



Page: 1 / 60 Rev.: 01

# RADIO TEST REPORT FCC 47 CFR PART 15 SUBPART C

| Test Standard               | FCC Part 15.247                                                                                                                                           |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Product name                | QOCA Portable ECG Monitoring Device                                                                                                                       |
| Brand Name                  | Quanta                                                                                                                                                    |
| Model No.                   | ecg102D                                                                                                                                                   |
| Test Result                 | Pass                                                                                                                                                      |
| Statements of<br>Conformity | Determination of compliance is based on the results of<br>the compliance measurement, not taking into account<br>measurement instrumentation uncertainty. |

The test Result was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were given in ANSI C63.10: 2013 and compliance standards.

The test results of this report relate only to the tested sample (EUT) identified in this report.

The test Report of full or partial shall not copy. Without written approval of Compliance Certification Services Inc. (Wugu Laboratory)

Approved by:

Komil Tsori

Kevin Tsai Deputy Manager

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and, for electronic format documents, subject to Terms and Conditions for Electronic Document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of client's instruction, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced, except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.



Page: 2 / 60 Rev.: 01

## **Revision History**

| Rev. | Issue<br>Date    | Revisions                       | Effect Page | Revised By |
|------|------------------|---------------------------------|-------------|------------|
| 00   | October 7, 2020  | Initial Issue                   | ALL         | Mita Wu    |
| 01   | October 13, 2020 | See the following note Rev.(01) | P.12        | Mita Wu    |

Rev.(01)

1. Revised power supply.



Page: 3 / 60 Rev.: 01

## Table of contents

| 1.   | GENERAL INFORMATION                        | . 4 |
|------|--------------------------------------------|-----|
| 1.1  | EUT INFORMATION                            | . 4 |
| 1.2  | EUT CHANNEL INFORMATION                    | . 5 |
| 1.3  | ANTENNA INFORMATION                        | . 5 |
| 1.4  | MEASUREMENT UNCERTAINTY                    | . 6 |
| 1.5  | FACILITIES AND TEST LOCATION               | .7  |
| 1.6  | INSTRUMENT CALIBRATION                     | .7  |
| 1.7  | SUPPORT AND EUT ACCESSORIES EQUIPMENT      | . 9 |
| 1.8  | TEST METHODOLOGY AND APPLIED STANDARDS     | . 9 |
| 2.   | TEST SUMMARY                               | 10  |
| 3.   | DESCRIPTION OF TEST MODES                  | 11  |
| 3.1  | THE WORST MODE OF OPERATING CONDITION      | 11  |
| 3.2  | THE WORST MODE OF MEASUREMENT              | 12  |
| 3.3  | EUT DUTY CYCLE                             | 13  |
| 4.   | TEST RESULT                                | 14  |
| 4.1  | AC POWER LINE CONDUCTED EMISSION           | 14  |
| 4.2  | 6DB BANDWIDTH AND OCCUPIED BANDWIDTH (99%) | 15  |
| 4.3  | OUTPUT POWER MEASUREMENT                   | 20  |
| 4.4  | POWER SPECTRAL DENSITY                     | 22  |
| 4.5  | CONDUCTED BAND EDGE AND SPURIOUS EMISSION  | 26  |
| 4.6  | RADIATION BANDEDGE AND SPURIOUS EMISSION   | 33  |
| APPE | NDIX 1 - PHOTOGRAPHS OF EUT                |     |



## 1. GENERAL INFORMATION

## **1.1 EUT INFORMATION**

| Applicant                                                               | Quanta Computer Inc.<br>No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City, Taiwan |  |  |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------|--|--|
| Manufacturer                                                            | Quanta Computer Inc.<br>No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City, Taiwan |  |  |
| Equipment                                                               | QOCA Portable ECG Monitoring Device                                                 |  |  |
| Model No.                                                               | ecg102D                                                                             |  |  |
| Model Discrepancy                                                       | N/A                                                                                 |  |  |
| Trade Name Quanta                                                       |                                                                                     |  |  |
| Received Date                                                           | July 24, 2020                                                                       |  |  |
| Date of Test                                                            | August 4, 2020 ~ August 20, 2020                                                    |  |  |
| Power Supply         Power from Lithium Battery (CR2016)<br>Rating:3Vdc |                                                                                     |  |  |



Page: 5 / 60 Rev.: 01

## **1.2 EUT CHANNEL INFORMATION**

| Frequency Range    | 2402MHz-2480MHz                             |
|--------------------|---------------------------------------------|
| Modulation Type    | Bluetooth 5.0: GFSK for BEL 1 Mbps & 2 Mbps |
| Number of channels | 40 Channels                                 |

#### Remark:

Refer as ANSI C63.10: 2013 clause 5.6.1 Table 4 for test channels

| Number of frequencies to be tested                                                                 |   |                                              |  |  |
|----------------------------------------------------------------------------------------------------|---|----------------------------------------------|--|--|
| Frequency range inNumber ofLocation in frequencywhich device operatesfrequenciesrange of operation |   |                                              |  |  |
| 1 MHz or less                                                                                      | 1 | Middle                                       |  |  |
| 1 MHz to 10 MHz                                                                                    | 2 | 1 near top and 1 near bottom                 |  |  |
| More than 10 MHz                                                                                   | 3 | 1 near top, 1 near middle, and 1 near bottom |  |  |

## **1.3 ANTENNA INFORMATION**

| Antenna Type      | 🗌 PIFA 🖾 PCB 🗌 Dipole 🗌 Chip |  |  |  |
|-------------------|------------------------------|--|--|--|
| Antenna Gain      | Gain: 0.46dBi                |  |  |  |
| Antenna Connector | N/A                          |  |  |  |



Page: 6 / 60 Rev.: 01

### Report No.: T200724W03-RP

## **1.4 MEASUREMENT UNCERTAINTY**

| PARAMETER                             | UNCERTAINTY |
|---------------------------------------|-------------|
| AC Powerline Conducted Emission       | +/- 1.2575  |
| Emission bandwidth, 20dB bandwidth    | +/- 0.0014  |
| RF output power, conducted            | +/- 1.14    |
| Power density, conducted              | +/- 1.40    |
| 3M Semi Anechoic Chamber / 30M~200M   | +/- 4.12    |
| 3M Semi Anechoic Chamber / 200M~1000M | +/- 4.68    |
| 3M Semi Anechoic Chamber / 1G~8G      | +/- 5.18    |
| 3M Semi Anechoic Chamber / 8G~18G     | +/- 5.47    |
| 3M Semi Anechoic Chamber / 18G~26G    | +/- 3.81    |
| 3M Semi Anechoic Chamber / 26G~40G    | +/- 3.87    |

#### Remark:

1.This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

2. ISO/IEC 17025 requires that an estimate of the measurement uncertainties associated with the emissions test results be included in the report.



Page: 7 / 60 Rev.: 01

#### Report No.: T200724W03-RP

## **1.5 FACILITIES AND TEST LOCATION**

All measurement facilities used to collect the measurement data are located at No.11, Wugong 6th Rd., Wugu Dist., New Taipei City, Taiwan. (R.O.C.)

| Test site          | Test Engineer | Remark                                                                      |
|--------------------|---------------|-----------------------------------------------------------------------------|
| AC Conduction Room | N/A           | Not applicable, because EUT<br>doesn't connect to AC Main<br>Source direct. |
| Radiation          | Jerry Chang   | -                                                                           |
| RF Conducted       | Jane Wang     | -                                                                           |

**Remark:** The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

### **1.6 INSTRUMENT CALIBRATION**

| RF Conducted Test Site |                                                   |                                      |            |            |            |  |  |
|------------------------|---------------------------------------------------|--------------------------------------|------------|------------|------------|--|--|
| Equipment              | Manufacturer Model Serial Number Cal Date Cal Due |                                      |            |            |            |  |  |
| Coaxial Cable          | Woken                                             | WC12                                 | CC001      | 06/29/2020 | 06/28/2021 |  |  |
| Signal Analyzer        | R&S                                               | &S FSV 40 101073 09/25/2019 09/24/20 |            |            |            |  |  |
| Power Meter            | Anritsu                                           | ML2487A                              | 6K00003260 | 05/21/2020 | 05/20/2021 |  |  |
| Power Seneor           | Anritsu MA2490A 032910 05/21/2020 05/20/2021      |                                      |            |            |            |  |  |
| Software               | N/A                                               |                                      |            |            |            |  |  |



Page: 8 / 60 Rev.: 01

| 3M 966 Chamber Test Site               |                                             |                         |               |            |            |
|----------------------------------------|---------------------------------------------|-------------------------|---------------|------------|------------|
| Equipment                              | Manufacturer Model Serial Number Cal Date C |                         |               |            |            |
| Band Reject<br>Filters                 | MICRO<br>TRONICS                            | BRM 50702               | 120           | 02/25/2020 | 02/24/2021 |
| Bilog Antenna                          | Sunol Sciences                              | JB3                     | A030105       | 07/24/2020 | 07/23/2021 |
| Coaxial Cable                          | HUBER<br>SUHNER                             | SUCOFLEX<br>104PEA      | 20995         | 02/25/2020 | 02/24/2021 |
| Coaxial Cable                          | EMCI                                        | EMC105                  | 190914+25111  | 09/20/2019 | 09/19/2020 |
| Digital<br>Thermo-Hygro<br>Meter       | WISEWIND                                    | 1206                    | D07           | 01/15/2020 | 01/14/2021 |
| double Ridged<br>Guide Horn<br>Antenna | ETC                                         | MCTD 1209               | DRH13M02003   | 10/04/2019 | 10/03/2020 |
| Loop Ant                               | COM-POWER                                   | AL-130                  | AL-130 121051 |            | 03/26/2021 |
| Pre-Amplifier                          | EMEC                                        | EM330                   | 060609        | 02/25/2020 | 02/24/2021 |
| Pre-Amplifier                          | HP                                          | 8449B                   | 3008A00965    | 02/25/2020 | 02/24/2021 |
| PSA Series<br>Spectrum<br>Analyzer     | Agilent                                     | E4446A                  | MY46180323    | 07/24/2020 | 07/23/2021 |
| Antenna Tower                          | CCS                                         | CC-A-1F                 | N/A           | N.C.R      | N.C.R      |
| Controller                             | CCS                                         | CC-C-1F                 | N/A           | N.C.R      | N.C.R      |
| Turn Table                             | CCS                                         | CC-T-1F N/A N.C.R N.C.I |               | N.C.R      |            |
| Software                               | e3 6.11-20180413                            |                         |               |            |            |

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. N.C.R. = No Calibration Required.



.

Report No.: T200724W03-RP

Page: 9 / 60 Rev.: 01

## **1.7 SUPPORT AND EUT ACCESSORIES EQUIPMENT**

| EUT Accessories Equipment |                                             |         |               |     |          |  |  |
|---------------------------|---------------------------------------------|---------|---------------|-----|----------|--|--|
| No.                       | No. Equipment Brand Model Series No. FCC ID |         |               |     |          |  |  |
| 1                         | NB(J)                                       | TOSHIBA | PT345T-00L002 | N/A | PD97260H |  |  |

| Support Equipment |                                            |         |        |     |     |  |
|-------------------|--------------------------------------------|---------|--------|-----|-----|--|
| No.               | b. Equipment Brand Model Series No. FCC ID |         |        |     |     |  |
| 1                 | DC Power Source                            | Agilent | E3640A | N/A | N/A |  |

## **1.8 TEST METHODOLOGY AND APPLIED STANDARDS**

The test methodology, setups and results comply with all requirements in accordance with ANSI C63.10:2013, FCC Part 2, FCC Part 15.247, KDB 558074 D01.



Page: 10 / 60 Rev.: 01

## 2. TEST SUMMARY

| FCC Standard<br>Section | Report<br>Section | Test Item                   | Result |
|-------------------------|-------------------|-----------------------------|--------|
| 15.203                  | 1.3               | Antenna Requirement         | Pass   |
| 15.207(a)               | 4.1               | AC Conducted Emission       | N/A    |
| 15.247(a)(2)            | 4.2               | 6 dB Bandwidth              | Pass   |
| -                       | 4.2               | Occupied Bandwidth (99%)    | Pass   |
| 15.247(b)(3)            | 4.3               | Output Power Measurement    | Pass   |
| 15.247(e)               | 4.4               | Power Spectral Density      | Pass   |
| 15.247(d)               | 4.5               | Conducted Spurious Emission | Pass   |
| 15.247(d)               | 4.5               | Conducted Emission          | Pass   |
| 15.247(d)               | 4.6               | Radiation Band Edge         | Pass   |
| 15.247(d)               | 4.6               | Radiation Spurious Emission | Pass   |



Г

Page: 11 / 60 Rev.: 01

Report No.: T200724W03-RP

## 3. DESCRIPTION OF TEST MODES

### **3.1 THE WORST MODE OF OPERATING CONDITION**

| Operation mode           | BLE Mode (1Mbps)<br>BLE Mode (2Mbps)                                                    |
|--------------------------|-----------------------------------------------------------------------------------------|
| Test Channel Frequencies | 1.Lowest Channel : 2402MHz<br>2.Middle Channel : 2440MHz<br>3.Highest Channel : 2480MHz |

Remark:

1. EUT pre-scanned data rate of output power for each mode, the worst data rate were recorded in this report.



Page: 12 / 60 Rev.: 01

#### Report No.: T200724W03-RP

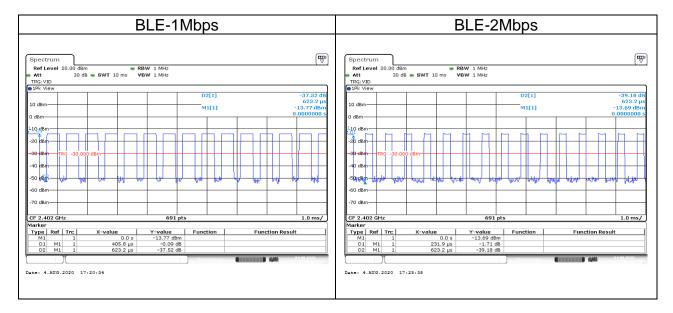
## **3.2 THE WORST MODE OF MEASUREMENT**

| Radiated Emission Measurement Above 1G |                                                                                                                                                                                                                      |  |  |  |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Test Condition                         | Radiated Emission Above 1G                                                                                                                                                                                           |  |  |  |
| Power supply Mode                      | Mode 1: EUT power by Battery                                                                                                                                                                                         |  |  |  |
| Worst Mode                             | 🛛 Mode 1 🗌 Mode 2 🗌 Mode 3 🗌 Mode 4                                                                                                                                                                                  |  |  |  |
| Worst Position                         | <ul> <li>Placed in fixed position.</li> <li>Placed in fixed position at X-Plane (E2-Plane)</li> <li>Placed in fixed position at Y-Plane (E1-Plane)</li> <li>Placed in fixed position at Z-Plane (H-Plane)</li> </ul> |  |  |  |

| Radiated Emission Measurement Below 1G   |                                                |  |  |  |
|------------------------------------------|------------------------------------------------|--|--|--|
| Test Condition                           | Test Condition Radiated Emission Below 1G      |  |  |  |
| Power supply Mode                        | Power supply Mode Mode 1: EUT power by Battery |  |  |  |
| Worst Mode   Mode 1 Mode 2 Mode 3 Mode 4 |                                                |  |  |  |

Remark:

1. The worst mode was record in this test report.


2. EUT pre-scanned in three axis ,X,Y, Z for radiated measurement. The worst case(X-Plane) were recorded in this report



Page: 13 / 60 Rev.: 01

## **3.3 EUT DUTY CYCLE**

| Duty Cycle    |                |                  |           |                   |  |
|---------------|----------------|------------------|-----------|-------------------|--|
| Configuration | Duty Cycle (%) | Duty Factor (dB) | 1/T (kHz) | VBW Setting (kHz) |  |
| BLE-1Mbps     | 65.12 %        | 1.86             | 2.46      | 3.0               |  |
| BLE-2Mbps     | 37.21 %        | 4.29             | 1.60      | 2.0               |  |





Page: 14 / 60 Rev.: 01

Report No.: T200724W03-RP

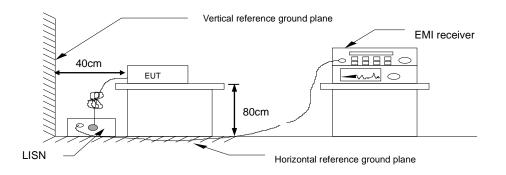
## 4. TEST RESULT

## **4.1 AC POWER LINE CONDUCTED EMISSION**

### 4.1.1 Test Limit

According to §15.207(a),

| Frequency Range | Limits(dBµV) |           |  |
|-----------------|--------------|-----------|--|
| (MHz)           | Quasi-peak   | Average   |  |
| 0.15 to 0.50    | 66 to 56*    | 56 to 46* |  |
| 0.50 to 5       | 56           | 46        |  |
| 5 to 30         | 60           | 50        |  |


\* Decreases with the logarithm of the frequency.

### 4.1.2 Test Procedure

Test method Refer as ANSI C63.10: 2013 clause 6.2,

- 1. The EUT was placed above horizontal ground plane and 0.4m above vertical ground plane
- 2. EUT connected to the line impedance stabilization network (LISN)
- 3. Receiver set RBW of 9kHz and Detector Peak, and note as quasi-peak and average.
- Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. Recorded Line for Neutral and Line.

### 4.1.3 Test Setup



### 4.1.4 Test Result

Not applicable, because EUT doesn't connect to AC Main Source direct.



Page: 15 / 60 Rev.: 01

## 4.26dB BANDWIDTH AND OCCUPIED BANDWIDTH (99%)

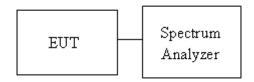
### 4.2.1 Test Limit

According to §15.247(a)(2),

#### 6 dB Bandwidth :

Limit

Shall be at least 500kHz


**Occupied Bandwidth(99%)** : For reporting purposes only.

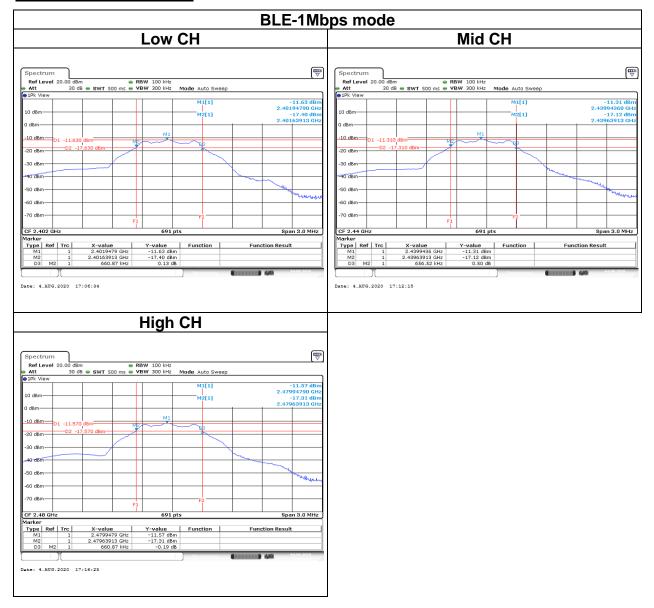
### 4.2.2 Test Procedure

Test method Refer as KDB 558074 D01 and ANSI C63.10: 2013 clause 6.9.2,

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. SA set RBW =100KHz, VBW = 300KHz and Detector = Peak, to measurement 6dB Bandwidth.
- 4. SA set RBW = 1% ~ 5% OBW, VBW = three times the RBW and Detector = Peak, to measurement 99% Bandwidth.
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

### 4.2.3 Test Setup




### 4.2.4 Test Result

| Test mode: BLE-1Mbps mode / 2402-2480 MHz |                    |                    |                 |                    |  |
|-------------------------------------------|--------------------|--------------------|-----------------|--------------------|--|
| Channel                                   | Frequency<br>(MHz) | OBW (99%)<br>(MHz) | 6dB BW<br>(MHz) | 6dB limit<br>(kHz) |  |
| Low                                       | 2402               | 1.0246             | 0.66087         |                    |  |
| Mid                                       | 2440               | 1.0159             | 0.65652         | >500               |  |
| High                                      | 2480               | 1.0115             | 0.66087         |                    |  |
|                                           | Test mode:         | BLE-2Mbps mode /   | 2402-2480 MHz   |                    |  |
| Low                                       | 2402               | 2.0101             | 1.11739         |                    |  |
| Mid                                       | 2440               | 2.0014             | 1.11739         | >500               |  |
| High                                      | 2480               | 2.0014             | 1.11304         |                    |  |

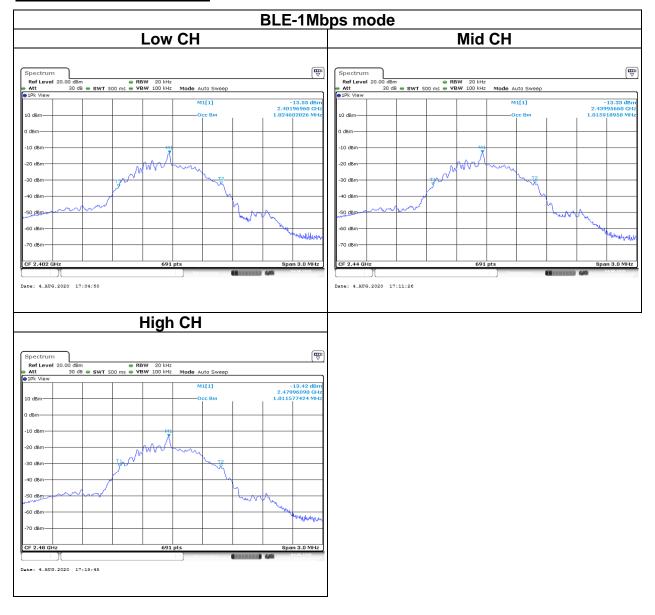



Page: 16 / 60 Rev.: 01

## Test Data 6dB BANDWIDTH

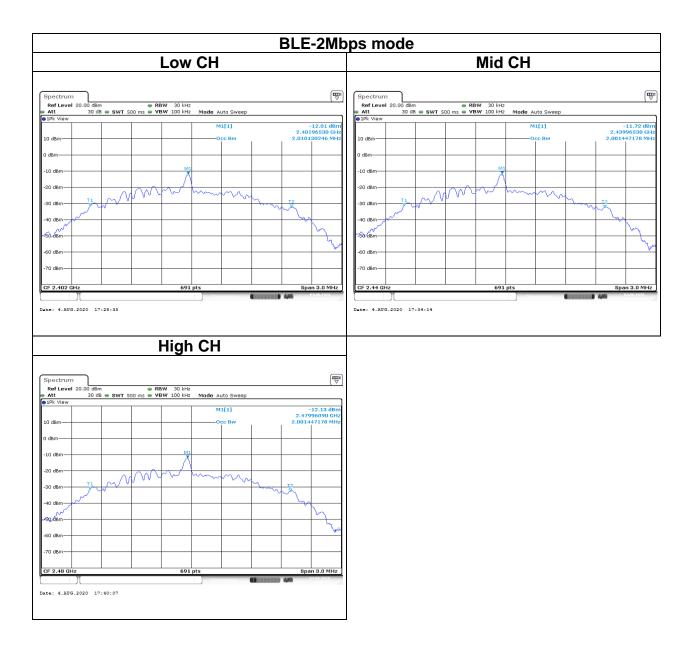





Page: 17 / 60 Rev.: 01






Page: 18 / 60 Rev.: 01

## <u>Test Data</u> BANDWIDTH (99%)





Page: 19 / 60 Rev.: 01





Page: 20 / 60 Rev.: 01

Report No.: T200724W03-RP

## 4.3 OUTPUT POWER MEASUREMENT

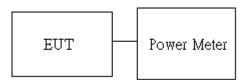
### 4.3.1 Test Limit

According to §15.247(b)(3).

#### Peak output power :

For systems using digital modulation in the 2400-2483.5 MHz: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

| Antenna not exceed 6 dBi : 30dBm   |
|------------------------------------|
| Antenna with DG greater than 6 dBi |
| [Limit = 30 - (DG - 6)]            |
| Point-to-point operation           |


Average output power : For reporting purposes only.

#### **4.3.2 Test Procedure**

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

### 4.3.3 Test Setup





### 4.3.4 Test Result

#### Peak output power :

| Config.                 | СН | Freq.<br>(MHz) | Power<br>Setting | PK<br>Power<br>(dBm) | PK<br>Power<br>(W) |
|-------------------------|----|----------------|------------------|----------------------|--------------------|
|                         | 0  | 2402           | Default          | 5.1                  | 0.0032             |
| BLE<br>Data rate: 1Mbps | 19 | 2440           | Default          | 5.12                 | 0.0033             |
|                         | 39 | 2480           | Default          | 5.09                 | 0.0032             |
|                         | 0  | 2402           | Default          | 4.99                 | 0.0032             |
| BLE<br>Data rate: 2Mbps | 19 | 2440           | Default          | 5.31                 | 0.0034             |
|                         | 39 | 2480           | Default          | 5.12                 | 0.0033             |

#### Average output power :

| BLE Mode   |    |                |                   |  |  |
|------------|----|----------------|-------------------|--|--|
| Config.    | СН | Freq.<br>(MHz) | AV Power<br>(dBm) |  |  |
| BLE        | 0  | 2402           | 4.54              |  |  |
| Data rate: | 19 | 2440           | 4.65              |  |  |
| 1Mbps      | 39 | 2480           | 4.64              |  |  |
| BLE        | 0  | 2402           | 4.47              |  |  |
| Data rate: | 19 | 2440           | 4.66              |  |  |
| 2Mbps      | 39 | 2480           | 4.60              |  |  |

Page: 21 / 60 Rev.: 01



Page: 22 / 60 Rev.: 01

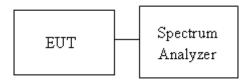
## 4.4 POWER SPECTRAL DENSITY

### 4.4.1 Test Limit

According to §15.247(e),

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit


Antenna not exceed 6 dBi : 8dBm Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] Point-to-point operation :

### 4.4.2 Test Procedure

Test method Refer as KDB 558074 D01.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- 5. Mark the maximum level.
- 6. Measure and record the result of power spectral density. in the test report.

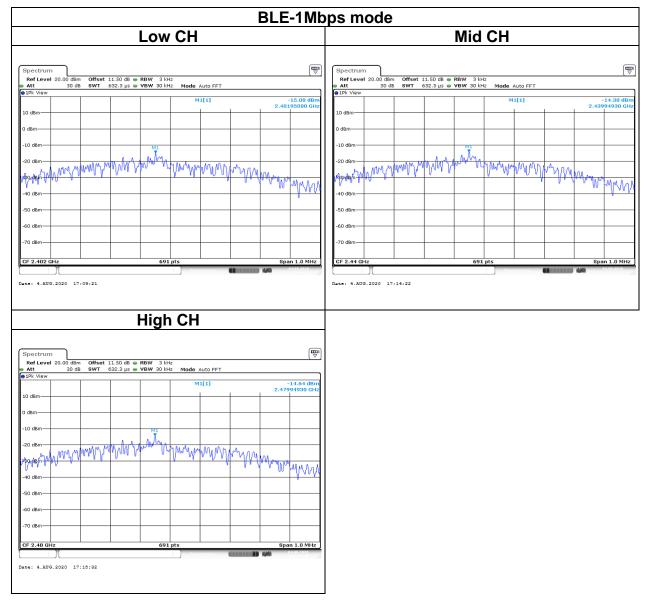
### 4.4.3 Test Setup





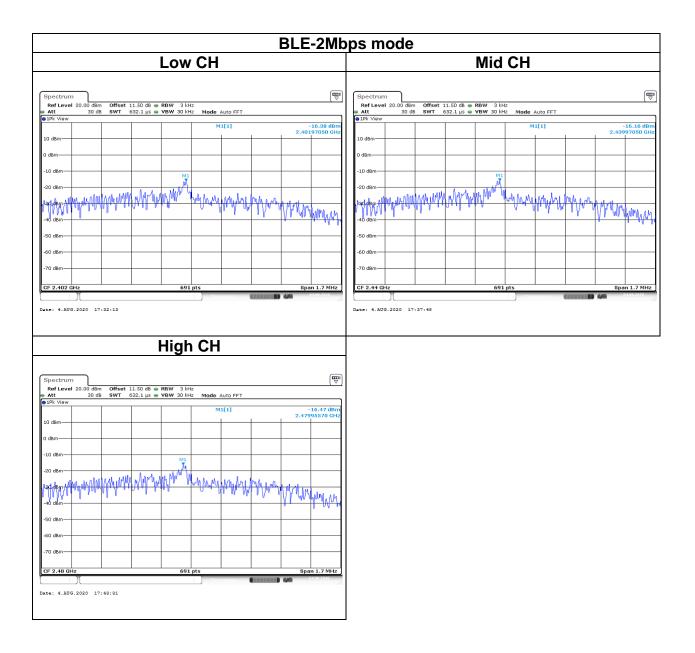
Page: 23 / 60 Rev.: 01

### 4.4.4 Test Result


| Test mode: BLE-1Mbps mode / 2402-2480 MHz |                       |        |   |  |  |
|-------------------------------------------|-----------------------|--------|---|--|--|
| Channel                                   | FCC<br>limit<br>(dBm) |        |   |  |  |
| Low                                       | 2402                  | -15.00 |   |  |  |
| Mid                                       | 2440                  | -14.30 | 8 |  |  |
| High                                      | 2480                  | -14.64 |   |  |  |

| Test mode: BLE-2Mbps mode / 2402-2480 MHz |                    |              |                       |  |
|-------------------------------------------|--------------------|--------------|-----------------------|--|
| Channel                                   | Frequency<br>(MHz) | PSD<br>(dBm) | FCC<br>limit<br>(dBm) |  |
| Low                                       | 2402               | -16.38       |                       |  |
| Mid                                       | 2440               | -16.16       | 8                     |  |
| High                                      | 2480               | -16.47       |                       |  |




Page: 24 / 60 Rev.: 01

## Test Data





Page: 25 / 60 Rev.: 01





Page: 26 / 60 Rev.: 01

## 4.5 CONDUCTED BAND EDGE AND SPURIOUS EMISSION

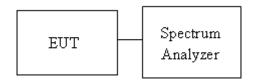
### 4.5.1 Test Limit

According to §15.247(d),

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

### 4.5.2 Test Procedure

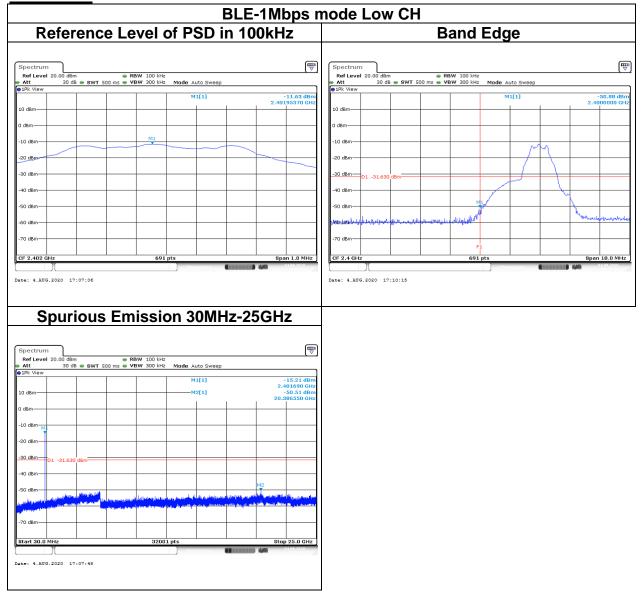

Test method Refer as KDB 558074 D01.

1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.

2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.

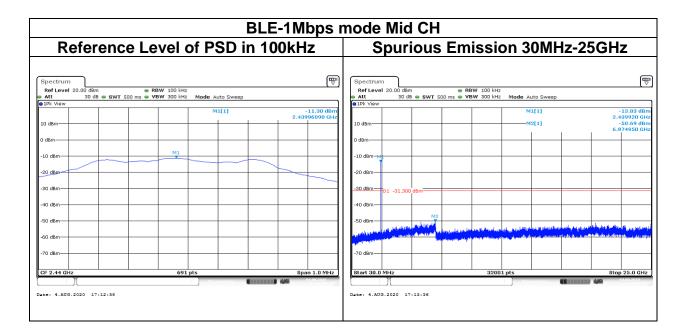
3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

### 4.5.3 Test Setup



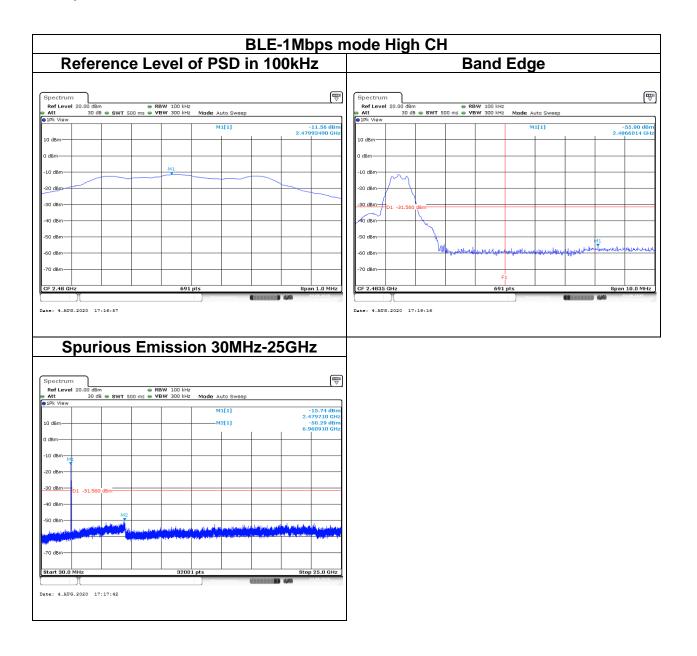



Page: 27 / 60 Rev.: 01


### 4.5.4 Test Result

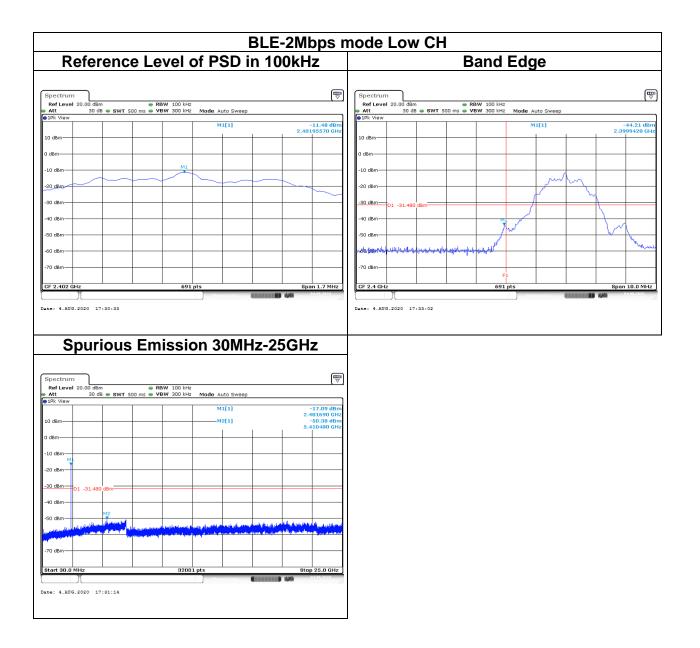
#### Test Data





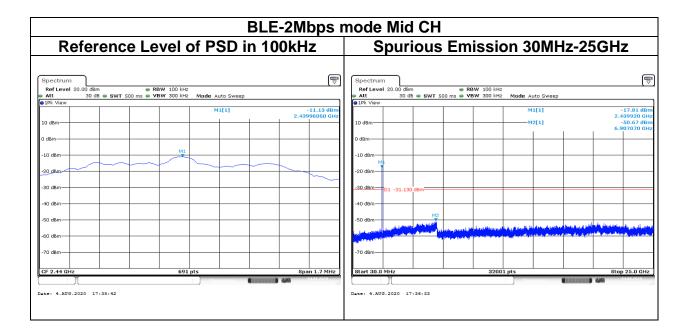

Page: 28 / 60 Rev.: 01





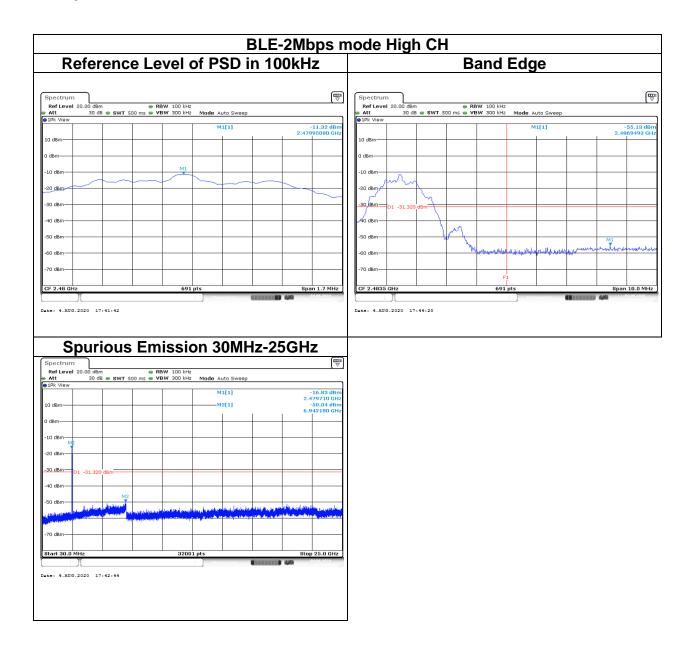

Page: 29 / 60 Rev.: 01






Page: 30 / 60 Rev.: 01






Page: 31 / 60 Rev.: 01





Page: 32 / 60 Rev.: 01





Page: 33 / 60 Rev.: 01

## 4.6 RADIATION BANDEDGE AND SPURIOUS EMISSION

### 4.6.1 Test Limit

FCC according to §15.247(d), §15.209 and §15.205,

In any 100 kHz bandwidth outside the authorized frequency band, all harmonic and spurious must be least 20 dB below the highest emission level with the authorized frequency band. Radiation emission which fall in the restricted bands must also follow the FCC section 15.209 as below limit in table.

#### Below 30 MHz

| Frequency     | Field Strength<br>(microvolts/m) | Magnetic<br>H-Field<br>(microamperes/m) | Measurement<br>Distance<br>(metres) |
|---------------|----------------------------------|-----------------------------------------|-------------------------------------|
| 9-490 kHz     | 2,400/F (F in kHz)               | 2,400/F (F in kHz)                      | 300                                 |
| 490-1,705 kHz | 24,000/F (F in kHz)              | 24,000/F (F in kHz)                     | 30                                  |
| 1.705-30 MHz  | 30                               | N/A                                     | 30                                  |

#### Above 30 MHz

| Frequency | Field Strength<br>microvolts/m at 3 metres (watts, e.i.r.p.) |              |  |
|-----------|--------------------------------------------------------------|--------------|--|
| (MHz)     | Transmitters                                                 | Receivers    |  |
| 30-88     | 100 (3 nW)                                                   | 100 (3 nW)   |  |
| 88-216    | 150 (6.8 nW)                                                 | 150 (6.8 nW) |  |
| 216-960   | 200 (12 nW)                                                  | 200 (12 nW)  |  |
| Above 960 | 500 (75 nW)                                                  | 500 (75 nW)  |  |

Remark:

Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.



Page: 34 / 60 Rev.: 01

### 4.6.2 Test Procedure

Test method Refer as KDB 558074 D01.

1. The EUT is placed on a turntable, Above 1 GHz is 1.5m and below 1 GHz is 0.8m above ground plane. The EUT Configured un accordance with ANSI C63.10: 2013, and the EUT set in a continuous mode.

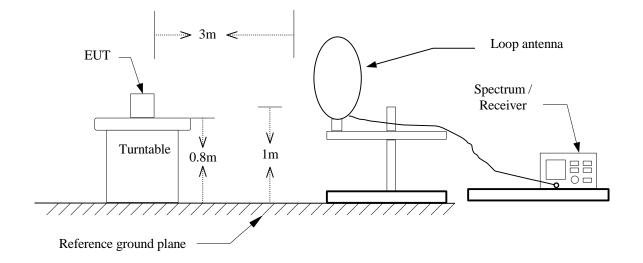
2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level. And EUT is set 3m away from the receiving antenna, which is scanned from 1m to 4m above the ground plane to find out the highest emissions. Measurement are made polarized in both the vertical and the horizontal positions with antenna.

3. Span shall wide enough to full capture the emission measured. The SA from 9KHz to 26.5GHz set to the low, Mid and High channels with the EUT transmit.

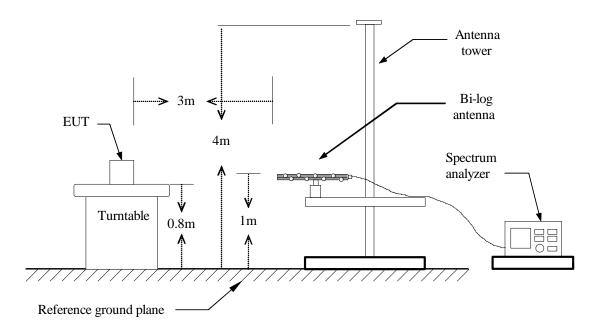
Remark:

 Although these tests were performed other than open area test site, adequate comparison measurements were confirmed against 30 m open are test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788.
 No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

- 4. The SA setting following :
  - (1) Below 1G : RBW = 100kHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
  - (2) Above 1G :
    - (2.1) For Peak measurement : RBW = 1MHz, VBW ≥ 3 RBW, Sweep = Auto, Detector = Peak, Trace = Max hold.
    - (2.2) For Average measurement : RBW = 1MHz, VBW


If Duty Cycle  $\geq$  98%, VBW=10Hz.

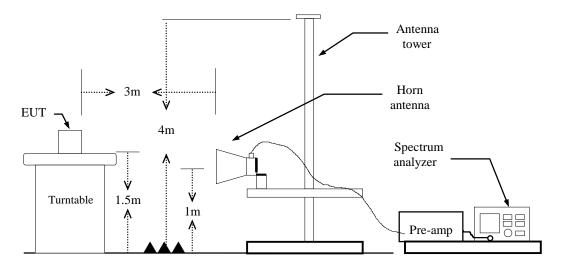
'If Duty Cycle < 98%, VBW=1/T.




Page: 35 / 60 Rev.: 01

### 4.6.3 Test Setup <u>9kHz ~ 30MHz</u>




#### <u>30MHz ~ 1GHz</u>





Page: 36 / 60 Rev.: 01

#### Above 1 GHz





# 4.6.4 Test Result

# Band Edge Test Data

| Test Mo        | de: Bl           | LE-1Mbps Low C        | CH Te        | emp/Hum                                                                                          | 23.9(°C       | )/ 50%RH  |
|----------------|------------------|-----------------------|--------------|--------------------------------------------------------------------------------------------------|---------------|-----------|
| Test Ite       | m                | Band Edge             | Т            | est Date                                                                                         | Augus         | t 4, 2020 |
| Polariz        | e                | Vertical              | Tes          | t Engineer                                                                                       | Jerry         | Chang     |
| Detecto        | or               | Peak / Average        |              |                                                                                                  |               |           |
|                |                  |                       |              |                                                                                                  |               |           |
| 130 Level (dBu | V/m)             |                       |              | ;                                                                                                |               |           |
| 120            |                  |                       |              | i<br>i<br>T<br>T<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i<br>i |               |           |
| 400            |                  |                       |              |                                                                                                  |               |           |
| 100            |                  |                       |              |                                                                                                  |               |           |
| 80             |                  |                       |              |                                                                                                  |               |           |
|                |                  |                       |              |                                                                                                  |               |           |
| 60             |                  |                       | I<br>I<br>I  |                                                                                                  | 1             |           |
| 40             |                  |                       | J            |                                                                                                  | 2             |           |
| 20             |                  |                       |              |                                                                                                  |               |           |
| 20             |                  |                       |              |                                                                                                  |               |           |
| 0<br>2310      | 2330.            | 2350.                 | 23           | 370.                                                                                             | 2390.         | 2410      |
|                |                  | Fre                   | quency (MHz) |                                                                                                  |               |           |
|                |                  |                       |              |                                                                                                  |               |           |
| Freq.          | Detector         | Spectrum              | Factor       | Actual                                                                                           | Limit         | Margin    |
| MHz            | Mode<br>PK/QP/AV | Reading Level<br>dBµV | dB           | FS<br>dBµV/m                                                                                     | @3m<br>dBµV/m | dB        |
| 2390.00        | Peak             | 51.71                 | -3.17        | 48.54                                                                                            | 74.00         | -25.46    |
|                |                  | 37.74                 | -3.17        | 34.57                                                                                            | 54.00         | -19.43    |



Page: 38 / 60 Rev.: 01

| 1              | Band Edge                            | -                                                    | Test Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Διιαιια                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |  |
|----------------|--------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                | Harizontal                           |                                                      | Duto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Augus                                                                                                                                                                                                                                                                                                         | August 4, 2020                                                                                                                                                                                                                                                                  |  |
|                | Horizontal                           |                                                      | st Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Jerry                                                                                                                                                                                                                                                                                                         | <sup>,</sup> Chang                                                                                                                                                                                                                                                              |  |
|                | Peak / Average                       |                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |  |
|                |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |  |
| n)             | i i                                  | i                                                    | i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                               | ]                                                                                                                                                                                                                                                                               |  |
|                |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |  |
|                |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |  |
|                |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <br> <br> <br> <br> <br>                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                 |  |
| <br> <br> <br> |                                      |                                                      | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                 |  |
|                |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |  |
|                |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |  |
|                |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |  |
| ·              |                                      | <sup>L</sup>                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                 |  |
|                |                                      |                                                      | ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |  |
|                |                                      |                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |  |
| 2330.          | 2350.                                | 23                                                   | 370.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2390.                                                                                                                                                                                                                                                                                                         | 2410                                                                                                                                                                                                                                                                            |  |
|                | Fre                                  | quency (MHz)                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                 |  |
| Detector       | Cractinum                            | Faster                                               | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | l : :4                                                                                                                                                                                                                                                                                                        | Mercin                                                                                                                                                                                                                                                                          |  |
|                | -                                    | Factor                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                               | Margin                                                                                                                                                                                                                                                                          |  |
|                | -                                    | dB                                                   | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                               | dB                                                                                                                                                                                                                                                                              |  |
| Peak           | 51.53                                | -3.17                                                | 48.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 74.00                                                                                                                                                                                                                                                                                                         | -25.64                                                                                                                                                                                                                                                                          |  |
| Average        | 37.95                                | -3.17                                                | 34.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 54.00                                                                                                                                                                                                                                                                                                         | -19.22                                                                                                                                                                                                                                                                          |  |
|                | Detector<br>Mode<br>PK/QP/AV<br>Peak | 2330. 2350.<br>Fre Detector Mode PK/QP/AV Peak 51.53 | 2330. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. 2350. | 2330.       2350.       2370.         Z330.       Z350.       Frequency (MHz)         Detector       Spectrum       Factor       Actual         Mode       Reading Level       Hamiltonia       Hamiltonia         PK/QP/AV       dBµV       dB       dBµV/m         Peak       51.53       -3.17       48.36 | 2330.         2350.         2370.         2390.           Petector         Spectrum         Factor         Actual         Limit           PK/QP/AV         dBµV         dB         dBµV/m         dBµV/m           Peak         51.53         -3.17         48.36         74.00 |  |



Page: 39 / 60 Rev.: 01

| Test Mo                | de: B    | LE-1Mbps High  | CH Te                | emp/Hum                               | 23.9(°C       | )/ 50%RH     |  |
|------------------------|----------|----------------|----------------------|---------------------------------------|---------------|--------------|--|
| Test Ite               | em       | Band Edge      | Т                    | Test Date Augus                       |               | gust 4, 2020 |  |
| Polariz                | ze       | Vertical       | Tes                  | st Engineer                           | ngineer Jerry |              |  |
| Detect                 | or       | Peak / Average | 9                    |                                       |               |              |  |
| 120 Level (dBu         | V/m)     |                |                      |                                       |               |              |  |
| 110                    |          |                |                      |                                       |               |              |  |
|                        |          |                |                      |                                       |               |              |  |
| 90                     |          |                | 1<br>1<br>1<br>1     |                                       |               |              |  |
|                        |          |                |                      |                                       |               |              |  |
| 70                     |          |                |                      |                                       |               |              |  |
| 50                     |          | 1              |                      | · · · · · · · · · · · · · · · · · · · |               |              |  |
|                        |          | 2              |                      |                                       |               |              |  |
| 30                     |          |                |                      |                                       |               |              |  |
|                        |          |                |                      |                                       |               |              |  |
| 10                     |          |                |                      | +                                     |               |              |  |
| 0 <sup>L</sup><br>2475 | 2480.    | 2485.<br>Fi    | 24<br>requency (MHz) | 190.                                  | 2495.         | 2500         |  |
|                        |          |                | oquonoj (2)          |                                       |               |              |  |
| Freq.                  | Detector | Spectrum       | Factor               | Actual                                | Limit         | Margin       |  |
|                        | Mode     | Reading Level  |                      | FS                                    | @3m           |              |  |
| MHz                    | PK/QP/AV | dBµV           | dB                   | dBµV/m                                | dBµV/m        | dB           |  |
| 2483.50                | Peak     | 49.45          | -2.71                | 46.74                                 | 74.00         | -27.26       |  |
|                        | Average  | 36.99          | -2.71                | 34.28                                 | 54.00         | -19.72       |  |



Page: 40 / 60 Rev.: 01

| Test Mo              | de: B                                                              | LE-1Mbps High                     | CH Te               | emp/Hum                | 23.9(°C        | )/ 50%RH     |
|----------------------|--------------------------------------------------------------------|-----------------------------------|---------------------|------------------------|----------------|--------------|
| Test Ite             | em                                                                 | Band Edge                         | 1                   | est Date               | August 4, 2020 |              |
| Polariz              | ze                                                                 | Horizontal                        | Tes                 | st Engineer Jerry      |                | Chang        |
| Detect               | or                                                                 | Peak / Average                    | )                   |                        |                |              |
| 120 Level (dBu       | V/m)                                                               |                                   |                     |                        |                |              |
| 110                  | 1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1<br>1 1 |                                   |                     | 1 1<br>1 1<br>1 4<br>4 |                |              |
| 90                   |                                                                    |                                   |                     |                        |                |              |
| 70                   |                                                                    |                                   |                     |                        |                |              |
| 50                   |                                                                    | 2                                 |                     |                        |                |              |
| 30                   |                                                                    |                                   |                     |                        |                |              |
| 10                   |                                                                    |                                   |                     |                        |                |              |
| 0 <mark></mark> 2475 | 2480.                                                              | 2485.<br>Fr                       | 24<br>equency (MHz) | 190.                   | 2495.          | 2500         |
| From                 | Detector                                                           | Chaotzum                          | Factor              | Actual                 | Limit          | Morgin       |
| Freq.<br>MHz         | Detector<br>Mode<br>PK/QP/AV                                       | Spectrum<br>Reading Level<br>dBµV | Factor<br>dB        | FS<br>dBµV/m           | @3m<br>dBµV/m  | Margin<br>dB |
| 2483.50              | Peak                                                               | 51.83                             | -2.71               | 49.12                  | 74.00          | -24.88       |
| 2403.00              |                                                                    | 40.41                             | -2.71               | 37.70                  | 54.00          | -16.30       |



| Test Mo        | de: B    | LE-2Mbps Low C                        | сн те         | emp/Hum     | 23.9(°C        | )/ 50%RH |
|----------------|----------|---------------------------------------|---------------|-------------|----------------|----------|
| Test Ite       | em       | Band Edge                             | Т             | est Date    | August 4, 2020 |          |
| Polariz        | ze       | Vertical                              | Tes           | st Engineer | Jerry          | Chang    |
| Detect         | or       | Peak / Average                        |               |             |                |          |
|                |          |                                       |               |             |                |          |
| 120 Level (dBu | ıV/m)    |                                       |               |             |                |          |
| 110            | ·        | · · · · · · · · · · · · · · · · · · · |               | <br>        |                |          |
|                |          |                                       |               |             |                |          |
| 90             |          |                                       |               |             |                |          |
|                |          |                                       |               |             |                |          |
| 70             |          |                                       |               |             |                |          |
| 50             |          |                                       |               |             |                |          |
| 50             |          |                                       |               |             |                |          |
| 30             |          |                                       |               |             | 4              |          |
|                |          |                                       |               |             |                |          |
| 10             |          |                                       |               |             |                |          |
| 0<br>2310      | 2330.    | 2350.                                 |               | 370.        | 2390.          | 2410     |
|                |          | Fre                                   | equency (MHz) |             |                |          |
| Freq.          | Detector | Spectrum                              | Factor        | Actual      | Limit          | Margin   |
| i i oqi        | Mode     | Reading Level                         | i dotoi       | FS          | @3m            | margin   |
| MHz            | PK/QP/AV | dBµV                                  | dB            | dBµV/m      | dBµV/m         | dB       |
| 2390.00        | Peak     | 49.05                                 | -3.17         | 45.88       | 74.00          | -28.12   |
|                | 1        | 36.84                                 | -3.17         | 33.67       | 54.00          | -20.33   |



Page: 42 / 60 Rev.: 01

| Test Mo              | de: E    | BLE-2Mbps Low ( | СН Т          | emp/Hum     | 23.9(°C | 2)/ 50%RF      |  |
|----------------------|----------|-----------------|---------------|-------------|---------|----------------|--|
| Test Ite             | m        | Band Edge       | -             | Test Date   | Augus   | August 4, 2020 |  |
| Polariz              | e        | Horizontal      | Te            | st Engineer | Jerry   | Chang          |  |
| Detect               | or       | Peak / Average  |               |             |         |                |  |
|                      |          |                 |               |             |         |                |  |
| 120 Level (dBu       | V/m)     | i i             |               | ; ;         |         |                |  |
| 110                  |          |                 | 1             |             |         |                |  |
|                      |          |                 |               |             |         |                |  |
| 90                   |          |                 |               |             |         |                |  |
|                      |          |                 |               |             |         |                |  |
| 70                   |          |                 |               |             |         |                |  |
| 50                   |          |                 |               |             |         |                |  |
| 50                   |          |                 |               |             | 1       |                |  |
| 30                   |          |                 |               |             |         |                |  |
|                      |          |                 |               |             |         |                |  |
| 10                   |          |                 |               | i<br>       |         |                |  |
| 0 <mark></mark> 2310 | 2330.    | 2350.           | 2             | 370.        | 2390.   | 2410           |  |
|                      |          | Fr              | equency (MHz) |             |         |                |  |
| Freq.                | Detector | Spectrum        | Factor        | Actual      | Limit   | Margin         |  |
| rieq.                | Mode     | Reading Level   | racior        | FS          | @3m     | warym          |  |
| MHz                  | PK/QP/AV | dBµV            | dB            | dBµV/m      | dBµV/m  | dB             |  |
| 2390.00              | Peak     | 48.19           | -3.17         | 45.02       | 74.00   | -28.98         |  |
| 2390.00              | Average  | 36.81           | -3.17         | 33.64       | 54.00   | -20.36         |  |
| 2390.00              | Average  | 36.81           | -3.17         | 33.64       | 54.00   | -20.3          |  |



| Test Mo                | de: B                                 | LE-2Mbps High ( | CH Te               | emp/Hum                                 | 23.9(°C     | )/ 50%Rł       |  |
|------------------------|---------------------------------------|-----------------|---------------------|-----------------------------------------|-------------|----------------|--|
| Test Ite               | em                                    | Band Edge       | Т                   | est Date                                | Augus       | August 4, 2020 |  |
| Polariz                | ze                                    | Vertical        | Tes                 | st Engineer                             | Jerry Chang |                |  |
| Detect                 | or                                    | Peak / Average  |                     |                                         |             |                |  |
| Louol (dDu             | N/m)                                  |                 |                     |                                         |             |                |  |
| 120 Level (dBu         |                                       |                 |                     |                                         |             |                |  |
| 110                    |                                       |                 |                     |                                         |             |                |  |
|                        |                                       |                 |                     | I I<br>I I<br>I I<br>I                  |             |                |  |
| 90                     |                                       |                 |                     | * • • • • • • • • • • • • • • • • • • • |             |                |  |
| 70                     |                                       |                 |                     |                                         |             |                |  |
|                        |                                       |                 |                     |                                         |             |                |  |
| 50                     | · · · · · · · · · · · · · · · · · · · | ·····           | <br> <br> <br>      | I I<br>I I<br>I                         |             |                |  |
|                        |                                       | 2               |                     |                                         |             |                |  |
| 30                     |                                       |                 |                     |                                         |             |                |  |
|                        |                                       |                 |                     |                                         |             |                |  |
| 10                     |                                       |                 |                     |                                         |             |                |  |
| 0 <sup>L</sup><br>2475 | 2480.                                 | 2485.<br>Fre    | 24<br>equency (MHz) | 190.                                    | 2495.       | 2500           |  |
|                        |                                       |                 | queney (minz)       |                                         |             |                |  |
| Freq.                  | Detector                              | Spectrum        | Factor              | Actual                                  | Limit       | Margin         |  |
|                        | Mode                                  | Reading Level   |                     | FS                                      | @3m         |                |  |
| MHz                    | PK/QP/AV                              | dBµV            | dB                  | dBµV/m                                  | dBµV/m      | dB             |  |
| 2483.50                | Peak                                  | 48.62           | -2.71               | 45.91                                   | 74.00       | -28.09         |  |
| 2483.50                | Average                               | 36.91           | -2.71               | 34.20                                   | 54.00       | -19.80         |  |



Page: 44 / 60 Rev.: 01

| Test Mo              | de: B    | _E-2Mbps High  | CH Te         | emp/Hum                               | 23.9(°C                  | )/ 50%RH  |
|----------------------|----------|----------------|---------------|---------------------------------------|--------------------------|-----------|
| Test Ite             | m        | Band Edge      | Т             | est Date                              | Augus                    | t 4, 2020 |
| Polariz              | ze 🛛     | Horizontal     | Tes           | st Engineer                           | Jerry                    | Chang     |
| Detect               | or       | Peak / Average | 9             |                                       |                          |           |
| Lovel (dBu           | M(m)     |                |               |                                       |                          |           |
| 120 Level (dBu       | v/iii)   |                |               |                                       |                          |           |
| 110                  |          |                |               | · · · · · · · · · · · · · · · · · · · |                          |           |
|                      |          |                |               |                                       |                          |           |
| 90                   |          |                |               | • • • • • • • • • • • • • • • • • • • |                          |           |
| 70                   |          |                |               |                                       | + +                      |           |
|                      |          |                |               |                                       |                          |           |
| 50                   |          |                |               |                                       | <br> <br> <br> <br> <br> |           |
|                      |          | 2              |               |                                       |                          |           |
| 30                   |          |                |               |                                       | <br>                     |           |
|                      |          |                |               |                                       |                          |           |
| 10                   |          |                |               |                                       |                          |           |
| 0 <mark></mark> 2475 | 2480.    | 2485.          |               | 190.                                  | 2495.                    | 2500      |
|                      |          | Fr             | equency (MHz) |                                       |                          |           |
| Freq.                | Detector | Spectrum       | Factor        | Actual                                | Limit                    | Margin    |
|                      | Mode     | Reading Level  |               | FS                                    | @3m                      |           |
| MHz                  | PK/QP/AV | dBµV           | dB            | dBµV/m                                | dBµV/m                   | dB        |
| 2483.50              | Peak     | 51.40          | -2.71         | 48.69                                 | 74.00                    | -25.31    |
| 2483.50              | Average  | 41.01          | -2.71         | 38.30                                 | 54.00                    | -15.70    |



### Below 1G Test Data

32.91

120.21

168.71

323.91

356.89

878.75

Peak

Peak

Peak

Peak

Peak

Peak

| Freq.<br>MHz      | Detector<br>Mode<br>PK/QP/AV | Spectrum<br>Reading Level<br>dBµV | Factor         | Actual<br>FS<br>dBµV/m | Limit<br>@3m<br>dBµV/m | Margin<br>dB     |  |
|-------------------|------------------------------|-----------------------------------|----------------|------------------------|------------------------|------------------|--|
| 0 <mark></mark>   | 224.                         | 418.<br>Fi                        | requency (MHz) | 612.                   | 806.                   | 1000             |  |
|                   |                              |                                   |                |                        |                        |                  |  |
| 10                |                              |                                   |                | -                      |                        | I<br>I<br>I<br>I |  |
| 30                | 2 3                          | 5<br>4                            |                | -                      | 6                      |                  |  |
| 50                |                              |                                   |                |                        |                        |                  |  |
| 70                |                              |                                   |                |                        |                        |                  |  |
| 90                |                              |                                   |                |                        |                        |                  |  |
| 110               |                              |                                   |                |                        | ,                      |                  |  |
| 120 Level (dB     | uV/m)                        |                                   |                |                        |                        |                  |  |
| Delect            |                              | Tean                              |                |                        |                        |                  |  |
| Polariz<br>Detect |                              | Vertical<br>Peak                  | le             | st Engineer            | Jerry                  | / Chang          |  |
| Test Ite          |                              | 30MHz-1GHz                        |                |                        |                        | August 4, 2020   |  |
| Test Mo           |                              | BLE-1Mbps Mod                     |                | Temp/Hum               |                        | 2)/ 50%RF        |  |

-4.50

-9.17

-10.86

-7.87

-6.93

2.99

Note: No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz).

32.91

31.65

30.49

30.97

35.57

33.01

40.00

43.50

43.50

46.00

46.00

46.00

-7.09

-11.85

-13.01

-15.03

-10.43

-12.99

37.41

40.82

41.35

38.84

42.50

30.02



Page: 46 / 60 Rev.: 01

| de:      | BLE-1Mbps Mc | de                                      | Temp/Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23.9(°C                                                                                                | 23.9(°C)/ 50%RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|----------|--------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| m        | 30MHz-1GHz   | 2                                       | Test Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Augus                                                                                                  | August 4, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |
| е        | Horizontal   | -                                       | Test Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Jerry                                                                                                  | / Chang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| or       | Peak         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|          |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| //m)     |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|          |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|          |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|          |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|          |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|          |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <br> <br> <br>                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 3        | -            | 6                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|          | 5            | p                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        | 1<br>1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|          |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|          |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                      | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 224.     |              | requency (MHz)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 806.                                                                                                   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|          |              |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Detector | Spectrum     | Factor                                  | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Limit                                                                                                  | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Mode     | -            | 1 dotor                                 | FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | @3m                                                                                                    | margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| PK/QP/AV | dBµV         | dB                                      | dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dBµV/m                                                                                                 | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| Peak     | 44.36        | -16.01                                  | 28.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.00                                                                                                  | -11.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Peak     | 43.63        | -14.12                                  | 29.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.50                                                                                                  | -13.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Peak     | 47.98        | -9.17                                   | 38.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.50                                                                                                  | -4.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Peak     | 43.42        | -11.44                                  | 31.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.50                                                                                                  | -11.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Peak     | 37.94        | -6.93                                   | 31.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 46.00                                                                                                  | -14.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| reak     | 0.101        |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|          | m            | m 30MHz-1GHz<br>e Horizontal<br>pr Peak | M         30MHz-1GHz         I           e         Horizontal         I           or         Peak         I           //m)         I         I           //m)         I | m 30MHz-1GHz Test Date<br>e Horizontal Test Engineer<br>or Peak //m) //m) //m) ///m ///  ///  ///  /// | m         30MHz-1GHz         Test Date         Augus           e         Horizontal         Test Engineer         Jerry           pr         Peak         Image: Spectrum Peak         Sp |  |



Page: 47 / 60 Rev.: 01

| Test Mo                                                 | de:                                                  | BLE-2Mbps Mo                                                      | de                                                     | Temp/Hum                                                                             | 23.9(°C)/ 50%RH                                   |                                           |  |
|---------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------|--|
| Test Ite                                                | em                                                   | 30MHz-1GHz                                                        |                                                        | Test Date                                                                            | Augus                                             | August 4, 2020                            |  |
| Polariz                                                 | ze                                                   | Vertical                                                          | Te                                                     | est Engineer                                                                         | Jerry                                             | Chang                                     |  |
| Detect                                                  | or                                                   | Peak                                                              |                                                        |                                                                                      |                                                   |                                           |  |
|                                                         |                                                      |                                                                   |                                                        |                                                                                      |                                                   |                                           |  |
| 120 Level (dBu                                          | JV/m)                                                |                                                                   |                                                        |                                                                                      |                                                   |                                           |  |
| 110                                                     |                                                      |                                                                   |                                                        |                                                                                      |                                                   |                                           |  |
|                                                         |                                                      |                                                                   |                                                        |                                                                                      |                                                   |                                           |  |
| 90                                                      |                                                      |                                                                   |                                                        |                                                                                      |                                                   | <br>                                      |  |
|                                                         |                                                      |                                                                   |                                                        |                                                                                      |                                                   |                                           |  |
| 70                                                      |                                                      |                                                                   |                                                        |                                                                                      |                                                   |                                           |  |
| 50                                                      |                                                      |                                                                   |                                                        |                                                                                      |                                                   |                                           |  |
|                                                         |                                                      | 5                                                                 |                                                        |                                                                                      |                                                   | 6                                         |  |
| 30                                                      | 2 3                                                  |                                                                   |                                                        |                                                                                      |                                                   |                                           |  |
|                                                         |                                                      |                                                                   |                                                        |                                                                                      |                                                   |                                           |  |
| 10                                                      |                                                      |                                                                   |                                                        |                                                                                      |                                                   |                                           |  |
| 0 <mark>30</mark>                                       | 224.                                                 | 418.                                                              |                                                        | 612.                                                                                 | 806.                                              | 100                                       |  |
|                                                         | 224.                                                 |                                                                   | requency (MHz)                                         |                                                                                      | 0001                                              | 1000                                      |  |
|                                                         | 224.                                                 |                                                                   | requency (MHz)                                         |                                                                                      |                                                   | 1000                                      |  |
| Freq.                                                   | Detector                                             |                                                                   | Frequency (MHz)                                        | Actual                                                                               | Limit                                             | Margin                                    |  |
|                                                         |                                                      | F                                                                 |                                                        |                                                                                      |                                                   |                                           |  |
| Freq.<br>MHz                                            | Detector                                             | F<br>Spectrum<br>Reading Level<br>dBµV                            |                                                        | Actual<br>FS<br>dBµV/m                                                               | Limit                                             |                                           |  |
| <b>Freq.</b><br><b>MHz</b><br>34.85                     | Detector<br>Mode                                     | F<br>Spectrum<br>Reading Level<br>dBµV<br>39.94                   | Factor                                                 | Actual<br>FS<br>dBµV/m<br>34.22                                                      | Limit<br>@3m<br>dBμV/m<br>40.00                   | Margin                                    |  |
| Freq.<br>MHz                                            | Detector<br>Mode<br>PK/QP/AV                         | F<br>Spectrum<br>Reading Level<br>dBµV                            | Factor                                                 | Actual<br>FS<br>dBµV/m                                                               | Limit<br>@3m<br>dBµV/m                            | Margin<br>dB                              |  |
| <b>Freq.</b><br><b>MHz</b><br>34.85                     | Detector<br>Mode<br>PK/QP/AV<br>Peak                 | F<br>Spectrum<br>Reading Level<br>dBµV<br>39.94                   | Factor<br>dB<br>-5.72                                  | Actual<br>FS<br>dBµV/m<br>34.22                                                      | Limit<br>@3m<br>dBμV/m<br>40.00                   | Margin<br>dB<br>-5.78                     |  |
| <b>Freq.</b><br><b>MHz</b><br>34.85<br>120.21           | Detector<br>Mode<br>PK/QP/AV<br>Peak<br>Peak         | F<br>Spectrum<br>Reading Level<br>dBµV<br>39.94<br>40.26          | <b>Factor</b><br><b>dB</b><br>-5.72<br>-9.17           | Actual           FS           dBμV/m           34.22           31.09                 | Limit<br>@3m<br>dBμV/m<br>40.00<br>43.50          | Margin<br>dB<br>-5.78<br>-12.41           |  |
| <b>Freq.</b><br><b>MHz</b><br>34.85<br>120.21<br>165.80 | Detector<br>Mode<br>PK/QP/AV<br>Peak<br>Peak<br>Peak | F<br>Spectrum<br>Reading Level<br>dBµV<br>39.94<br>40.26<br>42.20 | <b>Factor</b><br><b>dB</b><br>-5.72<br>-9.17<br>-10.73 | Actual           FS           dBμV/m           34.22           31.09           31.47 | Limit<br>@3m<br>dBµV/m<br>40.00<br>43.50<br>43.50 | Margin<br>dB<br>-5.78<br>-12.41<br>-12.03 |  |



Page: 48 / 60 Rev.: 01

| de:                                      | BLE-2Mbps Mo                                                                                      | de                                        | Temp/Hum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23.9(°C                                                                                               | 23.9(°C)/ 50%RH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|------------------------------------------|---------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| m                                        | 30MHz-1GHz                                                                                        | 2                                         | Test Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Augus                                                                                                 | August 4, 2020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
| ze                                       | Horizontal                                                                                        | -                                         | Test Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Jerry                                                                                                 | / Chang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |
| or                                       | Peak                                                                                              |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| V/m)                                     |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       | 1<br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
|                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       | <br>1<br>1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 2                                        |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 3  <br>                                  | 4                                                                                                 | 5                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <br> <br> <br> <br>                                                                                   | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · • • • • • • • • • • • • • • • • • • •                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| 224.                                     | 418.<br>F                                                                                         | requency (MHz)                            | 612.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 806.                                                                                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                          |                                                                                                   | · - <b>-</b> - · · - <b>,</b> ()          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          |                                                                                                   |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       | <b>B4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| Detector                                 | Spectrum                                                                                          | Factor                                    | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Limit                                                                                                 | Mardin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| Detector<br>Mode                         | Spectrum<br>Reading Level                                                                         | Factor                                    | Actual<br>FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Limit<br>@3m                                                                                          | Margin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                          | -                                                                                                 | Factor<br>dB                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                       | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Mode                                     | Reading Level                                                                                     |                                           | FS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | @3m                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
| Mode<br>PK/QP/AV                         | Reading Level<br>dBµV                                                                             | dB                                        | FS<br>dBµV/m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | @3m<br>dBµV/m                                                                                         | dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| Mode<br>PK/QP/AV<br>Peak                 | Reading Level<br>dBµV<br>43.26                                                                    | <b>dB</b><br>-14.12                       | <b>FS</b><br><b>dBμV/m</b><br>29.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | @ <b>3m</b><br>dBµV/m<br>43.50                                                                        | <b>dB</b><br>-14.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| Mode<br>PK/QP/AV<br>Peak<br>Peak         | Reading Level           dBµV           43.26           47.90                                      | <b>dB</b><br>-14.12<br>-9.17              | FS           dBμV/m           29.14           38.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>@3m</b><br><b>dBµV/m</b><br>43.50<br>43.50                                                         | dB<br>-14.36<br>-4.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| Mode<br>PK/QP/AV<br>Peak<br>Peak<br>Peak | Reading Level<br>dBµV           43.26           47.90           43.41                             | <b>dB</b><br>-14.12<br>-9.17<br>-11.24    | FS           dBμV/m           29.14           38.73           32.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>@3m</b><br><b>dBµV/m</b><br>43.50<br>43.50<br>43.50                                                | dB<br>-14.36<br>-4.77<br>-11.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|                                          | 20<br>20<br>0r<br>V/m)<br>2<br>3<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4 | em 30MHz-1GHz<br>ze Horizontal<br>or Peak | am     30MHz-1GHz       ze     Horizontal       or     Peak         V/m)         2         3     4         2         3     4         2         3     4         5         6         7         8         7         8         8         8         8         8         8         9         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1        1        1 | and     30MHz-1GHz     Test Date       ze     Horizontal     Test Engineer       or     Peak     V/m) | Image: Solution of the second seco |  |



Page: 49 / 60 Rev.: 01

### Above 1G Test Data

| Freq.             | Detector<br>Mode | Spectrum<br>Reading Level | Factor                             | Actual<br>FS | Limit<br>@3m | Margin                                                                                      |  |
|-------------------|------------------|---------------------------|------------------------------------|--------------|--------------|---------------------------------------------------------------------------------------------|--|
| <sup>0</sup> 1000 | 6100.            | 11200.<br>Fi              | equency (MHz)                      | 16300.       | 21400.       | 26500                                                                                       |  |
| 10                |                  |                           |                                    |              |              | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |  |
| 30                |                  |                           |                                    |              |              |                                                                                             |  |
| 50                | 1                |                           | <br> <br> <br> <br> <br> <br> <br> |              |              | <br> <br> <br> <br> <br>                                                                    |  |
| 70                |                  |                           |                                    |              |              |                                                                                             |  |
| 90                |                  |                           |                                    |              |              |                                                                                             |  |
| 110               |                  |                           |                                    |              |              |                                                                                             |  |
| 120 Level (dB     | uV/m)            |                           | 1                                  |              |              | ;                                                                                           |  |
| Detec             | tor              | Peak                      |                                    |              |              |                                                                                             |  |
| Polari            | ze               | Vertical T                |                                    | est Engineer | Jerry        | / Chang                                                                                     |  |
| Test It           | em               | Harmonic                  |                                    | Test Date    | Augus        | August 4, 2020                                                                              |  |
| Test Mo           | ode: E           | BLE-1Mbps Low             | CH                                 | Temp/Hum     | 23.9(°C      | C)/ 50%Rł                                                                                   |  |

| Freq.   | Detector<br>Mode | Spectrum<br>Reading Level | Factor | Actual<br>FS | Limit<br>@3m | Margin |
|---------|------------------|---------------------------|--------|--------------|--------------|--------|
| MHz     | PK/QP/AV         | dBµV                      | dB     | dBµV/m       | dBµV/m       | dB     |
| 4804.00 | Peak             | 44.14                     | 3.36   | 47.50        | 74.00        | -26.50 |
| N/A     |                  |                           |        |              |              |        |
|         |                  |                           |        |              |              |        |
|         |                  |                           |        |              |              |        |
|         |                  |                           |        |              |              |        |
|         |                  |                           |        |              |              |        |
|         |                  |                           |        |              |              |        |

#### Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Page: 50 / 60 Rev.: 01

| Test Mode:      |                  | BLE-1Mbps Low             | СН            | Temp/Hum     | 23.9(°C        | C)/ 50%RH             |
|-----------------|------------------|---------------------------|---------------|--------------|----------------|-----------------------|
| Test Ite        | em               | Harmonic                  |               | Test Date    | Augus          | st 4, 2020            |
| Polarize        |                  | Horizontal                | Т             | est Engineer | Jerry Chang    |                       |
| Detect          | tor              | Peak                      |               |              |                |                       |
|                 |                  |                           |               |              |                |                       |
| 120 Level (dBu  | V/m)             |                           |               |              |                |                       |
| 110             |                  |                           |               |              |                |                       |
|                 |                  |                           |               |              |                |                       |
| 90              |                  |                           |               |              |                | 1<br>                 |
| 70              |                  |                           |               |              | <br> <br> <br> | <br> <br> <br>        |
|                 |                  |                           |               |              |                | 1<br>1<br>1<br>1<br>1 |
| 50              |                  |                           |               |              | <br>           | <br>                  |
|                 |                  |                           |               |              |                | 1<br>1<br>1<br>1      |
| 30              |                  |                           |               |              |                |                       |
| 10              |                  |                           |               |              |                |                       |
| 0 <mark></mark> | 6100.            | 11200.                    |               | 16300.       | 21400.         | 26500                 |
|                 |                  | Fr                        | equency (MHz) |              |                |                       |
| _               | _                | -                         | _             |              |                |                       |
| Freq.           | Detector<br>Mode | Spectrum<br>Reading Level | Factor        | Actual<br>FS | Limit<br>@3m   | Margin                |
| MHz             | PK/QP/AV         | dBµV                      | dB            | dBµV/m       | dBµV/m         | dB                    |
| 4804.00         | Peak             | 47.01                     | 3.36          | 50.37        | 74.00          | -23.63                |
| 7206.00         | Peak             | 40.22                     | 10.77         | 50.99        | 74.00          | -23.01                |
| N/A             |                  |                           |               |              |                |                       |
|                 |                  |                           |               |              |                |                       |
|                 |                  |                           |               |              |                |                       |
|                 |                  |                           |               |              |                |                       |
|                 |                  |                           |               |              |                |                       |

#### Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Page: 51 / 60 Rev.: 01

| Test Mo                     |                          | BLE-1Mbps Mid         | CH                 | Temp/Hum               | -                      | 23.9(°C)/ 50%RH     |  |
|-----------------------------|--------------------------|-----------------------|--------------------|------------------------|------------------------|---------------------|--|
| Test Ite                    |                          | Harmonic              |                    | Test Date              |                        | August 20, 2020     |  |
| Polariz                     |                          | Vertical              | 16                 | est Engineer           | Jerry                  | Chang               |  |
| Detect                      | .01                      | Peak                  |                    |                        |                        |                     |  |
| 120 <mark>Level (dBu</mark> | V/m)                     |                       |                    |                        |                        |                     |  |
| 110                         |                          |                       |                    |                        |                        |                     |  |
| 90                          |                          |                       |                    |                        |                        |                     |  |
| 70                          |                          |                       |                    |                        |                        |                     |  |
| 50                          |                          |                       |                    |                        |                        |                     |  |
| 30                          |                          |                       |                    |                        |                        |                     |  |
| 10                          |                          |                       |                    |                        |                        |                     |  |
| 0<br>1000                   | 6100.                    | 11200.<br>Fr          | 1<br>equency (MHz) | 16300.                 | 21400.                 | 26500               |  |
| Freq.                       | Detector                 | Spectrum              | Factor             | Actual                 | Limit                  | Margin              |  |
| ricq.                       | Deteotor                 | -                     | i dotoi            | FS                     | @3m                    | ina gin             |  |
| MHz                         | Mode<br>PK/QP/AV         | Reading Level<br>dBuV | dB                 | dBuV/m                 | dBuV/m                 | dB                  |  |
| <b>MHz</b><br>4880.00       | Mode<br>PK/QP/AV<br>Peak | dBµV<br>37.63         | <b>dB</b><br>3.51  | <b>dBµV/m</b><br>41.14 | <b>dBµV/m</b><br>74.00 | <b>dB</b><br>-32.86 |  |
|                             | PK/QP/AV                 | dBµV                  |                    | -                      | -                      |                     |  |
| 4880.00                     | PK/QP/AV                 | dBµV                  |                    | -                      | -                      |                     |  |
| 4880.00                     | PK/QP/AV                 | dBµV                  |                    | -                      | -                      |                     |  |
| 4880.00                     | PK/QP/AV                 | dBµV                  |                    | -                      | -                      |                     |  |
| 4880.00<br>N/A<br>mark:     | PK/QP/AV<br>Peak         | dBµV                  | 3.51               | 41.14                  | 74.00                  | -32.86              |  |

Average value compliance with the average limit



Page: 52 / 60 Rev.: 01

| Test Mo        |                     | BLE-1Mbps Mid (       | CH .           | Temp/Hum     |                     | 23.9(°C)/ 50%RH |  |
|----------------|---------------------|-----------------------|----------------|--------------|---------------------|-----------------|--|
| Test Ite       |                     | Harmonic              |                | Test Date    | August 20, 2020     |                 |  |
| Polariz        |                     | Horizontal            | Te             | est Engineer | Jerry               | Chang           |  |
| Detecto        | or                  | Peak                  |                |              |                     |                 |  |
|                |                     |                       |                |              |                     |                 |  |
| 120 Level (dBu | V/m)                |                       |                |              |                     |                 |  |
| 110            | <br> <br> <br> <br> |                       |                |              |                     |                 |  |
|                |                     |                       |                |              |                     |                 |  |
| 90             |                     |                       |                |              |                     | 1<br>           |  |
| 70             |                     |                       |                |              | <br> <br> <br> <br> |                 |  |
|                |                     |                       |                |              |                     |                 |  |
| 50             | 1                   |                       | <br> <br> <br> |              | <br> <br> <br> <br> | <br> <br>       |  |
|                |                     |                       |                |              |                     |                 |  |
| 30             |                     |                       |                |              |                     |                 |  |
| 10             |                     |                       |                |              |                     |                 |  |
| 0<br>1000      | 6100.               | 11200.                |                | 6300.        | 21400.              | 26500           |  |
| 1000           | 0100.               |                       | equency (MHz)  | 0300.        | 21400.              | 20500           |  |
| Freq.          | Detector            | Spectrum              | Factor         | Actual       | Limit               | Margin          |  |
| MHz            | Mode<br>PK/QP/AV    | Reading Level<br>dBµV | dB             | FS<br>dBµV/m | @3m<br>dBµV/m       | dB              |  |
| 4880.00        | Peak                | 40.38                 | 3.51           | 43.89        | 74.00               | -30.11          |  |
| 12200.00       | Peak                | 36.52                 | 15.72          | 52.24        | 74.00               | -21.76          |  |
| N/A            |                     |                       |                |              |                     |                 |  |
|                |                     |                       |                |              |                     |                 |  |
|                |                     |                       |                |              |                     |                 |  |
|                | 1                   |                       |                |              |                     |                 |  |
|                |                     |                       |                |              |                     |                 |  |

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Page: 53 / 60 Rev.: 01

| Test Ite              |                  | LE-1Mbps High<br>Harmonic |               | Temp/Hum<br>Test Date |               | 23.9(°C)/ 50%RF<br>August 20, 2020 |  |
|-----------------------|------------------|---------------------------|---------------|-----------------------|---------------|------------------------------------|--|
| Polariz               | e                | Vertical                  | Т             | est Engineer          | Jerry         | <sup>7</sup> Chang                 |  |
| Detect                | or               | Peak                      |               |                       |               |                                    |  |
| Lovel (dBu            | M(m)             |                           |               |                       |               |                                    |  |
| 120 Level (dBu        |                  |                           |               |                       |               | 1                                  |  |
| 110                   |                  |                           |               |                       |               |                                    |  |
| 90                    |                  |                           |               |                       |               | <br> <br> <br>                     |  |
| 50                    |                  |                           |               |                       |               |                                    |  |
| 70                    |                  |                           |               |                       |               | <br> <br>                          |  |
|                       |                  |                           |               |                       |               |                                    |  |
| 50                    | 1                |                           |               |                       |               |                                    |  |
|                       |                  |                           |               |                       |               | -<br>-<br>                         |  |
| 30                    |                  |                           |               |                       |               |                                    |  |
| 10                    |                  |                           |               |                       |               |                                    |  |
| 0 <mark></mark>       | 6100.            | 11200.                    |               | 16300.                | 21400.        | 26500                              |  |
| 1000                  | 0100.            |                           | equency (MHz) | 10500.                | 21400.        | 20300                              |  |
|                       |                  |                           |               |                       |               |                                    |  |
|                       |                  |                           |               |                       |               |                                    |  |
| Freq.                 | Detector         | Spectrum                  | Factor        | Actual                | Limit         | Margin                             |  |
|                       | Mode             | Reading Level             |               | FS                    | @3m           |                                    |  |
| MHz                   | Mode<br>PK/QP/AV | Reading Level<br>dBµV     | dB            | FS<br>dBµV/m          | @3m<br>dBµV/m | dB                                 |  |
| <b>MHz</b><br>4960.00 | Mode             | Reading Level             |               | FS                    | @3m           | -                                  |  |
| MHz                   | Mode<br>PK/QP/AV | Reading Level<br>dBµV     | dB            | FS<br>dBµV/m          | @3m<br>dBµV/m |                                    |  |
| <b>MHz</b><br>4960.00 | Mode<br>PK/QP/AV | Reading Level<br>dBµV     | dB            | FS<br>dBµV/m          | @3m<br>dBµV/m | dB                                 |  |
| <b>MHz</b><br>4960.00 | Mode<br>PK/QP/AV | Reading Level<br>dBµV     | dB            | FS<br>dBµV/m          | @3m<br>dBµV/m | dB                                 |  |
| <b>MHz</b><br>4960.00 | Mode<br>PK/QP/AV | Reading Level<br>dBµV     | dB            | FS<br>dBµV/m          | @3m<br>dBµV/m | dB                                 |  |
| <b>MHz</b><br>4960.00 | Mode<br>PK/QP/AV | Reading Level<br>dBµV     | dB            | FS<br>dBµV/m          | @3m<br>dBµV/m | dB                                 |  |
| <b>MHz</b><br>4960.00 | Mode<br>PK/QP/AV | Reading Level<br>dBµV     | dB            | FS<br>dBµV/m          | @3m<br>dBµV/m | dB                                 |  |
| <b>MHz</b><br>4960.00 | Mode<br>PK/QP/AV | Reading Level<br>dBµV     | dB            | FS<br>dBµV/m          | @3m<br>dBµV/m | dB                                 |  |

Average value compliance with the average limit



Page: 54 / 60 Rev.: 01

| Test Mo         | de:      | BLE-1Mbps High | CH             | CH Temp/Hum  |                     | C)/ 50%RF        |  |
|-----------------|----------|----------------|----------------|--------------|---------------------|------------------|--|
| Test Ite        | em       | Harmonic       |                | Test Date    | August              | August 20, 2020  |  |
| Polariz         | ze       | Horizontal     | Т              | est Engineer | Jerry               | / Chang          |  |
| Detect          | or       | Peak           |                |              |                     |                  |  |
|                 |          |                |                |              |                     |                  |  |
| 120             | V/m)     |                |                |              |                     |                  |  |
| 110             |          |                | <br> <br> <br> |              | <br> <br> <br> <br> | 1<br>1<br>1      |  |
|                 |          |                |                |              |                     |                  |  |
| 90              |          |                |                |              |                     |                  |  |
| 70              |          |                |                |              |                     |                  |  |
| 70              |          |                |                |              |                     |                  |  |
| 50              |          |                | 2              |              | <br> <br> <br> <br> | <br> <br>        |  |
|                 |          |                |                |              |                     |                  |  |
| 30              |          |                |                |              |                     | 1<br>1<br>1<br>1 |  |
| 40              |          |                |                |              |                     | 1<br>1<br>1<br>1 |  |
| 10              |          |                |                |              |                     | 1                |  |
| 0 <mark></mark> | 6100.    | 11200.<br>F    | requency (MHz) | 16300.       | 21400.              | 26500            |  |
|                 |          |                |                |              |                     |                  |  |
| Freq.           | Detector | Spectrum       | Factor         | Actual       | Limit               | Margin           |  |
| ricq.           | Mode     | Reading Level  | T deter        | FS           | @3m                 | margin           |  |
| MHz             | PK/QP/AV | dBµV           | dB             | dBµV/m       | dBµV/m              | dB               |  |
| 4960.00         | Peak     | 46.48          | 4.46           | 50.94        | 74.00               | -23.06           |  |
| 12400.00        | Peak     | 37.15          | 16.15          | 53.30        | 74.00               | -20.70           |  |
| N/A             |          |                |                |              |                     |                  |  |
|                 |          |                |                |              |                     |                  |  |
|                 |          |                |                |              |                     |                  |  |
|                 |          |                |                |              |                     |                  |  |
|                 |          |                |                |              |                     |                  |  |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Page: 55 / 60 Rev.: 01

| Test Mo         |                  | BLE-2Mbps Low         | СН             | Temp/Hum     | 23.9(°C)/ 50%RH |                    |
|-----------------|------------------|-----------------------|----------------|--------------|-----------------|--------------------|
| Test Ite        |                  | Harmonic              |                | Test Date    | August 4, 2020  |                    |
| Polariz         | ze               | Vertical              | Т              | est Engineer | Jerry           | <sup>,</sup> Chang |
| Detect          | or               | Peak                  |                |              |                 |                    |
|                 |                  |                       |                |              |                 |                    |
| 120 Level (dBu  | V/m)             | i i                   |                | ; ;          |                 |                    |
| 110             |                  |                       |                |              |                 | <br>               |
|                 |                  |                       |                |              |                 |                    |
| 90              |                  |                       |                |              |                 |                    |
| 70              |                  |                       |                |              |                 |                    |
|                 |                  |                       |                |              |                 |                    |
| 50              |                  |                       |                |              |                 |                    |
| 30              |                  |                       |                |              |                 |                    |
|                 |                  |                       |                |              |                 |                    |
| 10              |                  |                       |                |              |                 |                    |
| 0 <mark></mark> | 6100.            | 11200.                |                | 16300.       | 21400.          | 26500              |
|                 |                  | r                     | requency (MHz) |              |                 |                    |
|                 |                  | 1                     |                |              |                 |                    |
| Freq.           | Detector         | Spectrum              | Factor         | Actual       | Limit           | Margin             |
| MHz             | Mode<br>PK/QP/AV | Reading Level<br>dBµV | dB             | FS<br>dBµV/m | @3m<br>dBµV/m   | dB                 |
| 4804.00         | Peak             | 42.77                 | 3.36           | 46.13        | 74.00           | -27.87             |
| N/A             |                  |                       |                |              |                 |                    |
|                 |                  |                       |                |              |                 |                    |
|                 |                  |                       |                |              |                 |                    |
|                 |                  |                       |                |              |                 |                    |
|                 |                  |                       |                |              |                 |                    |
|                 |                  |                       |                |              |                 |                    |
|                 |                  |                       |                |              |                 |                    |
| mark:           |                  |                       |                |              |                 |                    |

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Page: 56 / 60 Rev.: 01

| Test Ite       | em       | Harmonic      |               | Test Date    | 23.9(°C<br>Augus | August 4, 2020 |  |
|----------------|----------|---------------|---------------|--------------|------------------|----------------|--|
| Polari         | ze       | Horizontal    | Т             | est Engineer |                  | Jerry Chang    |  |
| Detect         | tor      | Peak          |               |              |                  |                |  |
|                |          |               |               |              |                  |                |  |
| 120 Level (dBu | V/m)     |               | 1             |              |                  |                |  |
| 110            |          |               |               |              |                  |                |  |
| 90             |          |               |               |              | <br> <br> <br>   |                |  |
|                |          |               |               |              |                  |                |  |
| 70             |          |               |               |              |                  |                |  |
| 50             |          |               |               |              |                  |                |  |
|                |          |               |               |              |                  |                |  |
| 30             |          |               |               |              |                  |                |  |
| 10             |          |               |               |              | <br> <br> <br>   |                |  |
| 0<br>1000      | 6100.    | 11200.        |               | 16300.       | 21400.           | 26500          |  |
| 1000           | 0100.    |               | equency (MHz) | 10500.       | 21400.           | 20300          |  |
|                |          |               |               |              |                  |                |  |
| Freq.          | Detector | Spectrum      | Factor        | Actual       | Limit            | Margin         |  |
|                | Mode     | Reading Level |               | FS           | @3m              |                |  |
| MHz            | PK/QP/AV | dBµV          | dB            | dBµV/m       | dBµV/m           | dB             |  |
| 4804.00        | Peak     | 46.57         | 3.36          | 49.93        | 74.00            | -24.07         |  |
| N/A            |          |               |               |              |                  |                |  |
|                |          |               |               |              |                  |                |  |
|                |          |               |               |              |                  |                |  |
|                |          |               |               |              |                  |                |  |
|                |          |               |               |              |                  |                |  |
|                |          |               |               |              |                  |                |  |
| mark:          |          |               |               |              |                  |                |  |

Average value compliance with the average limit



Page: 57 / 60 Rev.: 01

| Test Mo         |          | BLE-2Mbps Mid   | СН            | Temp/Hum     |        | 23.9(°C)/ 50%RH |  |
|-----------------|----------|-----------------|---------------|--------------|--------|-----------------|--|
| Test Ite        |          | Harmonic        |               | Test Date    |        | August 20, 2020 |  |
| Polariz         |          | Vertical        | T             | est Engineer | Jerry  | ' Chang         |  |
| Detect          | or       | Peak            |               |              |        |                 |  |
| 120 Level (dBu  | V/m)     |                 |               |              |        |                 |  |
| 110             |          |                 |               |              |        |                 |  |
|                 |          |                 |               |              |        |                 |  |
| 90              |          |                 |               |              |        |                 |  |
| 70              |          |                 |               |              |        |                 |  |
| 50              |          |                 |               |              |        |                 |  |
| 50              | 1        |                 |               |              |        |                 |  |
| 30              |          |                 |               |              |        |                 |  |
| 10              |          | ·····           |               | ·            |        |                 |  |
| 0 <mark></mark> | 6100.    | 11200.          |               | 16300.       | 21400. | 26500           |  |
|                 |          | FI              | equency (MHz) |              |        |                 |  |
| Freq.           | Detector | Spectrum        | Factor        | Actual       | Limit  | Margin          |  |
|                 | Mode     | Reading Level   |               | FS           | @3m    | -               |  |
| MHz             | PK/QP/AV | dBµV            | dB            | dBµV/m       | dBµV/m | dB              |  |
| 4880.00         | Peak     | 38.62           | 3.51          | 42.13        | 74.00  | -31.87          |  |
| N/A             |          |                 |               |              |        |                 |  |
|                 |          |                 |               |              |        |                 |  |
|                 |          |                 |               |              |        |                 |  |
|                 |          |                 |               |              |        |                 |  |
|                 |          |                 |               |              |        |                 |  |
|                 |          | <u> </u>        |               |              |        |                 |  |
|                 |          |                 |               |              |        |                 |  |
|                 |          |                 |               |              |        |                 |  |
| mark:           |          | ncies from 1 GH |               |              |        |                 |  |

2. For above 1GHz, the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Page: 58 / 60 Rev.: 01

| Test Mo         | de: E            | BLE-2Mbps Mid         | СН             | Temp/Hum     | 23.9(°C                               | 23.9(°C)/ 50%RH    |  |
|-----------------|------------------|-----------------------|----------------|--------------|---------------------------------------|--------------------|--|
| Test Ite        | em               | Harmonic              |                | Test Date    | August                                | August 20, 2020    |  |
| Polariz         | ze               | Horizontal            | Т              | est Engineer | Jerry                                 | <sup>7</sup> Chang |  |
| Detect          | or               | Peak                  |                |              |                                       |                    |  |
|                 |                  |                       |                |              |                                       |                    |  |
| 120 Level (dBu  | V/m)             |                       |                |              |                                       |                    |  |
| 110             |                  |                       |                |              | · · · · · · · · · · · · · · · · · · · | <br> <br>          |  |
|                 |                  |                       |                |              |                                       |                    |  |
| 90              |                  |                       | <br>           |              | <br> <br> <br> <br> <br>              | <br>               |  |
| 70              |                  |                       | <br> <br> <br> |              | <br> <br> <br>                        |                    |  |
|                 |                  |                       |                |              |                                       |                    |  |
| 50              |                  |                       |                |              | ·                                     |                    |  |
| 20              |                  |                       |                |              |                                       |                    |  |
| 30              |                  |                       |                |              |                                       |                    |  |
| 10              |                  |                       |                |              |                                       | <br> <br>          |  |
| 0 <mark></mark> | 6 <b>100.</b>    | 11200.                |                | 16300.       | 21400.                                | 26500              |  |
|                 |                  | Fr                    | equency (MHz)  |              |                                       |                    |  |
|                 |                  |                       |                |              |                                       |                    |  |
| Freq.           | Detector         | Spectrum              | Factor         | Actual       | Limit                                 | Margin             |  |
| MHz             | Mode<br>PK/QP/AV | Reading Level<br>dBµV | dB             | FS<br>dBµV/m | @3m<br>dBµV/m                         | dB                 |  |
| 4880.00         | Peak             | 47.50                 | 3.51           | 51.01        | 74.00                                 | -22.99             |  |
| 12200.00        | Peak             | 36.06                 | 15.84          | 51.90        | 74.00                                 | -22.10             |  |
| N/A             |                  |                       |                |              |                                       |                    |  |
|                 |                  |                       |                |              |                                       |                    |  |
|                 |                  |                       |                |              |                                       |                    |  |
|                 |                  | 1                     |                |              |                                       |                    |  |
|                 |                  |                       |                |              |                                       |                    |  |

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit



Page: 59 / 60 Rev.: 01

| Test Ite        |                  | BLE-2Mbps High<br>Harmonic |                | Temp/Hum<br>Test Date | -                   | )/ 50%RH<br>: 20, 2020 |
|-----------------|------------------|----------------------------|----------------|-----------------------|---------------------|------------------------|
| Polariz         | ze               | Vertical                   | Te             | est Engineer          | Jerry               | <sup>r</sup> Chang     |
| Detect          | or               | Peak                       |                |                       |                     |                        |
|                 |                  |                            |                |                       |                     |                        |
| 120 Level (dBu  | IV/m)            |                            | 1              |                       | 1                   |                        |
| 110             |                  |                            |                |                       | <br> <br> <br> <br> |                        |
| 90              |                  |                            | <br> <br> <br> |                       |                     |                        |
| 50              |                  |                            |                |                       |                     |                        |
| 70              |                  |                            |                |                       |                     |                        |
|                 |                  |                            |                |                       |                     |                        |
| 50              |                  |                            |                |                       |                     |                        |
| 30              |                  |                            |                |                       |                     |                        |
| 30              |                  |                            |                |                       |                     |                        |
| 10              |                  |                            |                |                       |                     |                        |
| 0 <mark></mark> | 6100.            | 11200.                     |                | 16300.                | 21400.              | 26500                  |
|                 |                  | Fr                         | equency (MHz)  |                       |                     |                        |
|                 | 1                |                            |                |                       |                     |                        |
| Freq.           | Detector         | Spectrum                   | Factor         | Actual                | Limit               | Margin                 |
| MHz             | Mode<br>PK/QP/AV | Reading Level<br>dBµV      | dB             | FS<br>dBµV/m          | @3m<br>dBµV/m       | dB                     |
| 4960.00         | Peak             | 44.02                      | 4.46           | 48.48                 | 74.00               | -25.52                 |
| N/A             |                  |                            |                |                       | 1 1100              | 20.02                  |
|                 |                  |                            |                |                       |                     |                        |
|                 |                  |                            |                |                       |                     |                        |
|                 |                  |                            |                |                       |                     |                        |
|                 |                  |                            |                |                       |                     |                        |
|                 |                  |                            |                |                       |                     |                        |
|                 |                  |                            |                |                       |                     |                        |
| mark:           |                  |                            |                |                       |                     |                        |

Average value compliance with the average limit



Page: 60 / 60 Rev.: 01

| Test Mode:      |                                       | BLE-2Mbps High CH                     |               | Temp/Hum      | 23.9(°C             | 23.9(°C)/ 50%RH |  |
|-----------------|---------------------------------------|---------------------------------------|---------------|---------------|---------------------|-----------------|--|
| Test Item       |                                       | Harmonic                              |               | Test Date     | August              | August 20, 2020 |  |
| Polariz         | ze                                    | Horizontal                            |               | Test Engineer | Jerry Chang         |                 |  |
| Detect          | or                                    | Peak                                  |               |               |                     |                 |  |
|                 |                                       |                                       |               |               |                     |                 |  |
| 120 Level (dBu  | V/m)                                  |                                       |               |               |                     |                 |  |
| 110             |                                       |                                       |               |               |                     |                 |  |
|                 |                                       |                                       |               |               |                     |                 |  |
| 90              |                                       | · · · · · · · · · · · · · · · · · · · |               |               | <br> <br> <br>      |                 |  |
|                 |                                       |                                       |               |               |                     |                 |  |
| 70              |                                       |                                       |               |               | +                   |                 |  |
| 50              | · · · · · · · · · · · · · · · · · · · |                                       |               |               | <br> <br> <br> <br> |                 |  |
|                 |                                       |                                       |               |               |                     |                 |  |
| 30              |                                       |                                       |               |               | <br> <br> <br> <br> |                 |  |
|                 |                                       |                                       |               |               |                     |                 |  |
| 10              |                                       |                                       | 1             |               |                     |                 |  |
| 0 <mark></mark> | 6100.                                 | 11200.<br>Fi                          | requency (MHz | 16300.<br>)   | 21400.              | 26500           |  |
| Freq.           | Detector                              | Spectrum                              | Factor        | Actual        | Limit               | Margin          |  |
|                 | Mode                                  | Reading Level                         |               | FS            | @3m                 | J               |  |
| MHz             | PK/QP/AV                              | dBµV                                  | dB            | dBµV/m        | dBµV/m              | dB              |  |
| 4960.00         | Peak                                  | 46.54                                 | 4.46          | 51.00         | 74.00               | -23.00          |  |
| 12400.00        | Peak                                  | 36.72                                 | 16.18         | 52.90         | 74.00               | -21.10          |  |
| N/A             |                                       |                                       |               |               |                     |                 |  |
|                 |                                       |                                       |               |               |                     |                 |  |
|                 |                                       |                                       |               |               |                     |                 |  |
|                 |                                       |                                       |               |               |                     |                 |  |
|                 |                                       |                                       |               |               |                     |                 |  |
|                 |                                       |                                       |               |               |                     |                 |  |

frequency. 2. For above 1GHz,the EUT peak value was under average limit, therefore the Average value compliance with the average limit

--End of Test Report--