FCC 47 CFR PART 15 SUBPART C

TEST REPORT

For

Keyboard

Model: C1552K

Trade Name: N/A

Issued to

Quanta Computer Inc.
No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan (R.O.C.)

Issued by

Compliance Certification Services Inc.
No.11, Wugong 6th Rd., Wugu Dist.,
New Taipei City 24891, Taiwan. (R.O.C.)
http://www.ccsrf.com
service@ccsrf.com
Issued Date: December 3, 2015

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

Report No.: T151106L03-RP2

Revision History

Rev.	Issue Date	Revisions	Effect Page	Revised By
00	December 3, 2015	Initial Issue	ALL	Doris Chu
01	December 3, 2015	Added note.	P.45	Angel Cheng
02	December 3, 2015	Added support equipment	P.13	Angel Cheng

Page 2 Rev. 00

TABLE OF CONTENTS

1.	TE	EST RESULT CERTIFICATION	4
2.	ΕU	JT DESCRIPTION	5
3.	1 6	EST METHODOLOGY	6
(3.1	EUT CONFIGURATION	6
(3.2		
(3.3	GENERAL TEST PROCEDURES	6
(3.4		7
;	3.5	DESCRIPTION OF TEST MODES	
4	IN	STRUMENT CALIBRATION	<u>e</u>
4	4.1	MEASURING INSTRUMENT CALIBRATION	Ç
	4.2	MEASUREMENT EQUIPMENT USED	
	4.3	MEASUREMENT UNCERTAINTY	
5	FA	ACILITIES AND ACCREDITATIONS	11
ı	5.1	FACILITIES	11
	5.2		
		TABLE OF ACCREDITATIONS AND LISTINGS	11 12
`	5.0	TABLE OF AGOILEDITATIONO AND EIGHNOO	12
6	SE	ETUP OF EQUIPMENT UNDER TEST	13
(6.1	SETUP CONFIGURATION OF EUT	13
(6.2	SUPPORT EQUIPMENT	
7	10	N TIME, DUTY CYCLE AND MEASUREMENT METHODS	14
-	7.1	LIMITS	14
		PROCEDURE	
8	FC	CC PART 15.247 REQUIREMENTS	15
8	8.1	6DB BANDWIDTH	15
8	8.2	PEAK POWER	18
8	8.3	AVERAGE POWER	19
8	8.4	BAND EDGES MEASUREMENT	
8	8.5	PEAK POWER SPECTRAL DENSITY	27
		RADIATED EMISSIONS	
8	8.7	POWERLINE CONDUCTED EMISSIONS	45
ΑF	PE	NDIX I PHOTOGRAPHS OF TEST SETUP	46
		NDIX 1 - PHOTOGRAPHS OF EUT	
Αľ		NDIA I - FROTOGRAFRO OF EUT	

1. TEST RESULT CERTIFICATION

Applicant: Quanta Computer Inc.

No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City

Report No.: T151106L03-RP2

33377, Taiwan (R.O.C.)

Manufacturer: Quanta Computer Inc.

No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City

33377, Taiwan (R.O.C.)

Equipment Under Test: Keyboard

Trade Name: N/A

Model: C1552K

Date of Test: December 2 ~ 3, 2015

APPLICABLE STANDARDS					
STANDARD TEST RESULT					
FCC 47 CFR Part 15 Subpart C KDB 558074 D01 DTS Meas Guidance v03r03	No non-compliance noted				
Deviation from Applicable Standard					
N/A					

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with the requirements set forth in the above standards.

The test results of this report relate only to the tested sample EUT identified in this report.

Approved by: Reviewed by:

Miller Lee

Manager

Compliance Certification Services Inc.

Willer Loe

Angel Cheng Section Manager

Compliance Certification Services Inc.

Angel Chent

Page 4 Rev. 00

2. EUT DESCRIPTION

Product	Keyboard			
Trade Name	N/A			
Model Number	C1552K			
Model Discrepancy	N/A			
Received Date	November 6	6, 2015		
Power Ratting	Power from Li-ion Battery: 1. Lishen / C1553B Rating: 3.8V, 122mAh (Nominal), 120mAh(Minimum) 2. ATL / C1553B Rating: 3.8V, 110mAh, 0.43Wh			
Battery	ATL	Model	C1553B	
Datter y	Lishen	Model	C1553B	
Frequency Range	2402MHz ~ 2480MHz			
Transmit Power	2.93 dBm			
Modulation Technique	BT 4.1 LE mode, GFSK (1Mbps)			
Number of Channels	40 Channels			
Antenna Specification	Gain: -7.5 dBi			
Antenna Designation	IFA printed a	antenna		

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>HFS-RK</u> filing to comply with FCC Part 15C, Section 15.207, 15.209.

Page 5 Rev. 00

3. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10: 2013 and FCC CFR 47 Part 15.207, 15.209, 15.247.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209 and 15.247 under the FCC Rules Part 15 Subpart C.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

According to the requirements in ANSI C63.10: 2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 1.5 m above ground plane for above 1GHz and 0.8m above ground plane for below 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in ANSI C63.10: 2013.

Page 6 Rev. 00

3.4 FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
MHz 0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 8.41425 - 8.41475 12.29 - 12.293	MHz 16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 156.7 - 156.9 162.0125 - 167.17	MHz 399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 3260 - 3267 3332 - 3339	GHz 4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 23.6 - 24.0 31.2 - 31.8
12.29 - 12.293 12.51975 - 12.52025 12.57675 - 12.57725 13.36 - 13.41	162.0125 - 167.17 167.72 - 173.2 240 - 285 322 - 335.4	3345.8 - 3358 3600 - 4400	36.43 - 36.5 (²)

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5 DESCRIPTION OF TEST MODES

The EUT (model: C1552K) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz.

BT 4.1

Tested Channel	Frequency (MHz)
Low	2402
Mid	2440
High	2480

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in stand-up position (Z axis) and the worst case was recorded.

> Page 8 Rev. 00

4 INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2 MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year and Loop Antenna is scheduled for calibration once three years.

Conducted Emissions Test Site						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	US42510252	11/24/2016		
Thermostatic/Humidity Chamber	TAICHY	MHG-150LF	930619	10/07/2016		
AC Power Source	EXTECH	6205	1140845	N.C.R		
DC Power Supply	ABM	8301HD	D011531	N.C.R		
Power Meter	Anritsu	ML2495A	1012009	07/07/2016		
Power Sensor	Anritsu	MA2411A	0917072	07/07/2016		
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40	101073	07/19/2016		

Wugu 966 Chamber A						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	US42510268	01/25/2016		
EMI Test Receiver	R&S	ESCI	100064	06/03/2016		
Bilog Antenna	Sunol Sciences	JB3	A030105	08/05/2016		
Horn Antenna	EMCO	3117	00055165	01/26/2016		
Horn Antenna	EMCO	3116	26370	12/25/2015		
Turn Table	CCS	CC-T-1F	N/A	N.C.R		
Antenna Tower	CCS	CC-A-1F	N/A	N.C.R		
Controller	CCS	CC-C-1F	N/A	N.C.R		
Pre-Amplifier	MITEQ	1652-3000	1490939	08/09/2016		
Pre-Amplifier	EMC	EMC 012635	980151	06/04/2016		
Pre-Amplifier	MITEQ	AMF-6F-260400-40 -8P	985646	12/25/2015		
Coaxial Cable	Huber+Suhner	102	29212/2	12/25/2015		
Coaxial Cable	Huber+Suhner	102	29406/2	12/25/2015		
Test S/W	EZ-EMC (CCS-3A1RE)					

Page 9 Rev. 00

4.3 MEASUREMENT UNCERTAINTY

PARAMETER	UNCERTAINTY
Powerline Conducted Emission	N/A
3M Semi Anechoic Chamber / 30M~200M	+/- 4.0138
3M Semi Anechoic Chamber / 200M~1000M	+/- 3.9483
3M Semi Anechoic Chamber / 1G~8G	+/- 2.5975
3M Semi Anechoic Chamber / 8G~18G	+/- 2.6112
3M Semi Anechoic Chamber / 18G~26G	+/- 2.7389
3M Semi Anechoic Chamber / 26G~40G	+/- 2.9683

Remark: This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Page 10 Rev. 00

FCC ID: HFS-RK

Report No.: T151106L03-RP2

5 FACILITIES AND ACCREDITATIONS **5.1 FACILITIES**

All	measurement facilities used to collect the measurement data are located at
	No.199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C. Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
\boxtimes	No.11, Wugong 6th Rd., Wugu Dist., New Taipei City 24891, Taiwan. (R.O.C.) Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
	No.81-1, Lane 210, Bade 2nd Rd., Lujhu Township, Taoyuan County 33841, TAIWAN, R.O.C. Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.10 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

> Page 11 Rev. 00

5.3 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	FCC	3M Semi Anechoic Chamber (FCC MRA: TW1039) to perform FCC Part 15 measurements	FCC MRA: TW1039
Taiwan	TAF	LP0002, RTTE01, FCC Method-47 CFR Part 15 Subpart C, D, E, RSS-210, RSS-310 IDA TS SRD, AS/NZS 4268, AS/NZS 4771, TS 12.1 & 12,2, ETSI EN 300 440-1, ETSI EN 300 440-2, ETSI EN 300 328, ETSI EN 300 220-1, ETSI EN 300 220-2, ETSI EN 301 893, ETSI EN 301 489-1/3/7/17 FCC OET Bulletin 65 + Supplement C, EN 50360, EN 50361, EN 50371, RSS 102, EN 50383, EN 50385, EN 50392, IEC 62209, CNS 14958-1, CNS 14959 FCC Method –47 CFR Part 15 Subpart B IEC / EN 61000-3-2, IEC / EN 61000-3-3, IEC / EN 61000-4-2/3/4/5/6/8/11	Testing Laboratory 1309
Canada	Industry Canada	3M Semi Anechoic Chamber (IC 2324G-1 / IC 2324G-2) to perform	Canada IC 2324G-1 IC 2324G-2

^{*} No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

Page 12 Rev. 00

6 SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

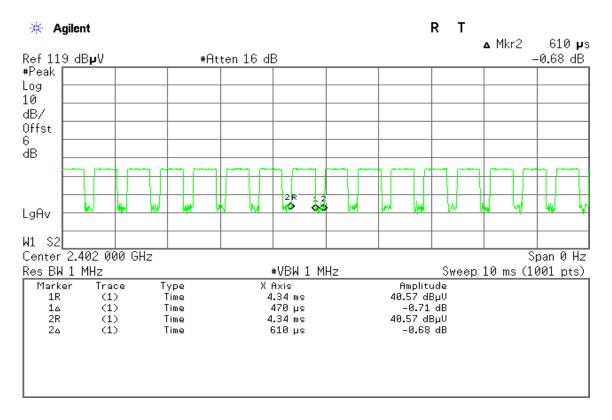
No.	Device Type	Brand	Model	Series No.	FCC ID / IC ID	Data Cable	Power Cord
1.	Notebook PC	TOSHIBA	Satellite M840	N/A	PPD-AR5B225	N/A	AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core
2	Tablet	N/A	C1502W	N/A	FCC ID: HFS-R IC: 1787B-R	N/A	N/A
3	Adapter	Salcomp	GL0102	N/A	N/A	N/A	Shielded, 1.3 m (Non-detachable)

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

Page 13 Rev. 00

7 ON TIME, DUTY CYCLE AND MEASUREMENT METHODS 7.1 LIMITS


None

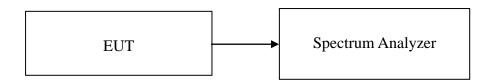
7.2 PROCEDURE

KDB 558074 D01 DTS Meas Guidance, Zero Span spectrum analyzer method.

Results of Duty cycle

BT4.1: = 77%, VBW= 2.2KHz

Page 14 Rev. 00


8 FCC PART 15.247 REQUIREMENTS

8.1 6DB BANDWIDTH

LIMIT

According to §15.247 systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 - 2483.5 MHz, and 5725 - 5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

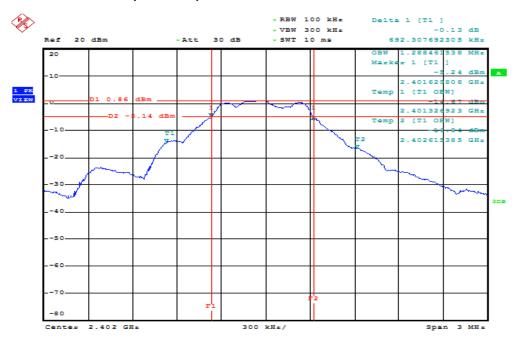
Test Configuration

TEST PROCEDURE

The transmitter output is connected to the spectrum analyzer. Set the RBW = 100 kHz of the emission bandwidth, VBW \geq 3 x RBW, Detector = Peak, Trace mode = max hold, Sweep = auto couple. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

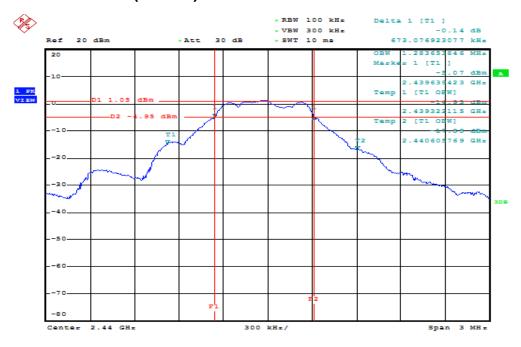
TEST RESULTS

No non-compliance noted


Test Data

Channel	Frequency (MHz)	6dB Bandwidth (KHz)	Limit (kHz)	Test Result
Low	2402	692.3076		PASS
Mid	2440	673.0769	>500	PASS
High	2480	682.6923		PASS

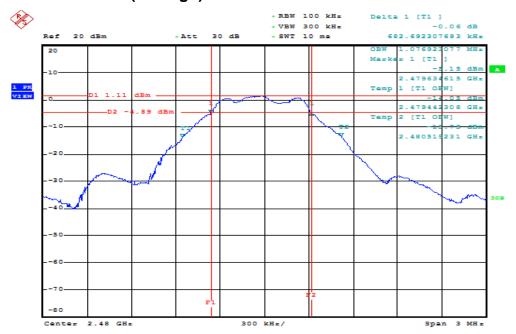
Page 15 Rev. 00


Test Plot

6dB Bandwidth (CH Low)

Date: 2.DEC.2015 18:56:33

6dB Bandwidth (CH Mid)



Date: 2.DEC.2015 18:59:21

Page 16 Rev. 00

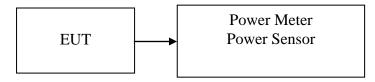
6dB Bandwidth (CH High)

Date: 2.DEC.2015 19:04:30

Rev. 00 Page 17

FCC ID: HFS-RK

8.2 PEAK POWER


LIMIT

The maximum peak output power of the intentional radiator shall not exceed the following:

- 1. According to §15.247(b)(3), for systems using digital modulation in the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz: 1 Watt.
- 2. According to §15.247(b)(4), the conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: T151106L03-RP2

Test Configuration

TEST PROCEDURE

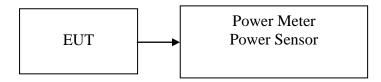
The transmitter output is connected to the Power Meter. The Power Meter is set to the Peak power detection.

TEST RESULTS

No non-compliance noted

Test Data

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)	Limit (W)	Test Result
Low	2402	2.56	0.0018		PASS
Mid	2440	2.87	0.0019	1	PASS
High	2480	*2.93	0.0020		PASS


Page 18 Rev. 00

8.3 AVERAGE POWER

LIMIT

None; for reporting purposes only.

Test Configuration

TEST PROCEDURE

The transmitter output is connected to the Power Meter. The Power Meter is set to the avg power detection.

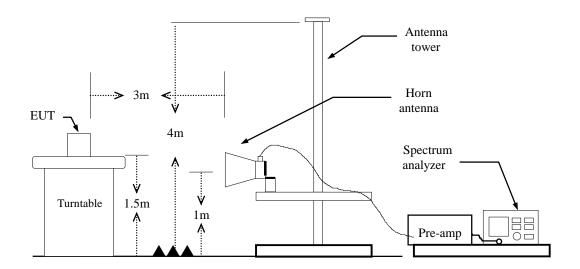
TEST RESULTS

No non-compliance noted

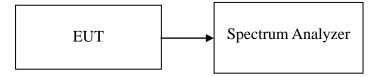
Test Data

Channel	Frequency (MHz)	Output Power (dBm)	Output Power (W)
Low	2402	1.60	0.0014
Mid	2440	1.85	0.0015
High	2480	1.92	0.0016

Page 19 Rev. 00


8.4 BAND EDGES MEASUREMENT

LIMIT


According to §15.247(d), in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in 15.209(a) (see Section 15.205(c)).

Test Configuration

For Radiated Emission above 1GHz

For Conducted

Page 20 Rev. 00

TEST PROCEDURE

For Radiated

- 1. The EUT is placed on a turntable, which is 1.5m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz, if duty cycle≥98%, VBW=10Hz. if duty cycle<98% VBW=1/T.</p>

Results of Duty cycle

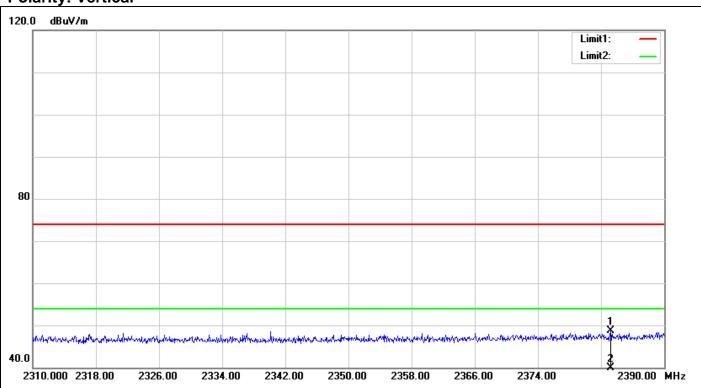
BT4.1: = 77%, VBW= 2.2KHz

- Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.
- 6. Result = Spectrum Reading + cable loss(spectrum to Amp) Amp Gain + Cable loss(Amp to receive Ant)+ Receive Ant

For Conducted

Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

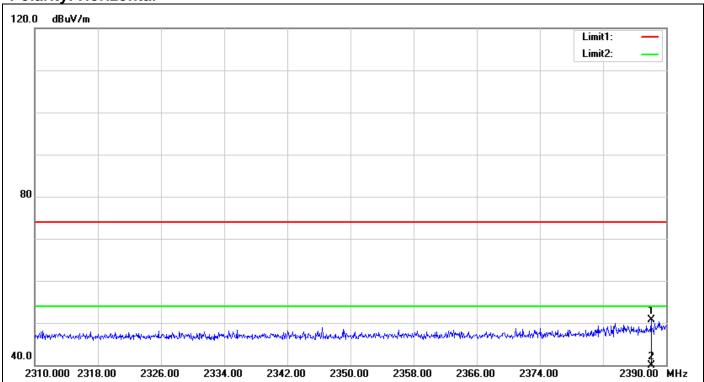
The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 100 kHz. The video bandwidth is set to 300 kHz.


TEST RESULTS

Refer to attach spectrum analyzer data chart.

Page 21 Rev. 00

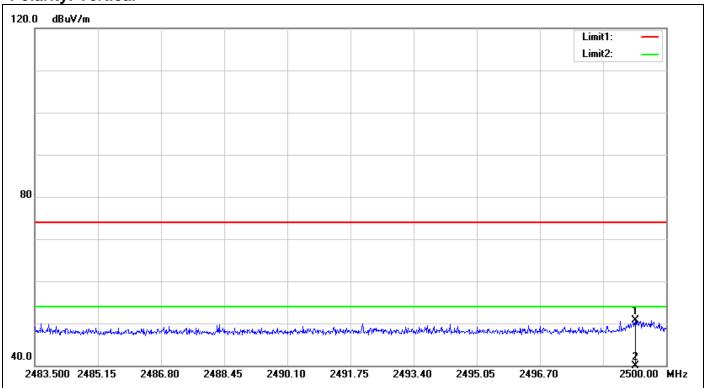
Band Edges (CH Low)


Polarity: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2383.200	51.19	-2.55	48.64	74.00	-25.36	150	148	peak
2	2383.200	38.50	-2.55	35.95	54.00	-18.05	150	148	AVG

Page 22 Rev. 00

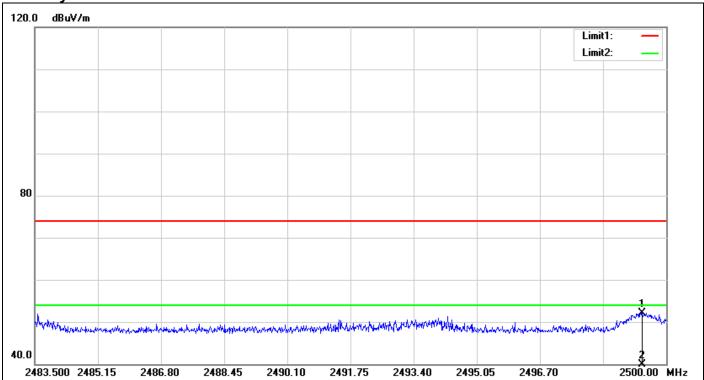
Polarity: Horizontal



No	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2388.080	53.15	-2.51	50.64	74.00	-23.36	150	60	peak
2	2388.080	38.69	-2.51	36.18	54.00	-17.82	150	60	AVG

Page 23 Rev. 00

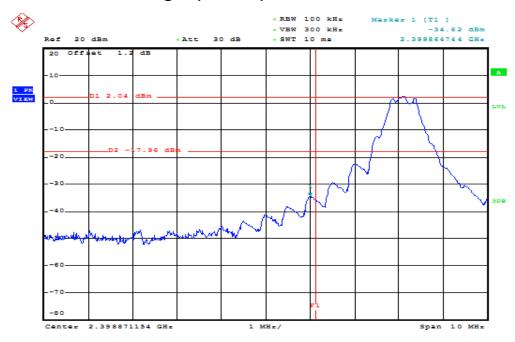
Band Edges (CH High)


Polarity: Vertical

No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2499.191	52.62	-1.87	50.75	74.00	-23.25	150	353	peak
2	2499.191	38.72	-1.87	36.85	54.00	-17.15	150	353	AVG

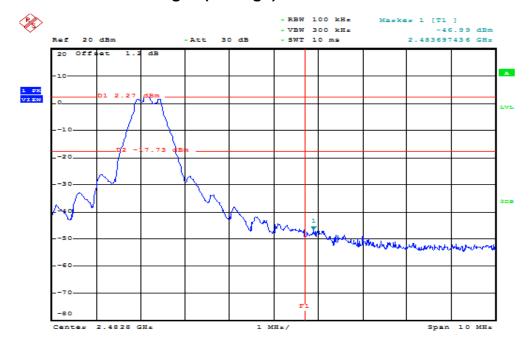
Page 24 Rev. 00

Polarity: Horizontal



No.	Frequency	Reading	Correct	Result	Limit	Margin	Height	Degree	Remark
	(MHz)	(dBuV)	Factor(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	(cm)	(°)	
1	2499.373	54.02	-1.86	52.16	74.00	-21.84	150	119	peak
2	2499.373	39.13	-1.86	37.27	54.00	-16.73	150	119	AVG

Page 25 Rev. 00


Report No.: T151106L03-RP2

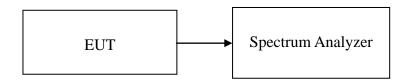
Conducted Band Edges (CH Low)

Date: 2.DEC.2015 19:14:02

Conducted Band Edges (CH High)

Date: 2.DEC.2015 19:16:47

Page 26 Rev. 00



8.5 PEAK POWER SPECTRAL DENSITY

LIMIT

- 1. According to §15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
- 2. According to §15.247(f), the digital modulation operation of the hybrid system, with the frequency hopping turned off, shall comply with the power density requirements of paragraph (d) of this section.

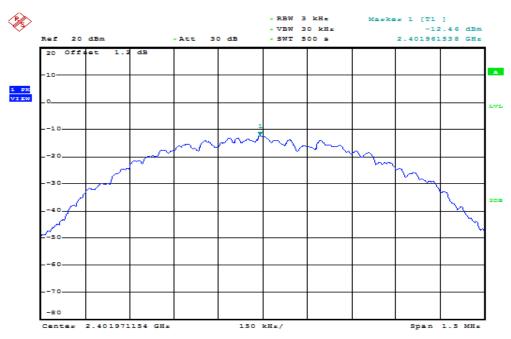
Test Configuration

TEST PROCEDURE

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to: $3 \text{ kHz} \leq \text{RBW} \leq 100 \text{ kHz}$.
- d) Set the VBW \geq 3 × RBW.
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the **RBW**
- j) If measured value exceeds limit, reduce RBW (no less than 3KHz) and repeat.

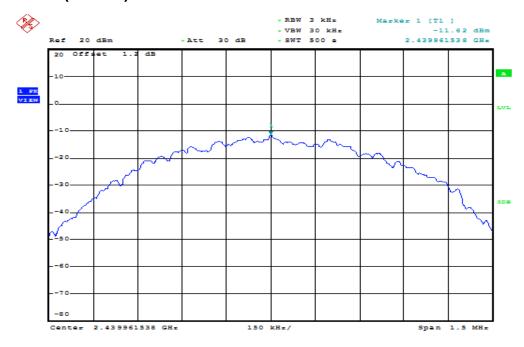
TEST RESULTS

No non-compliance noted


Test Data

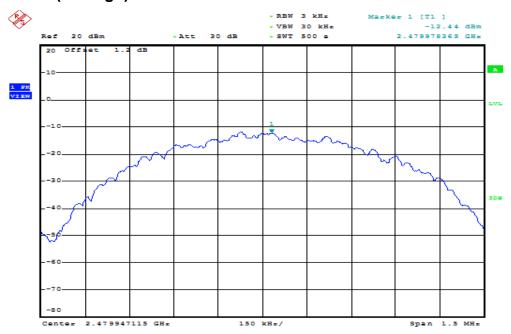
Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Result
Low	2402	-12.46		PASS
Mid	2440	-11.62	8	PASS
High	2480	-12.44		PASS

Page 27 Rev. 00


Test Plot

PPSD (CH Low)

Date: 2.DEC.2015 19:10:12


PPSD (CH Mid)

Date: 2.DEC.2015 19:08:16

Page 28 Rev. 00

PPSD (CH High)

Date: 2.DEC.2015 19:06:47

Page 29 Rev. 00

8.6 RADIATED EMISSIONS

LIMIT

All spurious emissions shall comply with the limits of §15.209(a)

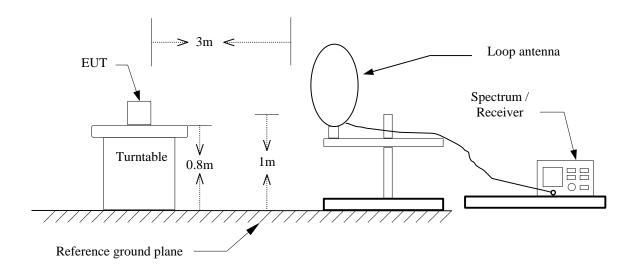
Frequency (MHz)	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.) Receivers
30-88	100 (3 nW)
88-216	150 (6.8 nW)
216-960	200 (12 nW)
Above 960	500 (75 nW)

All spurious emissions shall comply with the limits of §15.209(a).

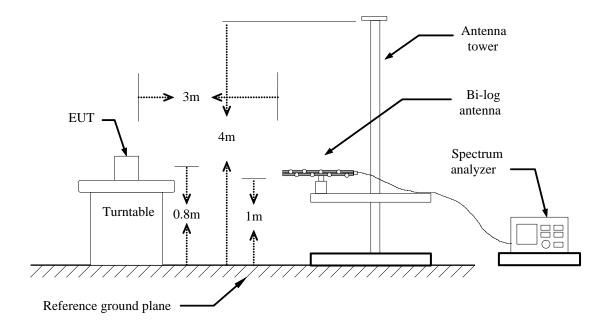
Frequency (MHz)	Field Strength microvolts/m at 3 metres (watts, e.i.r.p.) Transmitters
30-88	100 (3 nW)
88-216	150 (6.8 nW)
216-960	200 (12 nW)
Above 960	500 (75 nW)

General Field Strength Limits for Transmitters at Frequencies Below 30 MHz (Transmit)

Frequency	Field Strength (microvolts/m)	Magnetic H-Field (microamperes/m)	Measurement Distance (metres)
9-490 kHz	2,400/F (F in kHz)	2,400/377F (F in kHz)	3000
490-1,705 kHz	24,000/F (F in kHz)	24,000/377F (F in kHz)	30
1.705-30 MHz	30	N/A	30

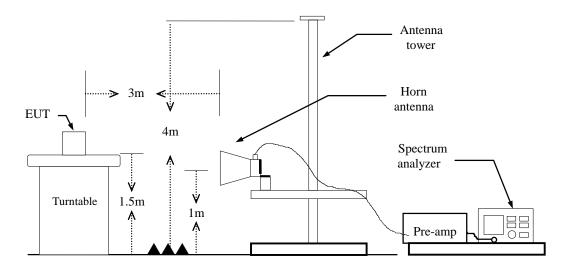

Note: The emission limits for the bands 9-90 kHz and 110-490 kHz are based on measurements employing an average detector. Transmitting devices are not permitted in restricted frequency band unless stated otherwise in the relevant RSS.

Page 30 Rev. 00


FCC ID: HFS-RK

Test Configuration

9kHz ~ 30MHz



30MHz ~ 1GHz

Page 31 Rev. 00

Above 1 GHz

Page 32 Rev. 00

TEST PROCEDURE

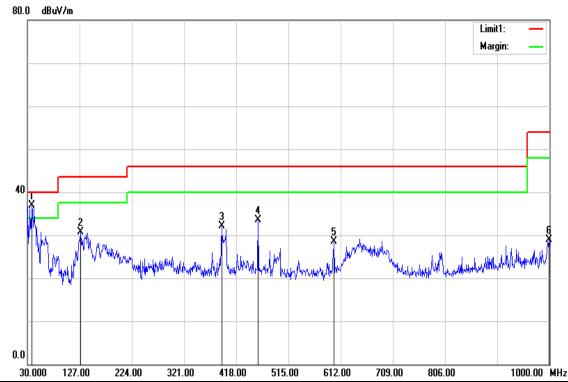
- 1. The EUT is placed on a turntable, Above 1 GHz is 1.5m high and below 1 GHz is 0.8m high above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:
 - (a) PEAK: RBW=1MHz / VBW=3MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz, if duty cycle≥98%, VBW=10Hz. if duty cycle<98% VBW=1/T.

Results of Duty cycle

BT4.1: = 77%, VBW= 2.2KHz

- 7. Repeat above procedures until the measurements for all frequencies are complete.
- 8. Result = Spectrum Reading + cable loss(spectrum to Amp) Amp Gain + Cable loss(Amp to receive Ant)+ Receive Ant

Note: We checked every harmonics frequencies from Fundamental frequencies with reduced VBW, and we mark a point to prove pass or not if we find any emission. For this case, there are no emissions hidden in the noise floor.


Page 33 Rev. 00

Below 1 GHz

Operation Mode: Normal Link Test Date: December 2, 2015

Temperature: 27°C **Tested by:** Jason Lu

Humidity: 53% RH **Polarity:** Ver.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
38.7300	51.21	-14.40	36.81	40.00	-3.19	Peak	V
128.9400	46.27	-15.63	30.64	43.50	-12.86	Peak	V
390.8400	43.93	-11.92	32.01	46.00	-13.99	Peak	V
458.7400	43.57	-10.02	33.55	46.00	-12.45	Peak	V
599.3900	36.31	-7.77	28.54	46.00	-17.46	Peak	V
999.0300	30.51	-1.60	28.91	54.00	-25.09	Peak	V

Remark:

- 1. No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

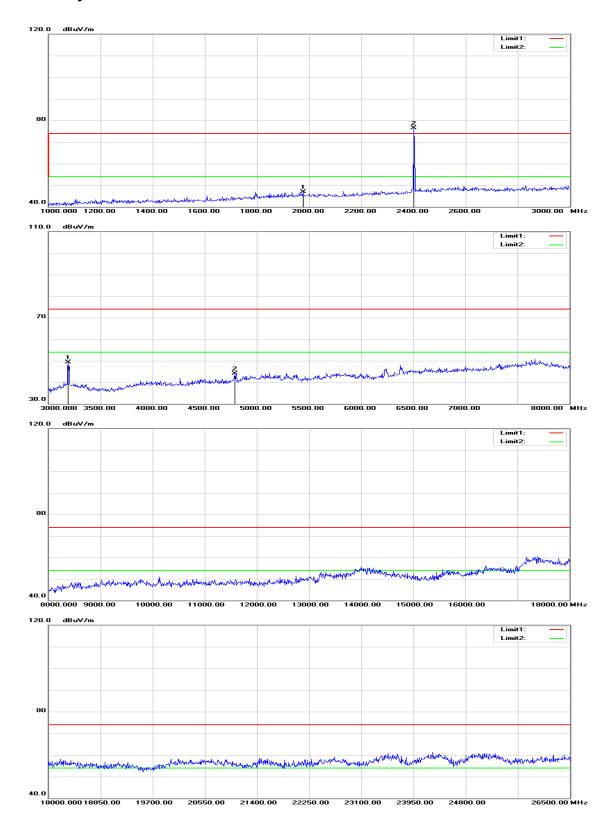
Page 34 Rev. 00

Operation Mode: Normal Link **Test Date:** December 2, 2015

Temperature: 27°C **Tested by:** Jason Lu

Humidity: 53% RH **Polarity:** Hor.

Frequency (MHz)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant. Pol. (H/V)
38.7300	44.15	-14.40	29.75	40.00	-10.25	peak	Н
159.9800	45.36	-16.36	29.00	43.50	-14.50	peak	Н
399.5700	42.42	-11.71	30.71	46.00	-15.29	peak	Н
458.7400	40.82	-10.02	30.80	46.00	-15.20	peak	Н
688.6300	35.84	-6.18	29.66	46.00	-16.34	peak	Н
997.0900	29.07	-1.63	27.44	54.00	-26.56	peak	Н


Remark:

- No emission found between lowest internal used/generated frequency to 30MHz (9kHz~30MHz)
 - 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
 - 3. Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.
 - 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "N/A" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
 - 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Page 35 Rev. 00

Above 1 GHz GFSK / TX / CH Low

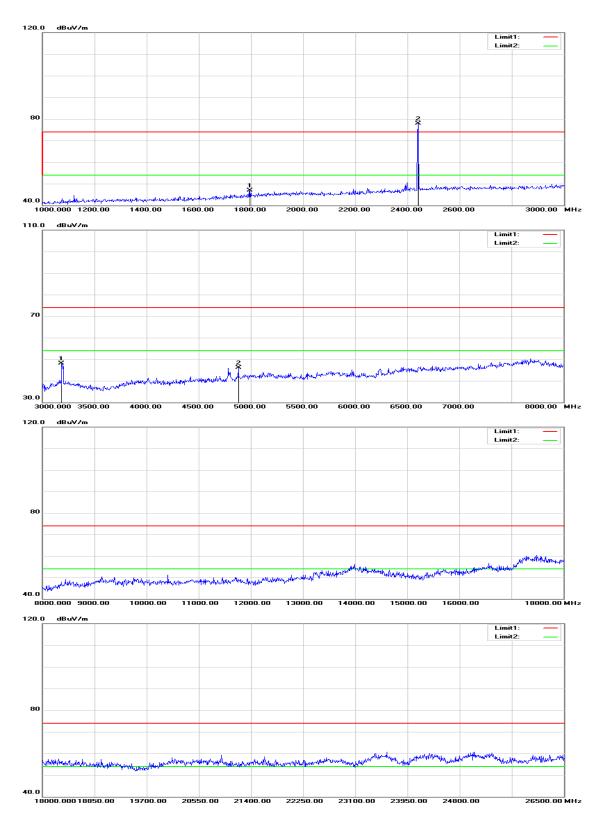
Page 36 Rev. 00

Polarity: Horizontal

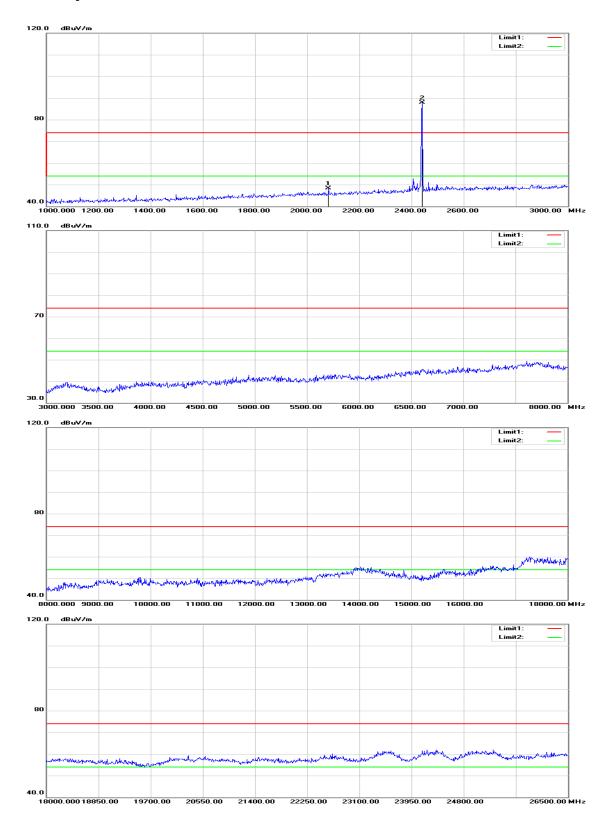
Operation Mode: GFSK / TX / CH Low **Test Date:** December 3, 2015

Temperature:27°CTested by:Jason LuHumidity:53 % RHPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1976.000	50.69	-3.72	46.97	74.00	-27.03	peak	V
3190.000	49.41	-0.15	49.26	74.00	-24.74	peak	V
4790.000	39.11	5.01	44.12	74.00	-29.88	peak	V
N/A							
1936.000	50.66	-3.93	46.73	74.00	-27.27	peak	Н
N/A							


Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).


Page 38 Rev. 00

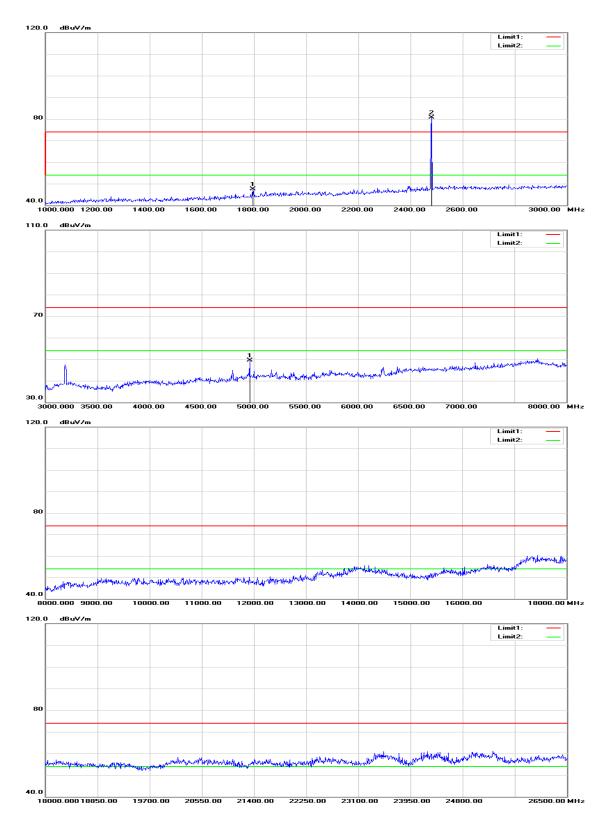
GFSK / TX / CH Mid

Polarity: Vertical

Polarity: Horizontal

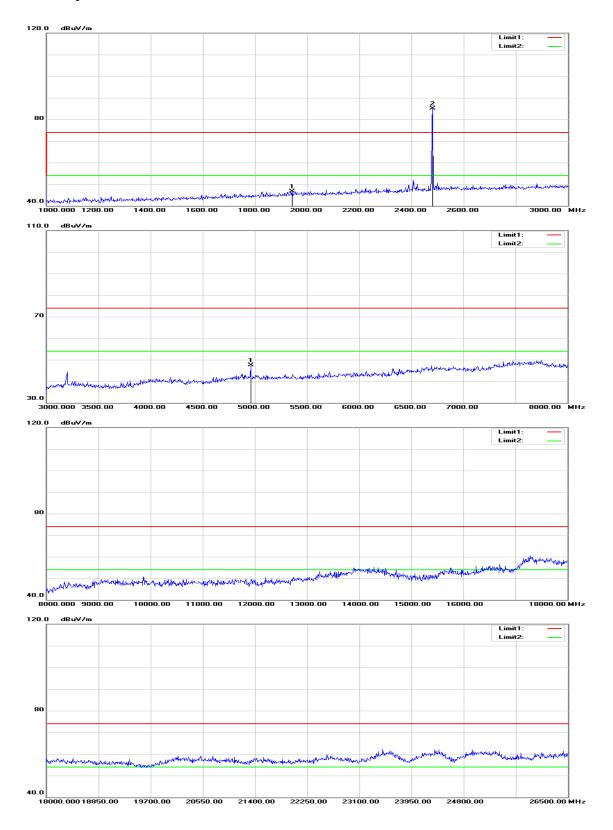
Operation Mode: GFSK / TX / CH Mid Test Date: December 3, 2015

Temperature:27°CTested by:Jason LuHumidity:53 % RHPolarity:Ver. / Hor.


Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1796.000	51.49	-4.66	46.83	74.00	-27.17	peak	٧
3185.000	48.18	-0.16	48.02	74.00	-25.98	peak	V
4880.000	40.91	5.25	46.16	74.00	-27.84	peak	V
N/A							
2082.000	52.00	-3.68	48.32	74.00	-25.68	peak	Н
N/A							
		_					

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).


GFSK / TX / CH High

Polarity: Vertical

Page 42 Rev. 00

Polarity: Horizontal

Operation Mode: GFSK / TX / CH High Test Date: December 3, 2015

Temperature:27°CTested by:Jason LuHumidity:53 % RHPolarity:Ver. / Hor.

Frequency (MHz)	Reading (dBuV)	Correction (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark	Ant.Pol. (H/V)
1796.000	52.23	-4.66	47.57	74.00	-26.43	peak	V
4960.000	44.02	5.46	49.48	74.00	-24.52	peak	V
N/A							
1942.000	50.67	-3.90	46.77	74.00	-27.23	peak	Н
4960.000	42.09	5.46	47.55	74.00	-26.45	peak	Н
N/A							

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit or as required by the applicant.
- 4. Data of measurement within this frequency range shown " --- " in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with " N/A " remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Page 44 Rev. 00

8.7 POWERLINE CONDUCTED EMISSIONS

LIMIT

According to §15.207(a), Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 kHz to 30 MHz, shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Limits (dBµV)				
(MHz)	Quasi-peak	Average			
0.15 to 0.50	66 to 56*	56 to 46*			
0.50 to 5	56	46			
5 to 30	60	50			

Test Configuration

See test photographs attached in Appendix II for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Test Data

Not applicable, because EUT not connect to AC Main Source direct.

Page 45 Rev. 00