

FCC TEST REPORT

 REPORT NO.:
 RF150428C24-2

 MODEL NO.:
 31576,31577

 MARKING NAME:
 EPIC

 FCC ID:
 HFS- UYT

 RECEIVED:
 Apr. 28, 2015

 TESTED:
 May 11, 2015 ~ May 22, 2015

 ISSUED:
 May 29, 2015

APPLICANT: Quanta Computer Inc.

ADDRESS: No.211, Wen Hwa 2nd Road , Kuei Shan Hsiang Tao Yuan Shien, Taiwan

ISSUED BY: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

LAB ADDRESS: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)

TEST LOCATION: No. 19, Hwa Ya 2nd Rd, Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 333, Taiwan, R.O.C.

This report should not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

TABLE OF CONTENTS

		NTROL RECORD	
1. CEF	RTIFICA	ΓΙΟΝ	5
2. SUN	/MARY	OF TEST RESULTS	6
		JREMENT UNCERTAINTY	
		NFORMATION	
		RAL DESCRIPTION OF EUT	
3.2		RIPTION OF TEST MODES	
		TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	
3.3		RIPTION OF SUPPORT UNITS	
		CONFIGURATION OF SYSTEM UNDER TEST	
		RAL DESCRIPTION OF APPLIED STANDARDS	
		S AND RESULTS (FOR BLUETOOTH LE 4.0)	
4.1		TED EMISSION AND BANDEDGE MEASUREMENT	
	4.1.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	
	4.1.2	TEST INSTRUMENTS	
	4.1.3	TEST PROCEDURES	
	4.1.4	DEVIATION FROM TEST STANDARD	
	4.1.5	TEST SETUP	16
	4.1.6	EUT OPERATING CONDITIONS	
	4.1.7	TEST RESULTS	
4.2	COND	JCTED EMISSION MEASUREMENT	
	4.2.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	
	4.2.2	T EST INSTRUMENTS	
	4.2.3	TEST PROCEDURES	22
	4.2.4	DEVIATION FROM TEST STANDARD	22
	4.2.5	TEST SETUP	22
	4.2.6	EUT OPERATING CONDITIONS	22
	4.2.7	TEST RESULTS	23
4.3	6dB BA	NDWIDTH MEASUREMENT	25
	4.3.1	LIMITS OF 6dB BANDWIDTH MEASUREMENT	25
	4.3.2	TEST SETUP	25
	4.3.3	TEST INSTRUMENTS	25
	4.3.4	TEST PROCEDURE	25
	4.3.5	DEVIATION FROM TEST STANDARD	25
	4.3.6	EUT OPERATING CONDITIONS	25
	4.3.7	TEST RESULTS	26
4.4	COND	JCTED OUTPUT POWER	
	4.4.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	27
	4.4.2	TEST SETUP	27
	4.4.3	INSTRUMENTS	27
	4.4.4	TEST PROCEDURES	
	4.4.5	DEVIATION FROM TEST STANDARD	
	4.4.6	EUT OPERATING CONDITIONS	
	4.4.7	TEST RESULTS	
4.5	POWE	R SPECTRAL DENSITY MEASUREMENT	28
	4.5.1	LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT	
	4.5.2	TEST SETUP	
	4.5.3	TEST INSTRUMENTS	
	4.5.4	TEST PROCEDURE	
	4.5.5	DEVIATION FROM TEST STANDARD	
	4.5.6	EUT OPERATING CONDITION	
	4.5.7	TEST RESULTS	
	1.0.7		20

2	1.6 COND	UCTED OUT OF BAND EMISSION MEASUREMENT	30
	4.6.1	LIMITS OF OUT OF BAND EMISSION MEASUREMENT	30
	4.6.2	TEST SETUP	30
	4.6.3	TEST INSTRUMENTS	30
	4.6.4	TEST PROCEDURE	30
	4.6.5	DEVIATION FROM TEST STANDARD	
	4.6.6	EUT OPERATING CONDITION	
	4.6.7	TEST RESULTS	
		APHS OF THE TEST CONFIGURATION	
6. II	NFORMAT	ION ON THE TESTING LABORATORIES	35
7. A	PPENDIX	A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE	EUT BY
Т	HE LAB		36

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RF150428C24-2	Original release	May 29, 2015

1. CERTIFICATION

PRODUCT:Educational 7" TabletMODEL NO.:31576,31577MARKING NAME:EPICBRAND:LeapFrogAPPLICANT:Quanta Computer Inc.TESTED:May 11, 2015 ~ May 22, 2015TEST SAMPLE:Identical PrototypeSTANDARDS:FCC Part 15, Subpart C (Section 15.247)
ANSI C63.10-2009

The above equipment (model: 31576,31577) has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch,** and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

:	Gina Lin	, DATE :	May 29, 2015
	Gina Liu / Specialist	_	
:	Sam chen	, DATE :	May 29, 2015
	Sam Chen / Senior Project Engineer	_	
		Gina Liu / Specialist	Gina Liu / Specialist

2. SUMMARY OF TEST RESULTS

APPLIED STANDARD: FCC PART 15, SUBPART C (SECTION 15.247) (Bluetooth LE 4.0) **STANDARD** RESULT **TEST TYPE AND LIMIT** REMARK SECTION Meet the requirement of limit. 15.207 AC Power Conducted Emission Minimum passing margin is PASS -4.88dB at 0.50547MHz. Meet the requirement of limit. 15.205 & 15.209 Radiated Emissions Minimum passing margin is PASS -7.17dB at 148.8MHz. 15.247(d) Band Edge Measurement PASS Meet the requirement of limit. Antenna Port Emission 15.247(d) PASS Meet the requirement of limit. 6dB bandwidth 15.247(a)(2) PASS Meet the requirement of limit. Conducted power PASS 15.247(b) Meet the requirement of limit. Power Spectral Density 15.247(e) PASS Meet the requirement of limit. 15.203 Antenna Requirement PASS No antenna connector is used.

The EUT has been tested according to the following specifications:

2.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.44 dB
	30MHz ~ 200MHz	2.93 dB
Dedicted emissions	200MHz ~1000MHz	2.95 dB
Radiated emissions	1GHz ~ 18GHz	2.26 dB
	18GHz ~ 40GHz	1.94 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k = 2.

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

EUT	Educational 7" Tablet
MODEL NO.	31576,31577
MARKING NAME	EPIC
POWER SUPPLY	5.0Vdc (adapter or host equipment) 3.7Vdc (Li-ion battery)
MODULATION TYPE	GFSK
TRANSFER RATE	1Mbps
OPERATING FREQUENCY	2402 ~ 2480MHz
NUMBER OF CHANNEL	40
CHANNEL SPACING	2MHz
OUTPUT POWER	0.708mW
ANTENNA TYPE	PIFA antenna with 1.63dBi gain
ANTENNA CONNECTOR	NA
DATA CABLE	Refer to Note as below
I/O PORTS	Refer to user's manual
ACCESSORY DEVICES	Refer to Note as below

NOTE:

1. All models are listed as below.

BRAND	MODEL	DIFFERENCE
.	31576	Green
LeapFrog	31577	Pink

2. The EUT contains following accessory devices.

ITEM	BRAND	MODEL	SPECIFICATION
Adapter 1	Camelion	AD529/690-11374	I/P: 100-240Vac, 50/60Hz, 0.2A O/P: 5Vdc, 1500mA
Adapter 2	Camelion	AD530	I/P: 100-240Vac, 50/60Hz, 0.2A O/P: 5Vdc, 1500mA
Battery	TCL	TLp032CC (3183103)	3.7Vdc, 11.99Wh
Earphone 1	Leapfrog	31701	1.25m
Earphone 2	Leapfrog	31461	1.25m
USB Cable	David Electronics Company Ltd.	AA818200	0.61m

3. The above EUT information is declared by the manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 DESCRIPTION OF TEST MODES

Bluetooth LE 4.0:

40 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

BLUETOOTH LE 4.0:

EUT CONFIGURE		APPLIC	ABLE TO		DESCRIPTION	
MODE	RE≥1G	RE<1G	PLC	APCM	DES	CRIPTION
-	\checkmark	\checkmark	\checkmark	\checkmark	-	
Vhere RE	≥1G: Radiated En	nission above	1GHz RE	<1G: Radiat	ted Emission below 10	GHz
	C: Power Line Co				a Port Conducted Me	
OIE: Ine EU	I had been pre-tes	sted on the pos	sitioned of each 3 ax	s. The wors	st case was found whe	en positioned on Z-plane
	MISSION TES					
					ode from all possi	
between a	vailable modul	ations, data	rates and anter	nna ports	(if EUT with anter	nna diversity
architectu	re).					
🛛 Following	channel(s) was	s (were) sel	ected for the fina	al test as l	isted below.	
EUT	AVAILABLE					
CONFIGURE	CHANNEL	TES	STED CHANNEL	мо	DULATION TYPE	DATA RATE (Mbps)
					050%	
MODE	0 to 20		0 10 20			1.0
- RADIATED E ☑ Pre-Scan between a	vailable modul	ucted to de	termine the wors		GFSK ode from all possi (if EUT with anter	
- RADIATED E ⊠ Pre-Scan between a architectu	MISSION TES has been cond wailable modul re).	ucted to de ations, data	1GHz): termine the wors	nna ports	ode from all poss (if EUT with anter	ble combinations
- RADIATED E ∑ Pre-Scan between a architectur ∑ Following EUT	MISSION TES has been cond wailable modul re).	ucted to de ations, data s (were) sel	1GHz): termine the wors a rates and anter ected for the fina	nna ports Il test as l	ode from all possi (if EUT with anter isted below.	ible combinations nna diversity
- RADIATED E ∑ Pre-Scan between a architectur ∑ Following	MISSION TES has been cond wailable modul re). channel(s) was	ucted to de ations, data s (were) sel	1GHz): termine the wors a rates and anter	nna ports Il test as l	ode from all poss (if EUT with anter	ble combinations
- ADIATED E Pre-Scan between a architectur Following EUT CONFIGURE	MISSION TES has been cond available modul re). channel(s) was AVAILABLE	ucted to de ations, data s (were) sel	1GHz): termine the wors a rates and anter ected for the fina	nna ports Il test as l	ode from all possi (if EUT with anter isted below.	ible combinations nna diversity
- ADIATED E Pre-Scan between a architectur Following EUT CONFIGURE	MISSION TES has been cond available modul re). channel(s) was AVAILABLE CHANNEL	ucted to de ations, data s (were) sel	1GHz): termine the wors a rates and anter ected for the fina STED CHANNEL	nna ports Il test as l	ode from all possi (if EUT with anter isted below. DULATION TYPE	ible combinations ana diversity DATA RATE (Mbps)
- RADIATED E ∑ Pre-Scan between a architectur ∑ Following EUT CONFIGURE MODE -	MISSION TES has been cond available modul re). channel(s) was AVAILABLE CHANNEL 0 to 39	ucted to de ations, data s (were) sele TEs	1GHz): termine the wors a rates and anter ected for the fina STED CHANNEL 39	nna ports Il test as l	ode from all possi (if EUT with anter isted below. DULATION TYPE	ible combinations ana diversity DATA RATE (Mbps)
- RADIATED E Pre-Scan between a architectur Following EUT CONFIGURE MODE - POWER LINE	MISSION TES has been cond ivailable modul re). channel(s) was AVAILABLE CHANNEL 0 to 39	ucted to de ations, data s (were) sel tes D EMISSIO	1GHz): termine the wors a rates and anter ected for the fina STED CHANNEL 39 N TEST:	nna ports Il test as I MO	ode from all possi (if EUT with anter isted below. DULATION TYPE GFSK	ible combinations ana diversity DATA RATE (Mbps) 1.0
- RADIATED E APre-Scan between a architectu Following EUT CONFIGURE MODE - POWER LINE Pre-Scan	MISSION TES has been cond available modul re). channel(s) was AVAILABLE CHANNEL 0 to 39 CONDUCTEI has been cond	ucted to de ations, data s (were) sele TES D EMISSION ucted to de	1GHz): termine the wors a rates and anter ected for the fina STED CHANNEL 39 N TEST: termine the wors	nna ports Il test as I MO	ode from all possi (if EUT with anter isted below. DULATION TYPE GFSK ode from all possi	ible combinations ana diversity DATA RATE (Mbps) 1.0
- RADIATED E Pre-Scan between a architectu Following EUT CONFIGURE MODE - POWER LINE Pre-Scan between a	MISSION TES has been cond ivailable modul re). channel(s) was AVAILABLE CHANNEL 0 to 39 CONDUCTEI has been cond	ucted to de ations, data s (were) sele TES D EMISSION ucted to de	1GHz): termine the wors a rates and anter ected for the fina STED CHANNEL 39 N TEST: termine the wors	nna ports Il test as I MO	ode from all possi (if EUT with anter isted below. DULATION TYPE GFSK	ible combinations ana diversity DATA RATE (Mbps) 1.0
- RADIATED E APre-Scan between a architectur Following EUT CONFIGURE MODE - POWER LINE POWER LINE Pre-Scan between a architectur	MISSION TES has been cond ivailable modul re). channel(s) was AVAILABLE CHANNEL 0 to 39 ECONDUCTEI has been cond ivailable modul re).	ucted to de ations, data s (were) sele TES D EMISSION ucted to de ations, data	1GHz): termine the wors a rates and anter ected for the final STED CHANNEL 39 N TEST: termine the wors a rates and anter	nna ports Il test as I MO st-case m nna ports	ode from all possi (if EUT with anter isted below. DULATION TYPE GFSK ode from all possi (if EUT with anter	ible combinations ana diversity DATA RATE (Mbps) 1.0
- RADIATED E Pre-Scan between a architectur Following EUT CONFIGURE MODE - POWER LINE Pre-Scan between a architectur ∑ Pre-Scan	MISSION TES has been cond ivailable modul re). channel(s) was AVAILABLE CHANNEL 0 to 39 ECONDUCTEI has been cond ivailable modul re).	ucted to de ations, data s (were) sele TES D EMISSION ucted to de ations, data	1GHz): termine the wors a rates and anter ected for the fina STED CHANNEL 39 N TEST: termine the wors	nna ports Il test as I MO st-case m nna ports	ode from all possi (if EUT with anter isted below. DULATION TYPE GFSK ode from all possi (if EUT with anter	ible combinations ana diversity DATA RATE (Mbps) 1.0
- RADIATED E A Pre-Scan between a architectu Following EUT CONFIGURE MODE - POWER LINE Pre-Scan between a architectu Following EUT Following EUT	MISSION TES has been cond ivailable modul re). channel(s) was AVAILABLE CHANNEL 0 to 39 ECONDUCTEI has been cond ivailable modul re).	ucted to de ations, data s (were) sele TES DEMISSION ucted to de ations, data s (were) sele	1GHz): termine the wors a rates and anter ected for the fina STED CHANNEL 39 N TEST: termine the wors a rates and anter ected for the final	Ina ports I test as I MO st-case m ina ports I test as I	ode from all possi (if EUT with anter isted below. DULATION TYPE GFSK ode from all possi (if EUT with anter isted below.	ible combinations na diversity DATA RATE (Mbps) 1.0 ible combinations na diversity
- RADIATED E Pre-Scan between a architectur Following EUT CONFIGURE MODE - POWER LINE Pre-Scan between a architectur ∑ Pre-Scan	MISSION TES has been cond ivailable modul re). channel(s) was AVAILABLE CHANNEL 0 to 39 ECONDUCTEI has been cond ivailable modul re). channel(s) was	ucted to de ations, data s (were) sele TES DEMISSION ucted to de ations, data s (were) sele	1GHz): termine the wors a rates and anter ected for the final STED CHANNEL 39 N TEST: termine the wors a rates and anter	Ina ports I test as I MO st-case m ina ports I test as I	ode from all possi (if EUT with anter isted below. DULATION TYPE GFSK ode from all possi (if EUT with anter	ible combinations ana diversity DATA RATE (Mbps) 1.0
- RADIATED E Pre-Scan between a architectur Following EUT CONFIGURE MODE - POWER LINE POWER LINE Pre-Scan between a architectur Following EUT CONFIGURE	MISSION TES has been cond available modul re). channel(s) was AVAILABLE CHANNEL 0 to 39 ECONDUCTEI has been cond available modul re). channel(s) was AVAILABLE	ucted to de ations, data s (were) sele TES DEMISSION ucted to de ations, data s (were) sele	1GHz): termine the wors a rates and anter ected for the fina STED CHANNEL 39 N TEST: termine the wors a rates and anter ected for the final	Ina ports I test as I MO st-case m ina ports I test as I	ode from all possi (if EUT with anter isted below. DULATION TYPE GFSK ode from all possi (if EUT with anter isted below.	ible combinations na diversity DATA RATE (Mbps) 1.0 ible combinations na diversity

ANTENNA PORT CONDUCTED MEASUREMENT:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

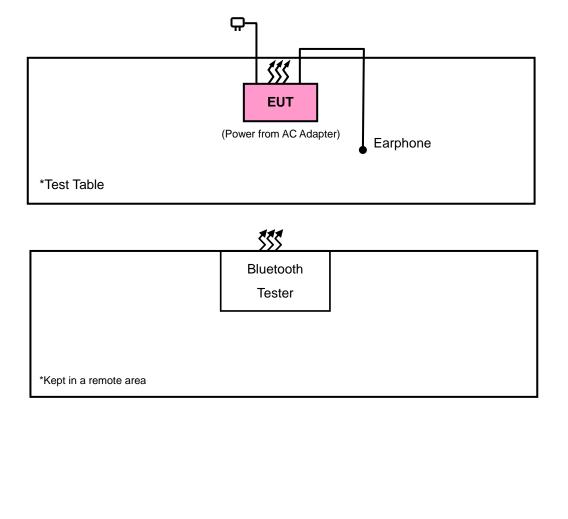
EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TYPE	DATA RATE (Mbps)
-	0 to 39	0, 19, 39	GFSK	1.0

TEST CONDITION:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	25deg. C, 65%RH	120Vac, 60Hz	Harry Hsueh
RE<1G	25deg. C, 65%RH	120Vac, 60Hz	Charles Hsiao
PLC	25deg. C, 65%RH	120Vac, 60Hz	Toby Tina
АРСМ	25deg. C, 65%RH	3.7Vdc	Taylor Liu

3.3 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.


NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Bluetooth Tester	R&S	CBT	100870	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS
1	N/A

NOTE: 1. All power cords of the above support units are non shielded (1.8m).

2. Item 1 as a communication partner to transfer data.

3.3.1 CONFIGURATION OF SYSTEM UNDER TEST

3.4 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) ANSI C63.10-2009 558074 D01 DTS Meas Guidance v03r02

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4. TEST TYPES AND RESULTS (FOR BLUETOOTH LE 4.0)

4.1 RADIATED EMISSION AND BANDEDGE MEASUREMENT

4.1.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 TEST INSTRUMENTS

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION	
Test Receiver Agilent	N9038A	MY51210203	Jan.21, 2015	Jan.21, 2016	
Spectrum Analyzer Agilent	N9010A	MY52220314	Sep.03, 2014	Sep.02, 2015	
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 10, 2014	Dec. 09, 2015	
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Feb. 04, 2015	Feb. 04, 2016	
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Feb. 09, 2015	Feb. 09, 2016	
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Feb. 04, 2015	Feb. 04, 2016	
Loop Antenna	EM-6879	269	Aug.13, 2014	Aug.12, 2015	
Preamplifier EMCI	EMC 012645	980115	Dec. 12, 2014	Dec. 11, 2015	
Preamplifier EMCI	EMC 184045	980116	Jan. 09, 2015	Jan. 08, 2016	
Preamplifier EMCI	EMC 330H	980112	Dec. 27, 2014	Dec. 26, 2015	
Power Meter Anritsu	ML2495A	1232002	Sep. 17, 2014	Sep. 16, 2015	
Power Sensor Anritsu	MA2411B	1207325	Sep. 17, 2014	Sep. 16, 2015	
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4 2950114	Oct. 18, 2014	Oct. 17, 2015	
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 18, 2014	Oct. 17, 2015	
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Nov. 07, 2014	Nov. 06, 2015	
Software BV ADT	E3 6.120103	NA	NA	NA	
Antenna Tower MF	MFA-440H	NA	NA	NA	
Turn Table MF	MFT-201SS	NA	NA	NA	
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA	

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The calibration interval of the loop antenna is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. The test was performed in HwaYa Chamber 10.

4. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.

- 5. The FCC Site Registration No. is 690701.
- 6. The IC Site Registration No. is IC 7450F-10.

4.1.3 TEST PROCEDURES

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Height of receiving antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 DEVIATION FROM TEST STANDARD

No deviation.

4.1.5 TEST SETUP <Frequency Range 30MHz ~ 1GHz> Ant. Tower 1-4m Variable 3m EUT& Support Units Turn Table 80cm \circ $\overline{\mathbf{O}}$ Ground Plane **Test Receiver** 0 0 0 0 0 0 0 <Frequency Range above 1GHz> Ant. Tower 1-4m Variable EUT& 3m **Support Units Turn Table** Absorber 150cm Ο Ο _ **Ground Plane Test Receiver** 0000 000 C For the actual test configuration, please refer to the attached file (Test Setup Photo). 4.1.6 EUT OPERATING CONDITIONS

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

4.1.7 TEST RESULTS

ABOVE 1GHz WORST-CASE DATA

EUT TEST CONDITION		MEASUREMENT DETAIL				
CHANNEL Channel 0		FREQUENCY RANGE	1GHz ~ 25GHz			
INPUT POWER (SYSTEM)	120Vac, 60 Hz		Peak (PK) Average (AV)			
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Harry Hsueh			

	Α	NTENN	A POLAR	ITY & TE	ST DISTAI	NCE: HO	RIZONTA	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2334	39.59	38.05	54	-14.41	31.73	5.33	35.52	120	219	Average
2334	55.23	53.69	74	-18.77	31.73	5.33	35.52	120	219	Peak
2402	93.76	92.03			31.8	5.4	35.47	120	219	Average
2402	94.59	92.86			31.8	5.4	35.47	120	219	Peak
2490	40.65	38.64	54	-13.35	31.9	5.53	35.42	120	219	Average
2490	55.57	53.56	74	-18.43	31.9	5.53	35.42	120	219	Peak
		ANTEN	NA POLA	RITY & T	EST DIST	ANCE: V	/ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2390	39.31	37.58	54	-14.69	31.8	5.4	35.47	139	29	Average
2390	55.15	53.42	74	-18.85	31.8	5.4	35.47	139	29	Peak
2402	90.72	88.99			31.8	5.4	35.47	139	29	Average
2402	91.67	89.94			31.8	5.4	35.47	139	29	Peak
2500	40.68	38.66	54	-13.32	31.9	5.53	35.41	139	29	Average
2500	56.09	54.07	74	-17.91	31.9	5.53	35.41	139	29	Peak

REMARKS:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2402MHz: Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL				
CHANNEL	Channel 19	FREQUENCY RANGE	1GHz ~ 25GHz			
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)			
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Harry Hsueh			

	А	NTENN	A POLAR	ITY & TE	ST DISTAI	NCE: HO	RIZONTA	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2384	40.41	38.72	54	-13.59	31.78	5.4	35.49	103	219	Average
2384	54.97	53.28	74	-19.03	31.78	5.4	35.49	103	219	Peak
2440	93.84	91.99			31.85	5.46	35.46	103	219	Average
2440	94.29	92.44			31.85	5.46	35.46	103	219	Peak
2486	40.64	38.65	54	-13.36	31.88	5.53	35.42	103	219	Average
2486	55.82	53.83	74	-18.18	31.88	5.53	35.42	103	219	Peak
		ANTEN	NA POLA	RITY & T	EST DIST	ANCE: V	/ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2382	40.41	38.72	54	-13.59	31.78	5.4	35.49	150	29	Average
2382	55.44	53.75	74	-18.56	31.78	5.4	35.49	150	29	Peak
2440	90.55	88.7			31.85	5.46	35.46	150	29	Average
2440	91.01	89.16			31.85	5.46	35.46	150	29	Peak
2496	39.96	37.94	54	-14.04	31.9	5.53	35.41	150	29	Average
2496	55.38	53.36	74	-18.62	31.9	5.53	35.41	150	29	Peak

REMARKS:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2440MHz: Fundamental frequency.

EUT TEST CONDITION		MEASUREMENT DETAIL				
CHANNEL	Channel 39	FREQUENCY RANGE	1GHz ~ 25GHz			
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Average (AV)			
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Harry Hsueh			

	А	NTENN	A POLAR	ITY & TE	ST DISTAI	NCE: HO	RIZONTA	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2324	39.26	37.75	54	-14.74	31.73	5.3	35.52	102	219	Average
2324	55.05	53.54	74	-18.95	31.73	5.3	35.52	102	219	Peak
2480	93.91	91.95			31.88	5.5	35.42	102	219	Average
2480	94.94	92.98			31.88	5.5	35.42	102	219	Peak
2498	40.69	38.67	54	-13.31	31.9	5.53	35.41	102	219	Average
2498	56.04	54.02	74	-17.96	31.9	5.53	35.41	102	219	Peak
		ANTEN	NA POLA	RITY & T	EST DIST	ANCE: V	/ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
2370	40.36	38.7	54	-13.64	31.78	5.37	35.49	150	29	Average
2370	54.77	53.11	74	-19.23	31.78	5.37	35.49	150	29	Peak
2480	90.5	88.54			31.88	5.5	35.42	150	29	Average
2480	91.36	89.4			31.88	5.5	35.42	150	29	Peak
2494	40.76	38.74	54	-13.24	31.9	5.53	35.41	150	29	Average
2494	55.51	53.49	74	-18.49	31.9	5.53	35.41	150	29	Peak

REMARKS:

- Emission Level = Read Level + Antenna Factor + Cable Loss Preamp Factor Margin value = Emission level – Limit value
- 2. 2480MHz: Fundamental frequency.

BELOW 1GHz WORST-CASE DATA :

EUT TEST CONDITION		MEASUREMENT DETAIL				
CHANNEL Channel 39		FREQUENCY RANGE	30MHz ~ 1GHz			
INPUT POWER (SYSTEM)	120Vac, 60 Hz	DETECTOR FUNCTION	Peak (PK) Quasi-peak (QP)			
ENVIRONMENTAL CONDITIONS	25deg. C, 65%RH	TESTED BY	Charles Hsiao			

	А	NTENN	A POLAR	ITY & TE	ST DISTAI	NCE: HO	RIZONT	AL AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
116.4	29.91	49.81	43.5	-13.59	11.07	1.28	32.25	149	248	Peak
148.8	36.33	58.69	43.5	-7.17	8.39	1.52	32.27	136	330	Peak
286.77	31.37	48.65	46	-14.63	12.82	2.03	32.13	177	185	Peak
346.2	21.53	37.25	46	-24.47	14.16	2.19	32.07	163	219	Peak
754.3	22.25	31.31	46	-23.75	19.86	3.22	32.14	145	11	Peak
977.6	24.76	29.77	54	-29.24	21.97	3.67	30.65	129	277	Peak
		ANTEN	NA POLA	RITY & T	EST DIST	ANCE: V	/ERTICAL	. AT 3 M		
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	READ LEVEL (dBuV)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA FACTOR (dB/m)	CABLE LOSS (dB)	PREAMP FACTOR (dB)	ANTENNA HEIGHT (cm)	TABLE ANGLE (Degree)	REMARK
30.27	28.27	48.24	40	-11.73	11.56	0.74	32.27	130	228	Peak
147.45	26.68	49.04	43.5	-16.82	8.39	1.52	32.27	183	225	Peak
178.77	25.51	46.52	43.5	-17.99	9.62	1.61	32.24	178	15	Peak
666.8	24.87	35.24	46	-21.13	18.71	3.05	32.13	124	66	Peak
926.5	24.9	30.98	46	-21.1	21.59	3.62	31.29	136	21	Peak
982.5	25	29.82	54	-29	22.03	3.72	30.57	120	220	Peak

REMARKS: Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

4.2 CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz) CONDUCTED LIMIT (dBμV) Quasi-peak Average 0.15 ~ 0.5 66 to 56 56 to 46 0.5 ~ 5 56 46 5 ~ 30 60 50

4.2.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

NOTE: 1. The lower limit shall apply at the transition frequencies.

- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

4.2.2 T EST INSTRUMENTS

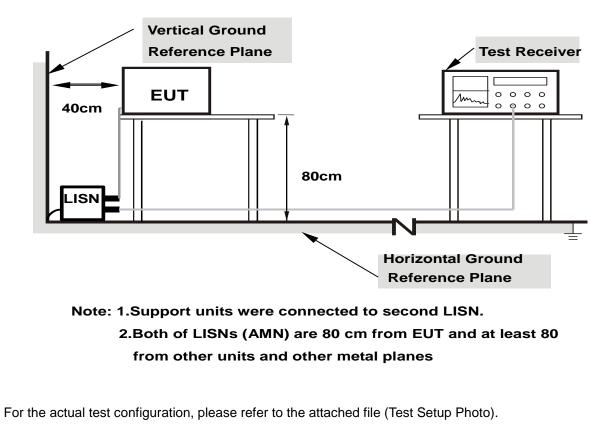
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	DATE OF CALIBRATION	DUE DATE OF CALIBRATION
Test Receiver ROHDE & SCHWARZ	ESCS30	100288	Apr. 27, 2015	Apr. 26, 2016
RF signal cable Woken	5D-FB	Cable-HYCO2-01	Dec. 26, 2014	Dec. 25, 2015
LISN ROHDE & SCHWARZ (EUT)	ESH2-Z5	100100	Dec. 30, 2014	Dec. 29, 2015
LISN ROHDE & SCHWARZ (Peripheral)	ESH3-Z5	100312	Jul. 10, 2014	Jul. 09, 2015
Software ADT	BV ADT_Cond_ V7.3.7.3	NA	NA	NA

NOTE: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2.

3. The VCCI Site Registration No. is C-2047.

4.2.3 TEST PROCEDURES


- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.

NOTE: All modes of operation were investigated and the worst-case emissions are reported.

4.2.4 DEVIATION FROM TEST STANDARD

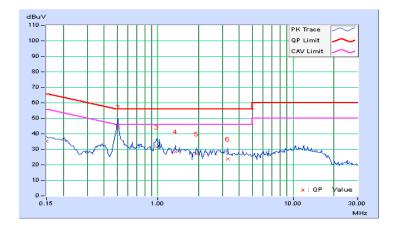
No deviation.

4.2.5 TEST SETUP

4.2.6 EUT OPERATING CONDITIONS

- a. Placed the EUT on a testing table.
- b. Use the software to control the EUT under transmission condition continuously at specific channel frequency.

4.2.7 TEST RESULTS

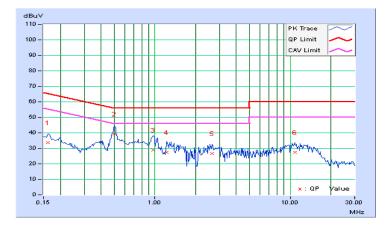

CONDUCTED WORST-CASE DATA :

PHASE	Line 1	6dB BANDWIDTH	9kHz
	Phase Of Powe	er : Line (L)	

	Frequency	Correction	Reading Value		Emission Level		Limit		Margin	
No		Factor	(dBuV)		(dBuV)		(dBuV)		(dB)	
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	0.16	35.10	25.00	35.26	25.16	66.00	56.00	-30.74	-30.84
2	0.50547	0.19	44.15	40.93	44.34	41.12	56.00	46.00	-11.66	-4.88
3	0.98203	0.23	31.26	24.54	31.49	24.77	56.00	46.00	-24.51	-21.23
4	1.34766	0.24	28.39	26.05	28.63	26.29	56.00	46.00	-27.37	-19.71
5	1.93750	0.27	26.71	24.17	26.98	24.44	56.00	46.00	-29.02	-21.56
6	3.29688	0.32	23.50	19.60	23.82	19.92	56.00	46.00	-32.18	-26.08

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

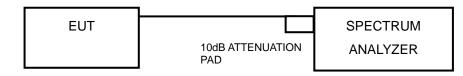


PHASE Line 2 6dB BANDWIDTH 9kHz

	Phase Of Power : Line (N)											
No	Frequency	Correction Factor	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)			
	(MHz)	(dB)	Q.P.	AV.	Q.P.	Q.P. AV.		AV.	Q.P.	AV.		
1	0.16172	0.18	33.41	21.12	33.59	21.30	65.38	55.38	-31.79	-34.08		
2	0.50000	0.21	38.87	31.80	39.08	32.01	56.00	46.00	-16.92	-13.99		
3	0.97422	0.24	28.59	18.89	28.83	19.13	56.00	46.00	-27.17	-26.87		
4	1.22656	0.25	26.99	17.52	27.24	17.77	56.00	46.00	-28.76	-28.23		
5	2.65234	0.32	26.43	16.44	26.75	16.76	56.00	46.00	-29.25	-29.24		
6	10.79688	0.55	26.89	19.43	27.44	19.98	60.00	50.00	-32.56	-30.02		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



4.3 6dB BANDWIDTH MEASUREMENT

4.3.1 LIMITS OF 6dB BANDWIDTH MEASUREMENT

The minimum of 6dB Bandwidth Measurement is 0.5MHz.

4.3.2 TEST SETUP

4.3.3 TEST INSTRUMENTS

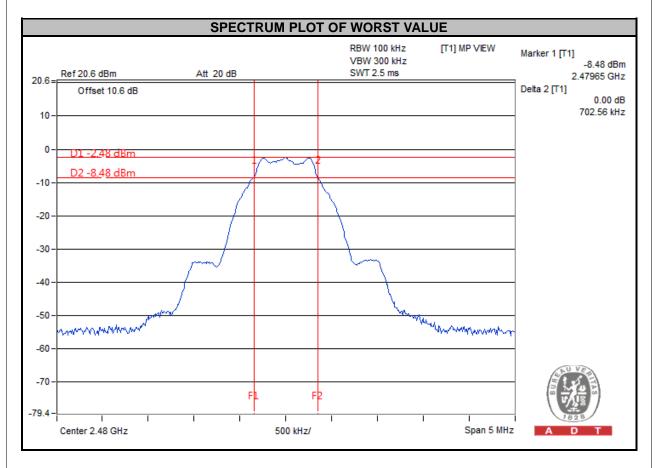
Refer to section 4.1.2 to get information of above instrument.

4.3.4 TEST PROCEDURE

- 1. Set resolution bandwidth (RBW) = approximately 1% of the emission bandwidth
- 2. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- 3. Trace mode = max hold.
- 4. Sweep = auto couple.
- 5. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

4.3.5 DEVIATION FROM TEST STANDARD

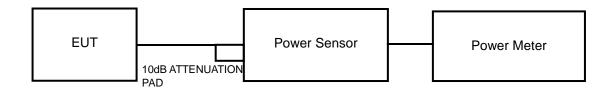
No deviation.


4.3.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	6dB BANDWIDTH (KHz)	MINIMUM LIMIT (MHz)	PASS / FAIL
0	2402	696.450	0.5	PASS
19	2440	696.430	0.5	PASS
39	2480	702.560	0.5	PASS



4.4 CONDUCTED OUTPUT POWER

4.4.1 LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT

For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt (30dBm).

4.4.2 TEST SETUP

4.4.3 INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.4.4 TEST PROCEDURES

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the peak power level.

4.4.5 DEVIATION FROM TEST STANDARD

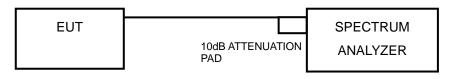
No deviation.

4.4.6 EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.4.7 TEST RESULTS

CHANNEL	FREQUENCY (MHz)	PEAK POWER (mW)	PEAK POWER (dBm)	LIMIT (dBm)	PASS/FAIL
0	2402	0.631	-2.00	30	PASS
19	2440	0.695	-1.58	30	PASS
39	2480	0.708	-1.50	30	PASS



4.5 POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF POWER SPECTRAL DENSITY MEASUREMENT

The Maximum of Power Spectral Density Measurement is 8dBm.

4.5.2 TEST SETUP

4.5.3 TEST INSTRUMENTS

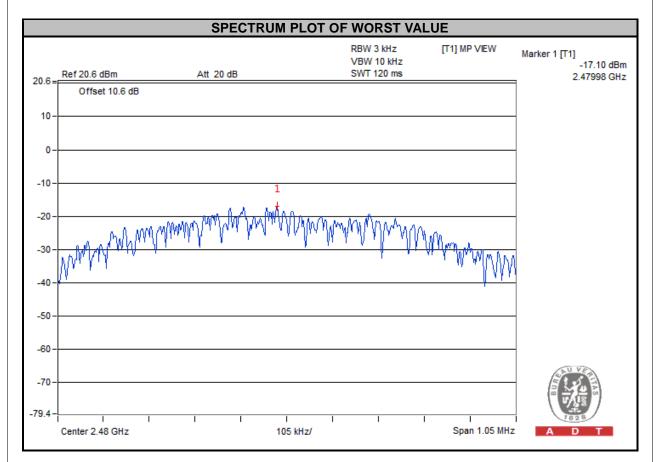
Refer to section 4.1.2 to get information of above instrument.

4.5.4 TEST PROCEDURE.

- a. Set the RBW = 3 kHz, VBW =10 kHz, Detector = peak.
- b. Sweep time = auto couple, Trace mode = max hold, allow trace to fully stabilize.
- c. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

4.5.5 DEVIATION FROM TEST STANDARD

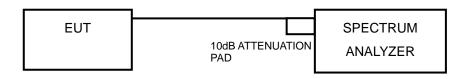
No deviation.


4.5.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.5.7 TEST RESULTS

Channel	FREQUENCY (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	PASS / FAIL
0	2402	-17.63	8	PASS
19	2440	-17.22	8	PASS
39	2480	-17.10	8	PASS



4.6 CONDUCTED OUT OF BAND EMISSION MEASUREMENT

4.6.1 LIMITS OF OUT OF BAND EMISSION MEASUREMENT

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 TEST SETUP

4.6.3 TEST INSTRUMENTS

Refer to section 4.1.2 to get information of above instrument.

4.6.4 TEST PROCEDURE

MEASUREMENT PROCEDURE REF

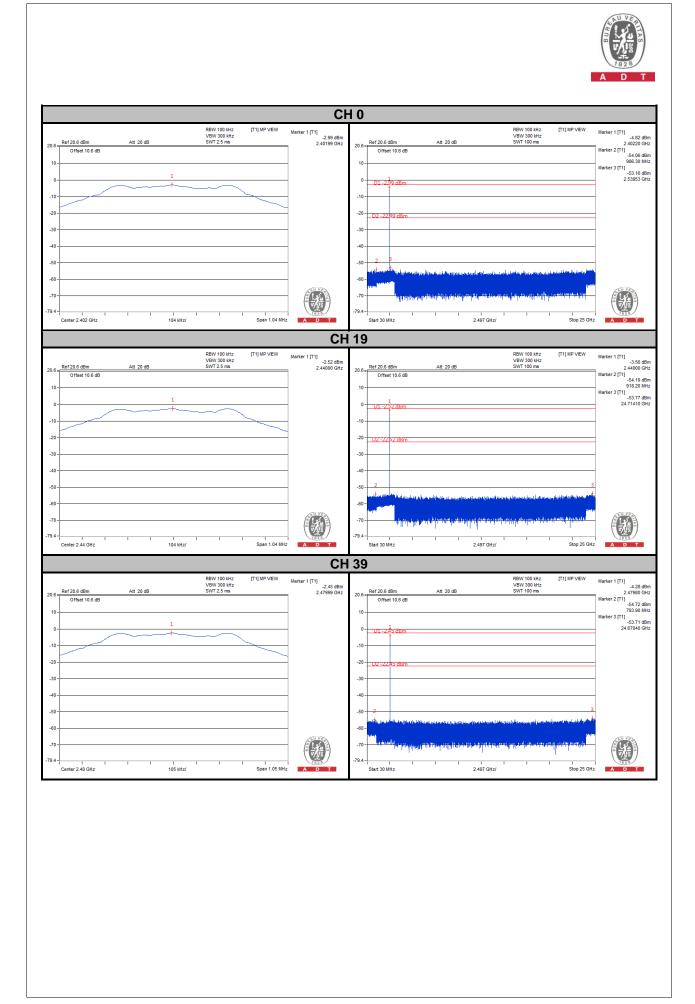
- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE

- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.

4.6.5 DEVIATION FROM TEST STANDARD

No deviation.



4.6.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.6.7 TEST RESULTS

The spectrum plots are attached on the following images. D1 line indicates the highest level, and D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

CH 0 Band ed	ge					CH 39	Band edg	e	
RBW 100 kH VBW 300 kH 20 6	[T1] MP VIEW	Marker 1 [T1] -2.10 dBm 2.40217 GHz	20.6=R	ef 20.6 dB	im	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 10 ms	[T1] MP VIEW	Marker 1 [T1] -2.61 dBr 2.48020 GH:
0 (fiset 10.6 dB		Marker 2 [T1] -56.36 dBm 2.40000 GHz	10-	Offset	10.6 dB				Marker 2 [T1] -54.31 dBr 2.48350 GH:
0- D1-2.99 dBm	1	Marker 3 [T1] -53.40 dBm 2.39450 GHz		1 D1-2.45	dBm				Marker 3 [T1] -53.56 dBr 2.49320 GH
-10-		Marker 4 [T1] -55.45 dBm 2.39000 GHz Marker 5 [T1]	-10						Marker 4 [T1] -56.34 dBr 2.50000 GH
-20 - D2 -22.99 dBm		-53.80 dBm 2.36683 GHz	-20 -	D2 - 22 A	5 dBm				-
-30 -			-30						-
-40	3	-	-40	\square	3				-
-00-	ann water	C .	-60-	of him	nountwood	4 ber Universiterationskiller	management	erraylowed	
-70 -			-70						
79.4 - IIIIIIII	F2 F1		-79.4 -	FL I enter 2.52-		F2	1 1	I I Span 100 MHz	

5. PHOTOGRAPHS OF THE TEST CONFIGURATION

Please refer to the attached file (Test Setup Photo).

6. INFORMATION ON THE TESTING LABORATORIES

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab: Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab: Tel: 886-3-5935343 Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Lab: Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

7. APPENDIX A – MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.

---END----