Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 www.speag.swiss, info@speag.swiss

IMPORTANT NOTICE

USAGE OF THE DAE4

The DAE unit is a delicate, high precision instrument and requires careful treatment by the user. There are no serviceable parts inside the DAE. Special attention shall be given to the following points:

Battery Exchange: The battery cover of the DAE4 unit is fixed using a screw, over tightening the screw may cause the threads inside the DAE to wear out.

Shipping of the DAE: Before shipping the DAE to SPEAG for calibration, remove the batteries and pack the DAE in an antistatic bag. This antistatic bag shall then be packed into a larger box or container which protects the DAE from impacts during transportation. The package shall be marked to indicate that a fragile instrument is inside.

E-Stop Failures: Touch detection may be malfunctioning due to broken magnets in the E-stop. Rough handling of the E-stop may lead to damage of these magnets. Touch and collision errors are often caused by dust and dirt accumulated in the E-stop. To prevent E-stop failure, the customer shall always mount the probe to the DAE carefully and keep the DAE unit in a non-dusty environment if not used for measurements.

Repair: Minor repairs are performed at no extra cost during the annual calibration. However, SPEAG reserves the right to charge for any repair especially if rough unprofessional handling caused the defect.

DASY Configuration Files: Since the exact values of the DAE input resistances, as measured during the calibration procedure of a DAE unit, are not used by the DASY software, a nominal value of 200 MOhm is given in the corresponding configuration file.

Important Note:

Warranty and calibration is void if the DAE unit is disassembled partly or fully by the Customer.

Important Note:

Never attempt to grease or oil the E-stop assembly. Cleaning and readjusting of the E-stop assembly is allowed by certified SPEAG personnel only and is part of the annual calibration procedure.

Important Note:

To prevent damage of the DAE probe connector pins, use great care when installing the probe to the DAE. Carefully connect the probe with the connector notch oriented in the mating position. Avoid any rotational movement of the probe body versus the DAE while turning the locking nut of the connector. The same care shall be used when disconnecting the probe from the DAE.

S

 \mathbb{C}

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

BTL-TW (Auden)

Certificate No: DAE4-1486 Jun21

Accreditation No.: SCS 0108

CALIBRATION CERTIFICATE

DAE4 - SD 000 D04 BM - SN: 1486 Object

QA CAL-06.v30 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

June 01, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

			,
Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	07-Sep-20 (No:28647)	Sep-21
•	,		
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-21 (in house check)	In house check: Jan-22
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-21 (in house check)	In house check: Jan-22

Calibrated by:

Name

Function

Signature

Dominique Steffen

Laboratory Technician

Approved by:

Sven Kühn

Deputy Manager

Issued: June 1, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-1486_Jun21

Page 1 of 5

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 0108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

DC Voltage Measurement

A/D - Converter Resolution nominal

Calibration Factors	X	Υ	Z
High Range	403.910 ± 0.02% (k=2)	403.983 ± 0.02% (k=2)	403.701 ± 0.02% (k=2)
Low Range	3.97965 ± 1.50% (k=2)	3.98992 ± 1.50% (k=2)	3.96014 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	33.0 ° ± 1 °

Certificate No: DAE4-1486_Jun21 Page 3 of 5

Appendix (Additional assessments outside the scope of SCS0108)

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	200036.06	1.75	0.00
Channel X	+ Input	20006.04	0.25	0.00
Channel X	- Input	-20003.66	2.22	-0.01
Channel Y	+ Input	200035.62	1.23	0.00
Channel Y	+ Input	20004.43	-1.22	-0.01
Channel Y	- Input	-20003.19	2.83	-0.01
Channel Z	+ Input	200034.82	0.61	0.00
Channel Z	+ Input	20004.03	-1.64	-0.01
Channel Z	- Input	-20005.93	0.14	-0.00

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2001.34	-0.02	-0.00
Channel X	+ Input	201.18	-0.25	-0.12
Channel X	- Input	-198.88	-0.27	0.14
Channel Y	+ Input	2001.29	0.16	0.01
Channel Y	+ Input	200.40	-0.81	-0.40
Channel Y	- Input	-199.75	-0.96	0.48
Channel Z	+ Input	2000.91	-0.31	-0.02
Channel Z	+ Input	200.19	-1.07	-0.53
Channel Z	- Input	-199.55	-0.75	0.38

2. Common mode sensitivityDASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-0.73	-2.72
	- 200	3.23	1.45
Channel Y	200	-20.61	-21.28
	- 200	20.19	19.66
Channel Z	200	-4.08	-4.12
	- 200	2.93	2.63

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-1.81	-3.55
Channel Y	200	6.76	-	1.65
Channel Z	200	10.99	3.37	-

Page 4 of 5

Certificate No: DAE4-1486_Jun21

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16082	14374
Channel Y	16434	12529
Channel Z	16001	15938

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.42	-0.51	1.33	0.35
Channel Y	-0.34	-1.70	0.47	0.33
Channel Z	0.16	-1.67	0.93	0.32

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE4-1486_Jun21 Page 5 of 5

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

BTL-TW (Auden)

Certificate No: EX3-7369_Jun21

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:7369

Calibration procedure(s)

QA CAL-01.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7

Calibration procedure for dosimetric E-field probes

Calibration date:

June 3, 2021

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

ID	Cal Date (Certificate No.)	Scheduled Calibration		
	09-Apr-21 (No. 217-03291/03292)	Apr-22		
		Apr-22		
		Apr-22		
SN: 103245				
SN: CC2552 (20x)	09-Apr-21 (No. 217-03343)	Apr-22		
SN: 660	23-Dec-20 (No. DAE4-660_Dec20)	Dec-21		
SN: 3013	30-Dec-20 (No. ES3-3013_Dec20)	Dec-21		
ID	Check Date (in house)	Scheduled Check		
SN: GB41293874	06-Apr-16 (in house check Jun-20)	In house check: Jun-22		
	06-Apr-16 (in house check Jun-20)	In house check: Jun-22		
		In house check: Jun-22		
1-0.00		In house check: Jun-22		
•		In house check: Oct-21		
	SN: 3013	SN: 104778		

Calibrated by:

Name
Function
Signature
Laboratory Technician

Approved by:

Katja Pokovic
Technical Manager

Issued: June 3, 2021

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL sensitivity in free space

NORMx,y,z sensitivity in TSL / NORMx,y,z ConvF

diode compression point DCP

crest factor (1/duty_cycle) of the RF signal CF

modulation dependent linearization parameters A, B, C, D

(p rotation around probe axis Polarization φ

Certificate No: EX3-7369_Jun21

9 rotation around an axis that is in the plane normal to probe axis (at measurement center), Polarization 9

i.e., $\vartheta = 0$ is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- IEC 62209-1, ", "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization ϑ = 0 (f \leq 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E2-field uncertainty inside TSL (see below ConvF).
- $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for $f \le 800 \, \text{MHz}$) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

June 3, 2021 EX3DV4 - SN:7369

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7369

Basic Calibration Parameters

Basic Calibration Para	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
NI () /// //m \2\A	0.39	0.49	0.39	± 10.1 %
Norm (μV/(V/m) ²) ^A DCP (mV) ^B	102.0	94.8	113.4	

UID	on Results for Modulation Communication System Name		A dB	B dBõV	С	D dB	VR mV	Max dev.	Max Unc ^E (k=2)
	014/	X	0.00	0.00	1.00	0.00	141.2	± 3.3 %	± 4.7 %
0	CW	Y	0.00	0.00	1.00		139.2		
		Z	0.00	0.00	1.00		145.1		0/
10352-	Pulse Waveform (200Hz, 10%)	X	6.72	76.41	14.59	10.00	60.0	± 3.6 %	± 9.6 %
10352- P	Tuise wavelerm (2001.2, 1271)	Υ	20.00	93.42	21.69		60.0		
A/A/A		Z	1.90	62.46	7.67		60.0		0.0.0/
10353-	Pulse Waveform (200Hz, 20%)	X	20.00	88.43	17.24	6.99	80.0	± 2.7 %	± 9.6 %
AAA	Tuise waveletti (2001.2, 2070)	Υ	20.00	99.08	23.28		80.0		
<i>/</i> -\/-\		Z	0.93	60.67	5.80		80.0		0.0.0
10354-	Pulse Waveform (200Hz, 40%)	X	20.00	95.71	19.52	3.98	95.0	± 1.6 %	± 9.6 %
AAA		Υ	20.00	111.40	27.67		95.0		
		Z	0.43	60.00	4.74		95.0		0.00
10355- Pu AAA	Pulse Waveform (200Hz, 60%)	X	20.00	120.03	29.50	2.22	120.0	± 1.3 %	± 9.6 %
		Υ	20.00	124.88	32.39		120.0	1	
/\/\·\		Z	0.32	61.77	5.54		120.0		
10387-	QPSK Waveform, 1 MHz	X	2.05	69.94	17.45	1.00	150.0	± 2.0 %	± 9.6 %
AAA		Y	1.77	65.54	15.13		150.0		
/-V-V-\		Z	2.15	74.22	18.41		150.0		
10388-	QPSK Waveform, 10 MHz	X	2.73	71.77	18.00	0.00	150.0	± 1.0 %	± 9.6 %
AAA		Y	2.33	67.82	15.80		150.0		
		Z	2.31	70.65	17.39		150.0		0.00
10396- AAA	64-QAM Waveform, 100 kHz	X	3.01	72.78	20.18	3.01	150.0	± 0.8 %	± 9.6 °
		Y	2.84	69.42	18.43		150.0	4	
		Z	2.11	67.82	17.73		150.0		
10399- AAA	64-QAM Waveform, 40 MHz	X	3.68	68.20	16.61	0.00	150.0	± 0.9 %	± 9.6 °
		Υ	3.61	67.06	15.86		150.0	4	
		Z	3.42	67.81	16.26		150.0	1.000	1.000
10414-	WLAN CCDF, 64-QAM, 40MHz	X	4.90	65.97	15.88	0.00	150.0	± 1.0 %	± 9.6
AAA	VVE/ 11 CODI , OT Q, 10111.12		5.03	65.64	15.63		150.0	_	
, u-v-t		Z	4.56	66.11	15.77		150.0		

Note: For details on UID parameters see Appendix

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Page 3 of 23 Certificate No: EX3-7369_Jun21

A The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

B Numerical linearization parameter: uncertainty not required.

C Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

June 3, 2021

DASY/EASY - Parameters of Probe: EX3DV4 - SN:7369

Sensor Model Parameters

Sensor W	lodell al	annecero				=0	T 4	TE	T6
	C1	C2	α	T1	T2	Т3	T4	15	10
	fF.	fF	V ⁻¹	ms.V ⁻²	ms.V ⁻¹	ms	V ⁻²	V ⁻¹	
		004.00	04.00		0.00	4.99	1.74	0.01	1.00
X	44.5	324.20	34.36	7.90	0.00				
V	54.3	411.74	36.53	8.15	0.02	5.06	1.18	0.24	1.01
1				4.22	0.00	4.90	0.89	0.00	1.00
Z	25.7	180.47	32.08	4.32	0.00	4.80	0.00	0.00	

Other Probe Parameters

Other Proper arameters	Triangular
Sensor Arrangement	Mangulai
Connector Angle (°)	-112.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Note: Measurement distance from surface can be increased to 3-4 mm for an *Area Scan* job.