Frequency: 2450 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used (interpolated): f = 2450 MHz; $\sigma = 1.856$ S/m; $\epsilon_r = 38.943$; $\rho = 1000$ kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2021/6/1
- Probe: EX3DV4 SN7369; ConvF(7.62, 7.62, 7.62) @ 2450 MHz; Calibrated: 2021/6/3
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

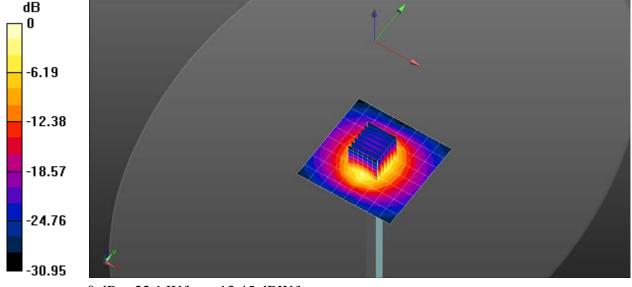
System Performance Check at Frequencies above 1 GHz/Pin=250mW/Area Scan (9x9x1): Measurement grid: dx=12mm, dy=12mm

Maximum value of SAR (measured) = 22.1 W/kg

System Performance Check at Frequencies above 1 GHz/Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,

dz=5mm

Reference Value = 113.2 V/m; Power Drift = 0.00 dB


Peak SAR (extrapolated) = 28.1 W/kg

SAR(1 g) = 13.1 W/kg; SAR(10 g) = 6.1 W/kg

Smallest distance from peaks to all points 3 dB below = 11 mm

Ratio of SAR at M2 to SAR at M1 = 45.3%

Maximum value of SAR (measured) = 22.5 W/kg

0 dB = 22.1 W/kg = 13.45 dBW/kg

Frequency: 5200 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5200 MHz; σ = 4.561 S/m; ϵ_r = 36.046; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2021/6/1
- Probe: EX3DV4 SN7369; ConvF(5.15, 5.15, 5.15) @ 5200 MHz; Calibrated: 2021/6/3
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm,

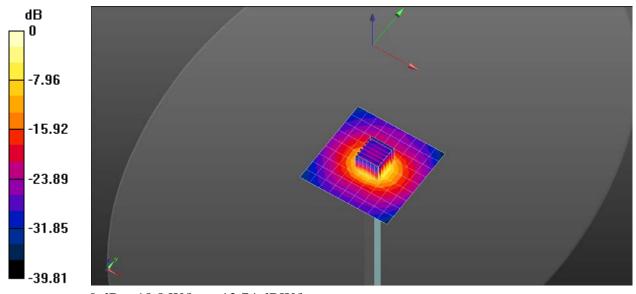
dy=10mm

Maximum value of SAR (measured) = 12.5 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 60.31 V/m; Power Drift = -0.10 dB


Peak SAR (extrapolated) = 29.4 W/kg

SAR(1 g) = 7.48 W/kg; SAR(10 g) = 2.17 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 55.4%

Maximum value of SAR (measured) = 18.8 W/kg

0 dB = 18.8 W/kg = 12.74 dBW/kg

Frequency: 5300 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5300 MHz; σ = 4.676 S/m; ϵ_r = 35.821; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2021/6/1
- Probe: EX3DV4 SN7369; ConvF(5, 5, 5) @ 5300 MHz; Calibrated: 2021/6/3
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm,

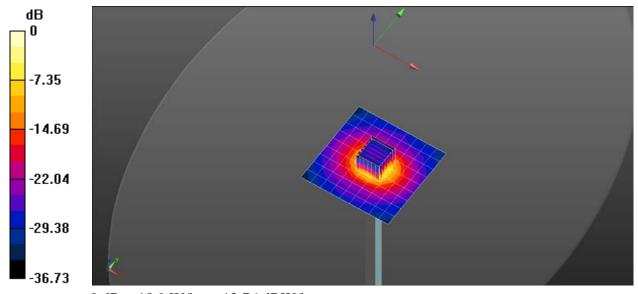
dy=10mm

Maximum value of SAR (measured) = 11.8 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 58.57 V/m; Power Drift = 0.11 dB


Peak SAR (extrapolated) = 30.1 W/kg

SAR(1 g) = 7.51 W/kg; SAR(10 g) = 2.17 W/kg

Smallest distance from peaks to all points 3 dB below = 7.4 mm

Ratio of SAR at M2 to SAR at M1 = 54.4%

Maximum value of SAR (measured) = 18.9 W/kg

0 dB = 18.9 W/kg = 12.76 dBW/kg

Frequency: 5600 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5600 MHz; σ = 5.028 S/m; ϵ_r = 35.093; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2021/6/1
- Probe: EX3DV4 SN7369; ConvF(4.66, 4.66, 4.66) @ 5600 MHz; Calibrated: 2021/6/3
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm,

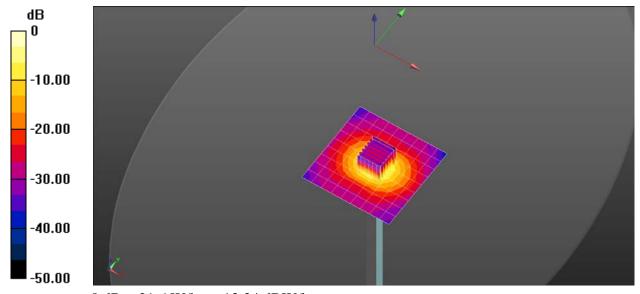
dy=10mm

Maximum value of SAR (measured) = 14.1 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 61.89 V/m; Power Drift = -0.02 dB


Peak SAR (extrapolated) = 36.9 W/kg

SAR(1 g) = 8.22 W/kg; SAR(10 g) = 2.35 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 50.4%

Maximum value of SAR (measured) = 21.6 W/kg

0 dB = 21.6 W/kg = 13.34 dBW/kg

Frequency: 5800 MHz; Duty Cycle: 1:1; Room Ambient Temperature: 23.0°C; Liquid

Temperature: 22.0°C

Medium parameters used: f = 5800 MHz; σ = 5.255 S/m; ϵ_r = 34.688; ρ = 1000 kg/m³ DASY5 Configuration:

- Area Scan Setting: Find Secondary Maximum Within: 2.0 dB and with a peak SAR value greater than 0.0012W/kg
- Electronics: DAE4 Sn1486; Calibrated: 2021/6/1
- Probe: EX3DV4 SN7369; ConvF(4.61, 4.61, 4.61) @ 5800 MHz; Calibrated: 2021/6/3
- Sensor-Surface: 1.4mm (Mechanical Surface Detection (Locations From Previous Scan Used)), Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Phantom: ELI V5.0 (20deg probe tilt); Type: QD OVA 002 AA; Serial: 1240

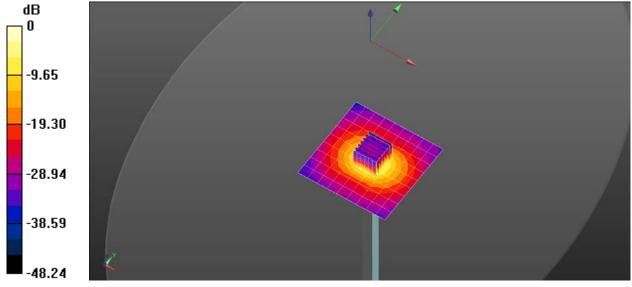
Configuration/Pin=100mW/Area Scan (10x10x1): Measurement grid: dx=10mm,

Maximum value of SAR (measured) = 14.6 W/kg

Configuration/Pin=100mW/Zoom Scan (7x7x12)/Cube 0: Measurement grid:

dx=4mm, dy=4mm, dz=2mm

Reference Value = 61.09 V/m; Power Drift = 0.02 dB


Peak SAR (extrapolated) = 40.0 W/kg

SAR(1 g) = 8.37 W/kg; SAR(10 g) = 2.37 W/kg

Smallest distance from peaks to all points 3 dB below = 7.5 mm

Ratio of SAR at M2 to SAR at M1 = 48.2%

Maximum value of SAR (measured) = 22.5 W/kg

0 dB = 22.5 W/kg = 13.52 dBW/kg