
3		317.50	080	-71	.56	7	.45	-	64.11		-13.00)	-51.11	pe	ak		
4		633.30)76	-77	.24	13	8.08	-	64.16		-13.00)	-51.16	pe	ak		
5		717.01	85	-76	.82	12	2.41	-	64.41		-13.00)	-51.41	ре	ak		
6		766.55	533	-77	.63	10).36	-	67.27		-13.00)	-54.27	pe	ak		

REMARKS:

BIL

	Test Mo	de	WCDN	/A Band V		Test Date		202	1/9/17	
	Test Char	nnel	CH	4407		Polarization	า	Horiz	zontal	
	Temp		2	5°C		Hum.		5	2%	
0.0	dBm									1
-10										-
-20										1
-30										
-40										
-50 -										{
-60	×		2 3 X X	4 ×	ł			Š.		
-70						5 X				
-80										-
-90 -										-
-100.0										
30.0	00 127.00	224.00	321.00	418.00	515.00 6	612.00 709	9.00 806	5.00	1000.00	MHz
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	117.8496	-61.04	2.68	-58.36	-13.00	-45.36	peak		
2		279.1930	-65.60	0.21	-65.39	-13.00	-52.39	peak		
3		325.0740	-67.26	2.47	-64.79	-13.00	-51.79	peak		
4		478.5926	-76.37	11.77	-64.60	-13.00	-51.60	peak		
5		633.9542	-77.00	7.18	-69.82	-13.00	-56.82	peak		
6		822.3605	-76.29	15.74	-60.55	-13.00	-47.55	peak		

REMARKS:

3TL

	Test Mo	de	WCDN	IA Band V		Test Date		202	1/9/17	
	Test Char	nnel	CH	4407		Polarizatio	n	Ve	rtical	
	Temp		2	5°C		Hum.		5	2%	
0.0	dBm									-
-10										
										1
-20										1
-30										
-40										
-50										
-60	1 X									
-70										
-80										
-90										
-100.)									
10	00.000 1800.00) 2600.00	3400.00	4200.00	5000.00	5800.00 66	00.00 740	0.00	9000.00	MHz
No	o. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	1672.800	-53.59	-6.57	-60.16	-13.00	-47.16	peak		

REMARKS:

3TL

	Test Mod	le	WCDN	IA Band V		Test Da	ite	202	1/9/17	
	Test Chan	nel	CH	4407		Polarizat	tion	Hori	zontal	
	Temp		2	5°C		Hum.		5	2%	
0.0	dBm									_
-10										
-20										
-30										
-40										
-50										
-60	1×									
-70										
-80										
-90										
-100.0)									
10	00.000 1800.00	2600.00	3400.00	4200.00	5000.00	5800.00	6600.00 7	400.00	9000.00	MHz
Nc	o. Mk.	Freq.	Reading Level	Correct Factor	Measure ment	e- Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	1672.800	-52.51	-8.12	-60.63	-13.00	-47.63	peak		

REMARKS:

BIL

	Test Mode				LTE	Ban	d 5			Т	est Da	ate		2021/9/17				
	Te	st Char	nel			CH	2052	5			Po	olariza	tion		١	/ertic	al	
		Temp				2	5°C					Hum				52%	1	
0.0	dB	m																7
-10																		4
-20																		
-30																		
-40																_		-
-50																_		
-60		2		3 X									5				6	
-70	1	× ×								4 X			^			_	^	
-80																		
-90																_		
-100.0)																	
30.	.000	127.00	224.	00	321.	00	418.	00	515.	00	612.	00	709.	00 806	.00	1	000.00	MHz
No).	Mk.	Freq		Rea Le	ding vel	Co Fa	rrect actor	Me	easure- ment	-	Limit		Over				
			MHz	2	dE	ßm	(dB		dBm		dBm		dB	Detecto	or C	omme	ent
1			75.68	70	-65	.78	-2	2.25	-	68.03		-13.00)	-55.03	peak			
2			122.05	530	-65	.48	-().57	-	66.05		-13.00)	-53.05	peak			
3		*	245.79	926	-67	.40	7	.71	-	59.69		-13.00)	-46.69	peak			
4			<u>56</u> 1.91	56	-78	.19	1(0.02	-	68.17		-13.00)	-55.17	peak			
5			691.15	520	-77	.47	13	3.09	-	64.38		-13.00)	-51.38	peak			
6			970.73	883	-78	.12	13	3.59	-	64.53		-13.00)	-51.53	peak			

REMARKS:

BIL

	٦	est Mo	st Mode			LTE	Ban	d 5			7	Fest Da	ate		202	1/9/17	
	Te	st Char	nnel			CH	2052	5			P	olariza	ition		Hor	izontal	
		Temp				2	5°C					Hum			5	2%	
0.0 -10 -20 -30 -40	dB																
-50	1 X	2 X		3		4 ×		5							6 X		
-70				^				×									
-90	0																_
30	.000	127.00	224.	.00	321.	00	418.	00	515.	00	612.	00	709.	00 806	.00	1000.00	⊢ ⊢ MHz
No).	Mk.	Frec	1.	Rea Le	ding vel	Co Fa	orrect actor	M	easure ment)-	Limit		Over			
			MHz	z	dE	ßm		dB		dBm		dBm		dB	Detector	Comm	ent
1		*	41.76	93	-74	.49	10	6.64	-	57.85		-13.00)	-44.85	peak		
2			121.11	53	-62	.69	2	.53	-	60.16		-13.00)	-47.16	peak		
3			240.06	696	-63	.83	-().47	-	64.30		-13.00)	-51.30	peak		
4			326.20)56	-66	.10	2	.55	-	63.55		-13.00)	-50.55	peak		
5			464.78	363	-78	.31	1:	2.35	-	65.96		-13.00)	-52.96	peak		
6			822.65	516	-75	.81	1;	5.75	_	60.06		-13.00)	-47.06	peak		

REMARKS:

	Test Mod	е	LTE	Band 5		Test Dat	te	202	1/9/17	
	Test Chan	nel	CH	20525		Polarizati	ion	Ve	rtical	
	Temp		2	5°C		Hum.		5	2%	
0.0	dBm									_
-10										
-20										1
-30 -										
-40										
-50 -										
-60 -	1×									
-70 -										
-80										
-90 -										
-100.0										
100	0.000 1800.00	2600.00	3400.00	4200.00	5000.00	5800.00 6	6600.00 740)0.00	9000.00	MHz
No	. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over			
		MHz	dBm	dB	dBm	dBm	dB	Detector	Comme	ent
1	*	1664.000	-52.60	-6.52	-59.12	-13.00	-46.12	peak		

Test Mode			LTE	Band 5	Test Date			202	2021/9/17	
	Test Chan	inel	CH	20525		Polariza	ation	Hor	rizontal	
Temp		25°C		Hum.		Ę	52%			
0.0	dBm									
-10 -										
-20										
-30										
-40 -										
E0										
-30	1									
-60 -	^									
-70										
-80										
-90 -										
-100.0	I									
100	0.000 1800.00	2600.00	3400.00	4200.00	5000.00	5800.00	6600.00	7400.00	9000.00 M	
No	. <u>Mk</u> .	Freq.	Reading Level	Correct Factor	Measure ment	e- Limit	t Öve	er		
		MHz	dBm	dB	dBm	dBm	dB	Detector	Commen	
1	*	1664.267	-48.12	-8.24	-56.36	-13.0	0 -43.3	36 peak		

REMARKS:

(1) Measurement Value = Reading Level + Correct Factor.
(2) Margin Level = Measurement Value - Limit Value.

APPENDIX F BAND EDGE

BIL

