
 
 
 
 

Title RFm module  
Doc. 
Number 

BCC-611-004-2003 

Short 
description 

RFm RF network module Alpha phase  

 
Document history: 
Revision Date Author/Who What 
1 16-Nov-03 Stp Created 
    
    
    
    

 
Related documents: 
Doc Date Author/Wh

o 
Revision 

rfq-icu-0.9 16-Sep-03 SR 0.9 
RF2200_B0_1.0x 15-Sep-03 Michel 

Benoit 
1.0 

BCC-611-001-2003 4-Oct-03 STP 1.0 
BCC-611-002-2003 6-Oct-03 STP 1.0 
    



 
 

  DRAFT 
November 2003 

 

High performance, low cost 
 
 
 

Product Description 
The Hermes networking module is a 
fully integrated surface mountable 
transceiver with star networking 
capabilities. The module is intended 
for use as low cost FSK transceiver to 
establish a frequency-programmable, 
half-duplex bidirectional RF link.  The 
FHSS multi channelled FSK 
transceiver is intended for UHF radio 
equipment in compliance with the 
North American Federal 
Communications Commission (FCC) 

part 15.247 and the European 
Telecommunication Standard Institute 
(ETSI) specification EN300 220.The 
transmitter consists of a VCO, a 
frequency synthesizer and a 
programmable power amplifier. The 
integrated receiver is a direct 
conversion (Z-IF) receiver allowing 
low power operation. It consists of a 
low noise amplifier, mixers, internal 
filters, limiters and a FSK 
demodulator.  

 
 
 

Features 
 
 

• 915 / 868MHz FHSS 
• Networking 
• Low power operation 
• Programmable protocol 
• UART interface 
• ICD2 programmable 

 
 
 
 
 
 
 
 

Parameter Value Unit Conditions 
Frequency 868/9915 MHz  

Modulation FSK   
RF output power 10 DBm 2.5V 
Current consumption, TX 33 MA 2.5V 
Sensitivity  −105 DBm (10kbps , BER=10-3) 
Current consumption, RX 15 MA 5V 
Maximum data rate 10 kbps   

 
 



 
 

  DRAFT 
November 2003 

 

 

Contents 
Contents .......................................................................................................................................3 
Definitions .....................................................................................................................................6 
General Description........................................................................................................................7 
Pinout ...........................................................................................................................................8 
Using the Number of retransmissions parameter...............................................................................9 
Use of RTS/CTS and DCD ..............................................................................................................9 

Detailed procedure User_x à RFm_x: .................................................................................. 10 
Detailed procedure RFm_x à User_x: .................................................................................. 13 

Programming Mode...................................................................................................................... 14 
Format of the primitives ............................................................................................................ 14 

Modes of Operation, Overview...................................................................................................... 23 
Active mode................................................................................................................................. 23 
Binding Mode............................................................................................................................... 24 

User_M Action......................................................................................................................... 24 
User_Slave action.................................................................................................................... 25 

Other modes of operation ............................................................................................................. 26 
“Sniffer mode”.......................................................................................................................... 26 
“Test modes”........................................................................................................................... 26 



 
 

  DRAFT 
November 2003 

 

Block diagram 
 
 
 

VCO

LN
A

Sallen-key

Sallen-key

Main
filter

Main
filter

IF
A

M
P

P
A

DIV 2

IF
A

M
P

LO-Buffer

P
A

-b
u

ffe
r

Frequency
Synthesiser-10MHz

D
e

m
od

u
lato

r

C
lo

ck
 re

co
ve

ry

M
o

du
la

to
r

D
ev

ia
tio

n
 c

o
nt

ro
l

RSSI

XCO

C
on

trol log
ic

Filter

M
C

U

LDO

REG

MODE

RESET

RX

TX

DCD

DSR

CTS

RTS

ANT

 
 

 
Pin Assignment 

 
 
 

 

 

 

 
 
 

Pin Name Function I/O  Pin Name  I/0 
1 VCC +5V -  6 TX Serial data out I 
2 GND GND -  7 CTS Clear To Send O 
3 MODE Mode of operation I  8 RTS Request To Send I 
4 RESET  HW Reset I  9 DCD Data Carrier Detect O 
5 RX Serial data in I  10 GND GND - 

 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 5of 26               RFm: User interface (draft 2003 11 14) 

 
5

Absolute Maximum Ratings 
 Value  

Parameter Conditions Min Max 
 

Units 
Supply voltage, VDD   5 V 
Voltage on any pin  GND=0 -0.3 5 V 

Storage Temperature range  -50 150 °C 
Lead Temp   250 °C 

ESD-Human body model    t.b.d. kV 
 

Note: “ Absolute Maximum Rating” indicate the limit beyond witch damage to the device may occur. Recommended Operating conditions indicate 
conditions for which the device is intended to be functional, but do not guarantee specific performance limits. Electrical Characteristics document specific 
minimum and/or maximum performance values at specified test conditions.  Typical values are for information purposes only- based on design 
parameters or device characterization and are not guaranteed. 
 

 

 

ATTENTION 
STATIC SENSITIVE DEVICE 

HANDLE ONLY AT  
STATIC SAFE WORK STATION  

Electrical characterization 
fRF = 915MHz, Data-rate=10kbps, Modulation type:=Divider , Vdd=5V, T=25°C, unless otherwise specified 

Values  
Parameter 

 
Conditions Min. Typ. Max. 

 
Units 

Overall 
RF frequency operating range  868  927 MHz 
Number of Channels 868MHz  4   
 915MHz  25   
Start-up Time    10  mS 
Switching time Rx -Rx  500  µS 
 Rx -TX  800  µS 
Synchronization time    <<<1 S 
Power supply    3  V 
Temperature range  -20  70 °C 

Transmit section 
Output Power R load= 50?,  Pa2-0=111  10  dBm 
 R load= 50?,  Pa2-0=000  -11  dBm 
Output power tolerance over temperature range   2  dB 
 over power supply range  3  dB 
Tx current consumption R load= 50?,  Pa2-0=111  33  mA 
 R load= 50?,  Pa2-0=000  15  mA 
Binary FSK frequency separation bitrate=200kbps   240 kHz 
Data rate 915MHz VCO modulation  200  kbps  
Data rate 868MHz VCO modulation  40  kbps  

Receiver section 
Rx current consumption   15  mA 
Receiver sensitivity  38kbaud/s, ß=4  -104  dBm 
 200kbaud/s, ß=2  -97  dBm 
Receiver maximum input power    -12 dBm 
Adjacent channel rejection 200kHz spacing  t.b.d.   dB 
 1MHz spacing  t.b.d.   dB 
Blocking ±1MHz  42  dB 
 ±2MHz  47  dB 
 ±5MHz  38  dB 
 ±10MHz  41  dB 
1dB compression   -35  dB 
Input IP3 2 tones with 1MHz separation  -25  dBm 
Input impedance   ~ 50  ?  
      



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 6of 26               RFm: User interface (draft 2003 11 14) 

 
6

 
Values  

Parameter 
 

Condition Min. Typ. Max. 
 

Units 
Digital Inputs/Outputs  

Logic high input, Vih  0.7*VDD  VDD V 
Logic low input, Vil  0  0.3*VDD V 
      
      

User Interface and networking 
User interface   UART   
Data format      
                    -Bits per second   115.2  kbps  
                    -Data bits   8  bit 
                    -Parity    NONE  bit 
                    -Stop bits   1  bit 
                    -Flow control   HW   
CRC   CRC-CCITT   
Network topology    Star   
Addressing         
                    - Source   2  Byte 
                    - Destination   2  Byte 
      

 

Definitions 
Beacon:  A FHSS synchronization message 
Binding: Association of Master and Slave id 
Cluster:   One Master and multiple slaves 
RF-ID  Unique ID stored in every RFm_x 
Star network: A network with one master and multiple slaves. Slaves are only allowed to 

transmit to one master. Master can transmit to a specific slave. 
 
RFm_M:  RF module Master 
RFm_S:  RF module Slave 
RFm or RFm_x:  General term for a RF device 
Source-RFm:  An RFm_x transmitting a frame 
Destination-RFm: An RFm_x receiving a frame 
 
User_M:  User device connected to RFm_M 
User_S:  User device connected to RFm_S 
User or User_x   General term for a User device 
Source-User:   An User_x transmitting a frame 
Destination-User:  An User_x receiving a frame 
 
RFm_Retries   Number of retransmissions if no ack (or 0) 
 
User-RFm interface 
USART 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 7of 26               RFm: User interface (draft 2003 11 14) 

 
7

 
 

General Description 
This document describes the use of RFm_x. How to connect a user device to an RFm_x device, how to 
associate master/slave devices and how to transfer data to/from user devices is described. 
 
A network is built of a number of RF modules. A RF module is called “RFm_M” or “RFm_S”. Every RFm_x has 
a unique address. To every RFm_x, one “User-device” is connected. 
 
The purpose of the network is to let the user devices exchange data. 
 
The network has a star topology: 

• 1 master RF unit, called RFm_M. Connected to a master user device called User_M. 
• 1...64 slave RF units, called RFm_S. Connected to a slave user device called User_S. 
• RFm_M can talk to any RFm_S 
• RFm_S can only talk to RFm_M 

 
The combination of a master and the associated slaves is called a “cluster”. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A User_x device can set the connected RFm_x in “Programming mode”. In programming mode, parameters 
can be changed/read and commands can be given to the RFm_x. 
 
A new slave is included in the cluster through an association process called “binding”. The User_M device must 
accept the new slave. In addition, User_S must accept the master to complete the binding. 
 
If binding mode is not available, User can do the association process in “Programming mode”. Then User 
program the RFm’s own RF-ID and the RF-ID of the master RFm (i.e the associated master). 
 
In “Active mode”, data traffic from slave to master is transparent, except that User_M will get the RF-ID of the 
source-RFm_S before any data bytes. User_S enters data bytes only (destination is always the master). 
 
Data traffic from master to slave is also transparent, except that User_M must enter the RF-ID of the 
destination-RFm_S before any data bytes. If User_M brings RTS inactive and then active again, User_M must 
enter the RF-ID of the destination RFm again (the same or a new destination). If RTS is kept active, User_M 
enters only data bytes after the address is entered 1 time. User_S gets data bytes only (the source is always 
the master). 

RFm_M

RFm_S0

RFm_S1

RFm_S2

RFm_Sn

.

.

.

.

Cluster A
Cluster B

RFm_M

RFm_S0

RFm_S1

RFm_S2

RFm_Sn

.

.

.

.

Cluster CRFm_M

RFm_S0

RFm_S1

RFm_S2

RFm_Sn

.

.

.

.



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 8of 26               RFm: User interface (draft 2003 11 14) 

 
8

 

Pinout and User – RFm interface 
The User controls the RFm through a number of pins. These pins are: 
 
• RESET: Input to RFm. User can restart the program (parameters stored in EEPROM are not changed) 
• MODE: Input to RFm. Setting this pin active puts the RFm in programming mode. Bringing the pin 

inactive: RFm enters a user-specfied mode of operation 
• RX: Input to RFm. Serial data/commands from User 
• TX: Output from RFm. Serial data/commands from RFm 
• DCD: Output from RFm. Indicates a link is established between master and slave 
• CTS: Output from RFm. Indicates RFm is ready for data from User 
• RTS: Input to user. Indicates User wants to transfer data, or User is ready for data from RFm 
 
• RESET is active low 
• MODE, CTS, RTS and DCD are active low 
• UART: RX and TX are idle high. Start-bit is low, data bits are “1:1”, stop bit is high. 
• UART bitrate: 57600-8-N-1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Antenna connector 

Vpp 
 
Vdd 
 
Gnd 
 
Data I/O 
 
Clk 

+5Volt 

Gnd 

MODE 
RESET 

RX 
TX 

CTS 
RTS 

DCD 
Gnd 

RFm 
 
BCC AS 

IC
SP

 in
te

rf
ac

e 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 9of 26               RFm: User interface (draft 2003 11 14) 

 
9

Using the Number of retransmissions parameter 
 
The number of retransmissions is a User-programmable parameter, referred to as “RFm_Retries”. 
 
There are 2 special cases for this parameter: “No retransmissions” and “Retransmissions until ack’ed”. 
 
If RFm_Retries = 0: A source-RFm will not expect ack from the destination-RFm when a data frame is 
transmitted. And: A destination-RFm will not transmit ack to the source-RFm when a data frame is received. 
 
If RFm_Retr ies = 255 (0xFF): A source-RFm will re- transmit a packet until ack is received from the destination-
RFm, or until power-down. And: A destination-RFm will transmit ack to the source-RFm when a data frame is 
received. 
 
If RFm_Retries = n (!= 0 and != 255): A source-RFm will re-transmit a packet until ack is received from the 
destination-RFm, or until n transmissions are made. And: A destination-RFm will transmit ack to the source-
RFm when a data frame is received. 
 
Setting RFm_Retries = 255 is not recommended (but kept as an option) because of the possible lock-situation 
(if destination is not present or the destination address is incorrectly entered by User). 
 
It might be advantageous to set RFm_Retries = 0 (especially if data is ack’ed at the User-level). In this case, 
the RF traffic is reduced. Example: A source-User sends n packets (via the source-RFm) without waiting for 
ack between packets. After the nth packet, the source-User expects ack. Destination-User gets the packets 
(from the destination-RFm), and acks all frames or requests a retransmission of 1 or more packets after the nth 
packet is received (Suggested exercise: Set n=1 in this example). This is a User-protocol issue. 
 
Note this special case:  

• If the value of parameter “RFm_Retries” > 0, a transmitted frame must be ack’ed, or else it will be 
retransmitted. If RFm_Retries = 0, then no ack is expected by source-RFm, and no ack is sent by 
destination-RFm. If the source-RFm has RFm_Retries =n (n> 0), but the destination-RFm has 
RFm_Retries = 0: The source-RFm will transmit the packet n times 

 
 

Use of RTS/CTS and DCD 
 
RTS/CTS are handshake signals between a User and an RFm. That is: They are not handshake signals 
between User_M and User_S. Example: “RFm_M ready for receiving bytes from User_M” does not imply 
”User_S ready to get bytes from RFm_S”. 
 
While RTS/CTS are used for starting/stopping the data stream, DCD indicates “transmitting link ok”. In practice, 
it will confirm that the last data did get through to the destination - RFm. (DCD goes active or stays active) or it 
will tell User that the last data (probably) did not get through (DCD goes inactive or stays inactive). 
 
The User may select to ignore the DCD pin and the “link ok” function. 
 
RTS is User - controlled. When User brings RTS active, it says “User is active” to the connected RFm. 
 
CTS is RFm - controlled. When RFm brings CTS active, it says “RFm is active” to the connected User. 
 
DCD is RFm - controlled. It is only used if “Number of retries” > 0 (refer to section “Using the Number of 
retransmissions parameter”). If the last frame was ack’ed, RFm brings DCD active or keeps it active. Else, RFm 
brings DCD inactive or keeps it inactive. 
 
If a LED is connected to the DCD pin, the state of this line can be monitored visually. 
 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 10of 26               RFm: User interface (draft 2003 11 14) 

 
10

Observe this special case: A frame is successfully received by the destination, but no ack is received by the 
source. Then DCD will indicate “No success”, although the frame in fact is successfully received by destination. 
 
Note: In “Test-mode RX” (Test1) the DCD line will be inverted whenever a frame white correct CRC is received. 
This can be used as a communication-link test. 
 
Principle of RTS/CTS from User à RFm: 

• User brings RTS active and keeps it active until all bytes are sent or until quitting 
• User enters bytes into RFm when CTS is active, and stops entering bytes when CTS is not active 

 
Principle of RTS/CTS from RFm à User: 

• RFm tests if RTS is active or not 
• While RFm has data to give to User: RFm gives bytes to user while RTS is active 
• CTS is not used by RFm 

 
 

Detailed procedure User_x à  RFm_x: 
Refer to the “cases” described below. Note: User_Master to RFm_Master is described. For a slave, the same 
procedure is used, except for the entering of an address. 
 

• User_M brings RTS active, indicating “User_M wants to transfer data” 
• IF RFm_M is ready to get bytes from User_M, it detects RTS active and brings CTS active, indicating 

“RFm_M ready” 
• User_M detects CTS active and enters address of destination (4 bytes) (if “Active mode”) and a 

number of bytes, max 32. If User_M enters 32 bytes, RFm_M tells User_M to stop entering bytes by 
bringing CTS inactive. If User_M wants to transfer  < 32 bytes, User_M brings RTS inactive after the 
last byte. In the last case, RFm_M detects RTS inactive and brings CTS inactive. 

 
• If Active Mode: RFm_M now adds overhead (like address and CRC) to the data bytes (making a 

“frame”), and transmits the frame. 
• If programming mode: “Action” is started based on the entered bytes (Examples of “Action”: update a 

parameter, read a parameter, reset RFm). 
 

• If ack is expected (RFm_Retries > 0): 
o RFm_M searches for ack. If no ack is received before “timeout”, the frame is retransmitted. 

This is repeated “RFm_Retries” times 
o If no ack after all retransmissions: The DCD pin is brought (or kept) inactive. CTS is 

brought active if RTS is still active. User must decide if he wants to send more data or not, 
knowing that the last data entered (probably) did not get through. 

o If ack: The DCD pin is brought (or kept) active. CTS is brought active if RTS is still active. 
 

• If ack is not expected (RFm_Retries = 0): 
o DCD is not used 
o CTS is brought active if RTS is still active 

 
• If User_M keeps RTS active and detects CTS active again: He can enter more bytes (without 

entering the address). 
 

• If User_M brings RTS inactive, it must be kept inactive for > 30 msecs. Then, after bringing RTS 
active again, User_M must enter the destinations address first, then the databytes. 

 
 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 11of 26               RFm: User interface (draft 2003 11 14) 

 
11

Handshake case 1: 
• User wants to enter <= 32 bytes 
• DCD is inactive before entering bytes 
• “RFm_Retries” > 0 
• Data is successfully acked by destination-RFm 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1: User brings RTS active 
2: RFm brings CTS active 
3: User enters start-bit of 1st data byte (or of destination-address if it is master) 
4: User has entered stop-bit of last data byte 
5: User brings RTS inactive 
6: RFm brings CTS inactive and starts processing the entered bytes 
7. RFm has received ack from destination-RFm and brings DCD active. Since RTS is inactive, CTS is kept 
inactive. 
 
 
 

1 2 3 6 54 

RTS 

CTS 

RX 

DCD 

7
6 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 12of 26               RFm: User interface (draft 2003 11 14) 

 
12

Handshake case 2:  
• User wants to enter > 64 bytes and keeps RTS active 
• DCD is inactive before entering bytes 
• “RFm_Retries” > 0 
• The 1st entered 32 data bytes are successfully acked by destination-RFm, but 
• The last entered 32 data bytes are not acked after “RFm_Retries”  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1: User brings RTS active 
2: RFm brings CTS active 
3: User enters start-bit of 1st data byte (or of destination-address if it is master) 
4: User has entered stop-bit of byte #32 (or of #36 if it is master) 
5: RFm brings CTS inactive and starts processing the entered bytes 
6: RFm has received ack from destination-RFm and brings DCD active. Since RTS is still active, CTS is brought active as well 
7: User enters start-bit of data byte #33 (not address, regardless of master/slave - type) 
8: User has entered stop-bit of data byte #64 
9: RFm brings CTS inactive and starts processing the entered bytes 
10. RFm has not received ack from destination-RFm after “RFm_Retries” attempts. It brings DCD inactive. Since RTS is still active, CTS is brought active (user must then decide if he wants to 
enter more bytes or not). 
 

1 2 3 6 5 4 7 8 9 10 

RTS 

CTS 

RX 

DCD 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 13of 26               RFm: User interface (draft 2003 11 14) 

 
13

 

Detailed procedure RFm_x à  User_x: 
In the detailed listing below, a RFm_M to User_M transfer is described. The same procedure is used for a RFm_S to User_S 
transfer, except that RFm_S does not give the address of the source to the User_S (for a slave, the source is always the 
master). 

• RFm_M has received a datapacket (address and CRC OK) 
• RFm_M tests if RTS is active or not. If User_M is ready to get bytes, RTS should be active (although active, 

User_M does not have to enter any bytes) 
• RFm_M detects RTS active and transfer the source address and data to User_M 
• User_M can stop the transfer by bringing RTS inactive. 
• When RFm_M has given source address and data: RFm_M action finished 
• Note: CTS and DCD are not changed by this process 

 
 
Handshake case 3: 

• RFm has data to give to User 
• User is ready for receiving, indicated by RTS active 
• DCD/CTS are not changed by this process 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1. RFm receives (via RF) an OK data frame 
2. RFm detects RTS active 
3. RFm gives out startbit of 1st data byte (or of source-address if it is master) 
4. RFm has finished the stop-bit of the last data byte 
 
(Another case: RTS stops and starts data stream on TX line by bringing RTS inactive/active) 

1 2 3 4 

RTS 

CTS 

TX 

DCD 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 14of 26               RFm: User interface (draft 2003 11 14) 

 
14

Programming Mode 
A number of commands (“Requests”) can be entered to the RFm, and the RFm can answer (with “Confirms”). “Requests” 
and “Confirms” are only available in programming mode. “Programming mode” can be entered any time, except when the 
RFm is busy giving data to User or the RFm is busy transmitting a frame/waiting for ack. Note: If RFm_Retreies = 255, 
programming mode is not reachable before the last data packet is ack’ed. 
 
To enter programming mode: Set the MODE pin active. Bring it inactive to exit programming mode. CTS/RTS must be used 
as described in “Use of RTS/CTS and DCD”, but the DCD pin is not used in programming mode. 
 
In addition, RFm can give “Indications” to User, and User can answer (with “Response”). Presently, “Indications” and 
“Response” are only available in binding mode (they are used in the association process, refer to section “Binding Mode”). 
 
The “primitives” are categorized as “Requests”, “Confirms”, “Indications” and “Responses”: 
 

“Requests”: from User_x to RFm_x 
“Confirms” to requests: from Rfm_x to User_x 

 
“Indications”: from RFm_x to User_x 
“Response” to indications: from User_x to RFm_x 

 
The set of available primitives is different for an RFm_S and an RFm_M. 
When transferring a primitive: 
The first byte is a number (1, 2, 3 or 4) indicating Request, Confirm, Indication or Response, respectively. 
 
The 2nd and 3rd bytes complete the primitive value. 
 
Following primitive value, a number of parameters may be given (depends on primitive value). 
 
After changing parameters (through “Set…” requests), the User should test that the parameter update was successful by 
reading it back (through “Get…” requests). 
 
Note: If RTS is kept active, a request can be entered by adding additional characters (any char will do) (the other method is 
to bring RTS inactive after the last byte of the request), then bringing RTS active again. 
 

Format of the primitives 
In every transfer, 3 fields are sent. These are: 
 

1. Start-of- transfer character: From user: ascii character ‘*’, to user: ascii character “#” 
2. Type of primitive, 3 ascii characters, every character is in the range ‘0’-‘9’ 
3. Parameters (if any). All parameter octets (bytes) are coded into 2 ascii characters ‘0’-‘9’, ‘A’-‘F’. Every octet is 

considered a hex number, and high and low nibble of the octet are transferred as ascii characters. 
 
Then, after these 3 fields are entered, the User has 2 options: 

1. The RTS line can be kept active. Then, an additional number of characters must be entered to make a 
total of 32 characters (where “*” is the 1st character) 

2. The RTS line can be brought inactive after the parameter- field and then active again. The time in inactive 
state should be > 30msec. 

 
 
The start-of- transfer character (‘*’) is used to reset the character-counter in RFm. If User makes a mistake when entering the 
bytes, he can start over by entering a new ‘*’ (assuming < 32 characters entered and RTS is kept active). 
 
Examples of parameter coding: 

Parameter value = 1 => 0x01 => ascii characters ‘0’,‘1’ 
Parameter value = 56 =>0x38 => ascii characters ‘3’,’8’ 
Parameter value =255 => 0xFF => ascii  characters ‘F’,’F’ 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 15of 26               RFm: User interface (draft 2003 11 14) 

 
15

 
Examples of complete primitive-transfer: 
 
Example 1. User wants to set type = Slave: 

Start-of- transfer *   => ‘*’ 
Type of primitive 101   => ‘1’,‘0’,‘1’ 
Parameter value 2 => 0x02  => ‘0’,’2’ 

  
Total transfer, in ascii-character notation: *10102 
After adding characters to get a total of 32, or bringing RTS inactive after the transfer of the primitive, the RFm will 
update the parameter. 
 

 
Example 2. User wants to set number of retries = 25: 

Start-of- transfer *   => ‘*’ 
Type of primitive 131   => ‘1’, ‘3’,‘1’ 
Parameter value 25 => 0x19  => ‘1’,’9’ 

  
Total transfer, in ascii-character notation: *13119 
After adding characters to get a total of 32, or bringing RTS inactive after the transfer of the primitive, the RFm will 
update the parameter. 
 

 
Example 3. User wants to get the value of  “number of retries” (RFm_Retries): 

Start-of- transfer *   => ‘*’ 
Type of primitive 132   => ‘1’, ‘3’,‘2’ 
No Parameters 
 
Total transfer, in ascii-character notation: *132 

 
After adding characters to get a total of 32, or bringing RTS inactive after the transfer of the primitive, the RFm will 
give this confirm back: 
Start-of- transfer #   => ‘#’ 
Type of primitive 232   => ‘2’, ‘3’,‘2’ 
Parameter  value 25=0x19 => ‘1’,’9’ 
 
Total transfer from User, in ascii-character notation: #23219 
 

Example 4. User wants to set “own ID”  = 0x41414141 (ascii char: AAAA)  
Start-of- transfer *   => ‘*’ 
Type of primitive 121   => ‘1’, ‘2’,‘1’ 
Parameters: 
   ID_Source=Own_ID=1=0x01 => ’0’,’1’ 
   ID=0x41414141  => ‘4’,’1’, ‘4’,’1’, ‘4’,’1’, ‘4’,’1’ 
 
Total transfer, in ascii-character notation: *1210141414141 
 
Note: In Active mode, if User_Master wants to transmit a message to User_Slave connected to the RFm_Slave 
with address 0x41414141: User_M first enters the 4 bytes 0x41, 0x41, 0x41, 0x41 (= AAAA in ascii notation), then 
the data bytes to transfer to this slave. 

 
Below: First, the primitives are summarized. Then every primitive is described in more detail. “Ascii value” means the 3 ascii 
characters to enter for the primitive. “Parameters”: The ascii chars to enter are shown. 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 16of 26               RFm: User interface (draft 2003 11 14) 

 
16

 
REQUEST Primitive Parameters 
Reset_Req() - 
  

Type =  
 Master, 

Set_Type_Req(  
   Type) 

 Slave 
 
Get_Type_Req() - 
 

Mode =  
 Active, 
 Binding, 
 Promiscuous, 

Set_Mode_Req(  
   Mode) 

 Test1, …Testn 
 
Get_Mode_Req() - 
 

ID_Source = 
 Own_ID, 
 Master_ID 

Set_ID_Req( 
   ID_Source, 
   ID) 

ID =  
  Value of the selected ID 
  

ID_Source =  
 Own_ID, 

Get_ID_Req(  
   ID_Source) 

 Master_ID 
 

Retries =  Set_Retries_Req(  
   Retries)  Max number of retransmissions 
 
Get_Retries_Req() - 
 
 
CONFIRM Primitive Parameters 

Type =  
 Master, 

Type_Cnf(  
   Type) 

 Slave 
 

Mode =  
 Active, 
 Binding, 
 Promiscuous, 

Mode_Cnf(  
   Mode) 

 Test1, … Testn 
 

ID = ID_Cnf(  
   ID)  Value of the requested ID 
 

Retries =  Retries_Cnf(  
   Retries)  Max number of retransmissions 
 
 
 
 
 
 
 
 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 17of 26               RFm: User interface (draft 2003 11 14) 

 
17

INDICATION Primitive Parameters 
RF_ID= 
 Unique RF_ID of the RFm_S sending the 

request 
 

User_Field_Length / User_Field: 

Slave_Bind_Ind( 
   RF_ID, 
   User_Field_Length, 
   User_Field) 

 Parameters from the User_S 

 
RF_ID =  
 Unique RF_ID of the RFm_M responding 

to the request 
 

Short_Address =  
 Network-unique short-address assigned to 

the slave by the User_M 
 

User_Field_Length / User_Field: 

Bind_Ack_Ind(  
   RF_ID,  
   Short_Address,  
   User_Field_Length,  
   User_Field) 

 Parameters from the User_M 
 
 
 
 
RESPONSE Primitive Parameters 

RF_ID= 
 Unique RF_ID of the RFm_S sending the 

request 
 

Short_Address =  
 Network-unique short-address assigned to 

the slave by the User_M 
 

User_Field_Length / User_Field: 

Accept_Slave_Rsp(  
   RF_ID,  
   Short_Address,  
   User_Field_Length,  
   User_Field) 

 Parameters from User_M 
 

RF_ID =  Reject_Slave_Rsp( RF_ID) 
 Unique RF_ID of the RFm_S sending the 

request 
 

   
Accept_Master_Rsp( RF_ID) RF_ID =  
  Unique RF_ID of the RFm_M 
   
Reject_Master_Rsp( RF_ID) RF_ID =  
  Unique RF_ID of the RFm_M 
 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 18of 26               RFm: User interface (draft 2003 11 14) 

 
18

Note: 
 
In the descriptions below, “Ascii value” means the 3 ascii characters to enter for the primitive. “Parameters”: The ascii chars 
to enter are shown. 
 
 
Primitive: Reset_Req() 
 Ascii value: 100 
 Parameters: None 
 To RFm Master/Slave : Both 
 Expected confirm from 

RFm: 
None 

 

Comments: 

This is a sw-method to restart the RFm. EEPROM values are not 
changed (not “reset to default”). After restarting a RFm_M: It will be 
busy approx 5 sec sync’ing up all slaves. After restarting a RFm_S: It 
will sync to the master, typically busy for 2-3 seconds. 
 
It is recommended to restart the RFm after changing parameters like 
Type and Mode (restart when all changes are requested and 
confirmed). 
 
If, due to malfunction, RFm will not talk to the User: A hardware reset is 
necessary. 
 

 
 
Primitive: Set_Type_Req( Type) 
 Ascii value: 101 

Type 
01  Sets RFm as a RFm_Master 

 
Parameters: 

02 Sets RFm as a RFm_Slave 
 To RFm Master/Slave : Both 
 Expected confirm from 

RFm: 
None 

 Comments: Type stored in EEPROM, value used until changed by a new Set_Type 
request 

 
 
Primitive: Get_Type_Req() 
 Ascii value: 102 
 Parameters: None 
 To RFm Master/Slave: Both 
 Expected confirm from 

RFm: 
Type_Cnf( Type) 

 Comments:  
 
 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 19of 26               RFm: User interface (draft 2003 11 14) 

 
19

Primitive: Set_Mode_Req( Mode)  
 Ascii value: 111 

Mode 
01  Active 
02 Binding 
03 Promiscuous 
04 Test1 (RX on 1 freq) 
05 Test2 (TX carrier on 1 freq) 

 

06 Test3 (TX 1010… on 1 freq) 
 

Parameters: 

07 Test4 (TX test-packets on 1 freq) 
 To RFm Master/Slave: Both 
 Expected confirm from 

RFm: 
None 

 Comments: Mode stored in EEPROM, value used until changed by a new 
Set_Mode_Req request 

 
 
Primitive: Get_Mode_Req() 
 Ascii value: 112 
 Parameters: None 
 To RFm Master/Slave: Both 
 Expected confirm from 

RFm: 
Mode_Cnf( Mode) 

 Comments:  
 
 
Primitive: Set_ID_Req( ID_Source, ID) 
 Ascii value: 121 
 ID_Source 
 01 Set my Own ID 
 02 Set my Master’s ID 
 ID 
 

Parameters: 

 Value of the selected ID  
 To RFm Master/Slave: Both 
 Expected confirm from 

RFm: 
None 

 Comments: The ID must be entered as 8 ascii characters, refer to example in start 
of this section. 

 
 
 
Primitive: Get_ID_Req( ID_Source) 
 Ascii value: 122 
 ID_Source 
 01 Own_ID, 
 

Parameters: 

02 My Master’s ID 
 To RFm Master/Slave: Both 
 Expected confirm from 

RFm: 
ID_Cnf( ID) 

 Comments:  
 
 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 20of 26               RFm: User interface (draft 2003 11 14) 

 
20

Primitive: Set_Retries_Req( Retries)  
 Ascii value: 131 
 Retries 
 

Parameters: 
n Max number of retransmissions 

 To RFm Master/Slave: Both 
 Expected confirm from 

RFm: 
None 

 

Comments: 

2 special cases: 
0 => no ack/retransmissions are done 

255 => retransmissions until ack’ed or power-off 
(255 should be used with care) 

 
 
 
 
Primitive: Get_Retries_Req() 
 Ascii value: 132 
 Parameters: None 
 To RFm Master/Slave: Both 
 Expected confirm from 

RFm: 
Retries_Cnf( Retries) 

 Comments:  
 
 
Primitive: Type_Cnf( Type) 
 Ascii value: 202 
 Type 
 01 I am an RFm_Master 
 

Parameters: 

02 I am an RFm_Slave 
 From RFm Master/Slave: Both 
 Result of request from User: Get_Type_Req() 
 Comments:  
 
 
Primitive: Mode_Cnf( Mode) 
 Ascii value: 212 
 Mode 
 01 Active 
 02 Binding 
 03 Promiscuous 
 04 Test1 (RX on 1 freq) 
 05 Test2 (TX carrier on 1 freq) 
 06 Test3 (TX 1010… on 1 freq) 
 

Parameters: 

07 Test4 (TX test-packets on 1 freq) 
 From RFm Master/Slave: Both 
 Result of request from user:  Get_Mode_Req() 
 Comments:  
 
 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 21of 26               RFm: User interface (draft 2003 11 14) 

 
21

Primitive: ID_Cnf( ID) 
 Ascii value: 222 
 ID 
 

Parameters: 
 4-byte unique RF_ID 

 From RFm Master/Slave: Both 
 Result of request from user: Get_ID_Req( ID_Source) 
 Comments: The ID will be given as 8 ascii characters. 
 
 
Primitive: Retries_Cnf( Retries)  
 Ascii value: 232 
 Retries 
 

Parameters: 
n Max number of retransmissions 

 From RFm Master/Slave: Both 
 Result of request from user: Get_Retries_Req() 
 Comments:  
 
Primitive: Slave_Bind_Ind( RF_ID, User_Field_Length, User_Field) 
 Ascii value: 301 
 RF_ID 
 xxxx Unique RF_ID of the RFm_S sending the request 
 User_Field_Length 
 n Length (# bytes) from User_S in User_Field 
 User_Field 
 

Parameters: 

xxx…xx User data from User_S  
 To User Master/Slave: To User_M only 
 Expected response from 

user: 
Accept_Slave_Rsp( RF_ID, …) or  
Reject_Slave_Rsp( RF_ID) 

 Comments:  
 
 
Primitive: Bind_Ack_Ind( RF_ID, Short_Address, User_Field_Length, User_Field) 
 Ascii value: 311 
 RF_ID 
 xxxx Unique RF_ID of the RFm_M responding to the request 
 Short_Address 
 n Network-unique short-address assigned to the slave by 

the User_M 
 User_Field_Length 
 n Length (# bytes) from User_M in User_Field 
 User_Field 
 

Parameters: 

xxx…xx User data from User_M  
 To User Master/Slave: To User_S only 
 Expected response from 

user: 
Accept_Master_Rsp( RF_ID) or  
Reject_Master_Rsp( RF_ID) 

 Comments:  
 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 22of 26               RFm: User interface (draft 2003 11 14) 

 
22

Primitive: Accept_Slave_Rsp( RF_ID, Short_Address, User_Field_Length, User_Field) 
 Ascii value: 401 
 RF_ID 
 xxxx Unique RF_ID of the RFm_S sending the request 
 Short_Address 
 n Network-unique short-address assigned to the slave by 

the User_M 
 User_Field_Length 
 n Length (# bytes) from User_M in User_Field 
 User_Field 
 

Parameters: 

xxx…xx User data from User_M  
 To RFm Master/Slave: To RFm_M only 
 Result of indication from 

RFm: 
Slave_Bind_Ind( RF_ID, …) 

 Comments:  
 
 
Primitive: Reject_Slave_Rsp( RF_ID) 
 Ascii value: 402 
 RF_ID 
 

Parameters: 
xxxx Unique RF_ID of the RFm_S sending the request 

 To RFm Master/Slave: To RFm_M only 
 Result of indication from 

RFm: 
Slave_Bind_Ind( RF_ID, …) 

 Comments:  
 
 
Primitive: Accept_Master_Rsp( RF_ID) 
 Ascii value: 411 
 RF_ID 
 

Parameters: 
xxxx Unique RF_ID of the RFm_M responding to the request 

 To RFm Master/Slave: To RFm_S only 
 Result of indication from 

RFm: 
Bind_Ack_Ind( RF_ID, …) 

 Comments:  
 
 
Primitive: Reject_Master_Rsp( RF_ID) 
 Ascii value: 412 
 RF_ID 
 

Parameters: 
xxxx Unique RF_ID of the RFm_M responding to the request 

 To RFm Master/Slave: To RFm_S only 
 Result of indication from 

RFm: 
Bind_Ack_Ind( RF_ID, …) 

 Comments:  
 
 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 23of 26               RFm: User interface (draft 2003 11 14) 

 
23

Modes of Operation, Overview 
If not in “Programming mode”, the RFm_x will be “operational”. The modes of operation are described in detail in later 
sections. The modes of operation are: 
 
Active mode 
 For data transfer between master and slave users 
 
Binding mode 
 For master-slave association 
 
Special modes: “Sniffer”, “Testmodes” 
 For debugging and testing the RFm_x 

Active mode 
Active mode is also referred to as “traffic mode”. This is the mode of operation where data is transferred between a 
User_Slave and a User_Master. 
 
RFm_x must be programmed to active mode through the “Set_Mode_Req( Mode)” request, with Mode = “Active”). Refer to 
“Programming Mode”. 
 
In active mode, it is possible for User_M to transfer data to a specific User_S, or any User_S to transfer data to the User_M 
(assuming User_M and User_S are “associated” through a binding mode operation or by using the Set_ID_Req(…) request). 
 
CTS/RTS must be used as described in “Use of RTS/CTS and DCD”. The DCD pin is a help to the user and the user can 
choose to ignore it. 
 
Traffic from User_M to User_S: 

• User_M must enter the 4-byte address of the receiving RFm_S, followed by data, into the RFm_M. If User_M has 
more than 32 bytes of data, the data flow must be stopped when the RFm_M says “stop”. When RFm_M says 
“continue”, User_M can enter more bytes. Refer to “Use of CTS/RTS and DCD”. 

 
• The receiving RFm_S will give out data bytes (not address of source-RFm) to User_S when User_S is ready to get 

bytes. Refer to “Use of CTS/RTS and DCD”. 
 
Traffic from User_S to User_M: 

• User_S enters only the data to send to User_M into the RFm_S. If User_S has more than 32 bytes of data, the 
data flow must be stopped when the RFm_S says “stop”. When RFm_S says “continue”, User_S can enter more 
bytes. Refer to “Use of CTS/RTS and DCD”. 

 
• The receiving RFm_M will give out the 4-byte address of the source-RFm to User_M, followed by 1 - 32 bytes of 

data, when User_M is ready to get bytes. Refer to “Use of CTS/RTS and DCD”. 
 
ARQ: If the value of parameter “RFm_Retries” > 0, a transmitted frame must be ack’ed, or else it will be retransmitted. If 
RFm_Retries = 0, then no ack is expected by source-RFm, and no ack is sent by destination-RFm. If the source-RFm has 
RFm_Retries =n (n> 0), but the destination-RFm has RFm_Retries = 0: The source-RFm will transmit the packet n times. 
Refer to the section “Using the Number of retransmissions parameter”. 
 
CRC: Before transmitting a frame, a CRC calculation is made by the RFm_x and a 16-bit FCS is included in the frame. When 
a frame is received, the FCS is tested. If this CRC fails, the received frame is ignored. 
 
Frequency jumping: 25 channels in the 902-928 MHz band are used. 
 
Sync info: To obtain frequency sync between master and slave, the RFm_M adds sync-info to the frame before transmitting 
it. In addition, the RFm_M transmits “beacons” to maintain the sync. 
 
 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 24of 26               RFm: User interface (draft 2003 11 14) 

 
24

Binding Mode 
User_M keeps a list of the associated User_S devices. In addition, all User_S devices must know which User_M they are 
connected to. 
 
In “binding mode”, slaves are associated with a master. User_M and User_S have different tasks in this process. Refer to 
“User_M Action” and “User_S Action” below. 
 
In binding mode, only “binding-operations” are enabled. No data from previously bound slaves will get through. CTS/RTS 
must be used as described in “Use of RTS/CTS and DCD”. DCD pin is not used in binding mode. 
 

User_M Action 
• Enter programming mode (refer to section “Programming”) 
• Program the RFm_M mode of operation to “Binding mode” 
• Exit programming mode 
• RFm_M starts to search for binding requests from slaves when RFm_M exits programming mode 
• RFm_M will now be in binding mode until User_M changes the mode of operation 

 
If RFm_M gets a binding request from a RFm_S, the request is transferred to User_M. 
 
The frame given to User_M (this type of primitive is called an “Indication”): 

• An “Indication_Type” field indicating “this is a binding request from a slave” 
• Unique RF_ID of the RFm_S sending the request 
• Parameters from the User_S connected to the RFm_S 

 
 
 
 
 
 
 
 
 
Note: In every byte, there are 8 bit.  
 
User_M determines if this is an OK new slave. If it is OK, User_M assigns a short-address of 1 byte (a number 1…64) to the 
new slave. This will be the slave’s address in the network. At a later time, when User_M wants to transfer data to this 
User_S, User_M first enters the short-address into RFm_M, and then the data to transmit.  
 
If slave is accepted, User_M gives the following frame to RFm_M (this type of primitive is called an “Response”): 
 
 
 
 
If User_M does not accept the new slave, User_M will give a “reject” response to RFm_M. 
 
If slave is not accepted: 
 
 
 
 
 
 

Indication_Type 
=  

“Slave_Bind_Ind” 

Unique RF_ID 
of the new slave 

Length of User_field 
(data from User_S to 

User_M) 

User field, content is 
transparent to 

RFm_x 

1 byte 4 bytes 1 byte n byte(s) 

Response_Type 
= 

“Reject_Slave_Rsp” 

Unique RF_ID 
of the new slave 

1 byte 4 bytes 

Response_Type 
= 

“Accept_Slave_Rsp” 

Unique RF_ID 
of the new 

slave 

Short-address 
assigned to the 

new slave 

Length of User_field 
(data from User_M 

to User_S) 

User field, content 
is transparent to 

RFm_x 

1 byte 4 bytes 1 byte 1 byte n byte(s) 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 25of 26               RFm: User interface (draft 2003 11 14) 

 
25

User_Slave action 
• Enter programming mode (refer to section “Programming”) 
• Program the RFm_S mode of operation to “Binding mode” 
• (Optional) Program the RFm_S with the user-bytes to transfer to User_M as a part of the binding. Example: Serial 

number/device type or other user info. Refer to section “Programming” for a detailed description. 
• Exit programming mode 
• RFm_S starts to send binding-requests when RFm_S exits programming mode 
• RFm_S will now be in binding mode until User_S changes the mode of operation 
• If 2 or more RFm_S are in binding mode at the same time: Every RFm_S will compete for master’s attention. One 

of the RFm_S will win, and the binding process will be completed for this one before another slave gets master’s 
attention. 

 
If the bind request from RFm_S is acknowledged (by an User_M), the acknowledge info is transferred to User_S. 
 
The frame given to User_S (this type of primitive is called an “Indication”): 
 An “Indication_Type” field indicating “a master is responding to the binding request”  
 Unique RF_ID of the RFm_M responding to the request 
 Network-unique short-address assigned to the slave by the User_M 
 Parameters from the User_M 
 
 
 
 
 
 
 
 
 
 
The User_S determines if this is an OK master. If master is accepted, User_S gives the following frame to RFm_S (this type 
of primitive is called an “Response”): 
 
 
 
 
 
 
 
 
 
 
If not OK, User_S will give a “reject” response to the RFm_S. If master is not accepted: 
 
 
 
 
 
 
 
 
 
 
After receiving this response, the RFm_S restarts the association process. 
 

Indication_Type 
=  

“Bind_Ack_Ind” 

Unique RF_ID 
of the RFm_M 

Length of 
User_field (data 
from User_M to 

User_S) 

User field, content is 
transparent to 

RFm_x 

Unique short-
address to use 
in the network 

1 byte 4 bytes 1 byte n byte(s) 1 byte 

Response_Type 
=  

“Accept_Master_Rsp” 

Unique RF_ID of the 
RFm_M 

1 byte 4 bytes 

Response_Type 
=  

“Reject_Master_Rsp” 

Unique RF_ID of the 
RFm_M 

1 byte 4 bytes 



 
  DRAFT 

November 2003 
 

BLUECHIP COMMUNICATION AS, Oslo Norway              Page 26of 26               RFm: User interface (draft 2003 11 14) 

 
26

Other modes of operation 

“Sniffer mode” 
A module operating in sniffer mode must first be associated with the master. Then RFm_x must be programmed to “snifffer 
mode” through the “Set_Mode_Req( Mode)” request, with Mode = “Promiscuous ”). Refer to “Programming Mode”. 
 
The RFm give user all received RF messages. 
 

“Test modes” 
Several test-modes are included for BCC firmware development and hardware testing. 
 
Test1: 

The radio chip is programmed to RX mode. The RFm will use 1 frequency only. If a frame is received (correct 
CRC) and number of bytes in frame is <= 36, the bytes are given to User. The DCD pin is inverted every time an 
OK frame is received. 

 
Test2: 

The radio chip is programmed to TX mode and transmits a “carrier” signal on this frequency. 
This can be used for output power, frequency and power consumption measurements. 

 
Test3: 

The radio chip is programmed to TX mode and transmits a “1010…” signal on this frequency. 
This can be used for deviation measurements. 

 
Test 4:  

The radio chip is programmed to TX mode and transmits “test-packets” on this frequency. The 
test-packets are made of the alphabet (A…Z) followed by a running number (ascii ‘0’ to ascii ‘9’) 
and the carriage return character (0x0D). This can be combined with Test1 to test the 
communication link.  

 


