

FCC Test Report

Report No.: RF160831C13-2

FCC ID: HFS-M99

Test Model: QTAXU1

Received Date: Aug. 31, 2016

Test Date: Sep. 09, 2016 ~ Sep. 10, 2016

Issued Date: Sep. 21, 2016

Applicant: Quanta Computer Inc.

Address: No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan

- Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan (R.O.C)
- Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan, R.O.C.

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Release Control Record 4			
1	Cer	tificate of Conformity	5
2	Sun	nmary of Test Results	6
	2.1	Measurement Uncertainty	6
		Modification Record	
3	Ger	neral Information	7
	2 1	General Description of EUT	7
		Description of Test Modes	
	5.2	3.2.1 Test Mode Applicability and Tested Channel Detail	
	3.3	Description of Support Units	
		3.3.1 Configuration of System under Test	11
	3.4	General Description of Applied Standards	
4	Tes	t Types and Results	. 13
	4.1	Radiated Emission and Bandedge Measurement	. 13
	-	4.1.1 Limits of Radiated Emission and Bandedge Measurement	. 13
		4.1.2 Test Instruments	
		4.1.3 Test Procedures	
		4.1.4 Deviation from Test Standard	
		4.1.5 Test Set Up	
		4.1.6 EUT Operating Conditions	
	4.0	4.1.7 Test Results	
	4.2	Number of Hopping Frequency Used 4.2.1 Limits of Hopping Frequency Used Measurement	
		4.2.2 Test Setup	
		4.2.3 Test Instruments	
		4.2.4 Test Procedure	
		4.2.5 Deviation from Test Standard	
		4.2.6 Test Results	. 21
	4.3	Dwell Time on Each Channel	
		4.3.1 Limits of Dwell Time on Each Channel Measurement	
		4.3.2 Test Setup	
		4.3.3 Test Instruments	
		4.3.4 Test Procedures.4.3.5 Deviation from Test Standard	
		4.3.6 Test Results	
	4.4	Channel Bandwidth	
		4.4.1 Limits of Channel Bandwidth Measurement	
		4.4.2 Test Setup	
		4.4.3 Test Instruments	. 30
		4.4.4 Test Procedure	
		4.4.5 Deviation from Test Standard	
		4.4.6 EUT Operating Condition	
	4 5	4.4.7 Test Results	
	4.5	Hopping Channel Separation 4.5.1 Limits of Hopping Channel Separation Measurement	
		4.5.2 Test Setup	
		4.5.2 Test Detup	
		4.5.4 Test Procedure	
		4.5.5 Deviation from Test Standard	
		4.5.6 Test Results	
	4.6	Maximum Output Power	
		4.6.1 Limits of Maximum Output Power Measurement	
		4.6.2 Test Setup	34

	463	3 Test Instruments	34
		4 Test Procedure	
		5 Deviation fromTest Standard	
		6 EUT Operating Condition	
		7 Test Results	
		ducted Out of Band Emission Measurement	
		1 Limits Of Conducted Out Of Band Emission Measurement	
	4.7.2	2 Test Instruments	36
	4.7.3	3 Test Procedure	36
	4.7.4	Deviation from Test Standard	36
	4.7.5	5 EUT Operating Condition	36
	4.7.6	6 Test Results	36
5	Pictures	of Test Arrangements	40
Ар	pendix –	Information on the Testing Laboratories	41

Release Control Record Issue No. Description **Date Issued** Original Release Sep. 21, 2016 RF160831C13-2

1 Certificate of Conformity

Product:	1.39 inch Smart Watch
Test Model:	QTAXU1
Sample Status:	Engineering Sample
Applicant:	Quanta Computer Inc.
Test Date:	Sep. 09, 2016 ~ Sep. 10, 2016
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
	ANSI C63.10:2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

hen ona

Date: Sep. 21, 2016

Rona Chen / Specialist

Stonley Nu

Date: Sep. 21, 2016

Approved by :

Stanley Wu / Assistant Manager

2 Summary of Test Results

	47 CFR FCC Part 15, Subpart C (Section 15.247)								
FCC Clause	Test Item	Result	Remarks						
15.207	15.207 AC Power Conducted Emission		Without AC power port of the EUT EUT consumes DC power						
15.247(a)(1) (iii)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.						
15.247(a)(1) (iii) Dwell Time on Each Channel		Pass	Meet the requirement of limit.						
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.						
15.247(b)	Maximum Peak Output Power	Pass	Meet the requirement of limit.						
15.205 & 209	Radiated Emissions	Pass	Meet the requirement of limit. Minimum passing margin is -14.08 dB at 2483.52 MHz.						
15.247(d)	Band Edge Measurement	Pass	Meet the requirement of limit.						
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.						
15.203	Antenna Requirement	Pass	No antenna connector is used.						

NOTE: If The Frequency Hopping System operating in 2400-2483.5 MHz band and the output power less than 125 mW. The hopping channel carrier frequencies separated by a minimum of 25 kHz or two-thirds of the 20 dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT:

The listed uncertainties are the worst case uncertainty for the entire range of measurement. Please note that the uncertainty values are provided for informational purposes only and are not used in determining the PASS/FAIL results.

Measurement	Frequency	Expended Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150 kHz ~ 30 MHz	2.44 dB
Radiated Emissions up to 1 GHz	30 MHz ~ 200 MHz	2.93 dB
Radiated Emissions up to 1 GHz	200 MHz ~1000 MHz	2.95 dB
Radiated Emissions above 1 GHz	1 GHz ~ 18 GHz	2.26 dB
	18 GHz ~ 40 GHz	1.94 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	1.39 inch Smart Watch
Test Model	QTAXU1
Status of EUT	Engineering Sample
Power Supply Rating	3.85 Vdc (Li-ion battery)
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Transfer Rate	1/2/3 Mbps
Operating Frequency	2402 ~ 2480 MHz
Number of Channel	79
Output Power	13.521 mW
Antenna Type	Monopole antenna with 1.02 dBi gain
Antenna Connector	N/A
Accessory Device	Refer to Note as below
Data Cable Supplied	Refer to Note as below

Note:

1. The EUT contains following accessory devices.

Product	Brand	Model	Description
Battery	WELLTECH ENERGY INC.	EXGU111K2003	3.85 Vdc, 450 mAh
Wireless Charger	N/A	QXU1	
LTE Chip	Qualcomm	WTR2965	
WLAN Chip	Qualcomm	WCN3620	
NFC Chip	NXP	PN5482D2EV	

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

3.2 Description of Test Modes

79 channels are provided to this EUT:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT Configure		Applic	able To		Description
Mode	RE≥1G	RE<1G	PLC	APCM	Description
-	\checkmark	\checkmark	-	\checkmark	-
Where RI	≥1G: Radiated Emission above 1 GHz			RE<1G: Ra	adiated Emission below 1 GHz
PL	.C: Power Line	Conducted Em	nission	APCM: Ant	tenna Port Conducted Measurement

NOTE:

1. For Radiated emission test, pre-tested GFSK, π /4-DQPSK, 8DPSK modulation type and found 8DPSK was the worse, therefore chosen for the final test and presented in the test report.

2. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Y-plane**. 3. "-" means no effect.

Radiated Emission Test (Above 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	8DPSK	DH5

Radiated Emission Test (Below 1 GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	78	FHSS	8DPSK	DH5

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
 Following channel(s) was (were) selected for the final test as listed below.

EUT Configure Mode	Available Channel	Tested Channel	Modulation Technology	Modulation Type	Packet Type
-	0 to 78	0, 39, 78	FHSS	GFSK	DH5
-	0 to 78	0, 39, 78	FHSS	π /4-DQPSK	DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	DH5

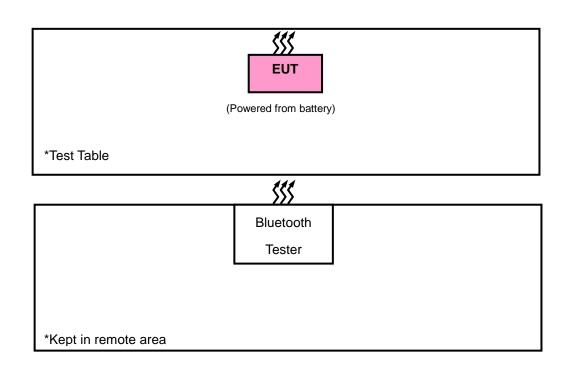
Test Condition:

Applicable To	Environmental Conditions	Input Power	Tested by
RE≥1G	25 deg. C, 65 % RH	3.85 Vdc	Getaz Yang
RE<1G	25 deg. C, 65 % RH	3.85 Vdc	Getaz Yang
APCM	25 deg. C, 65 % RH	3.85 Vdc	Taylor Liu

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

No.	Product	Brand	Model No.	Serial No.	FCC ID
1.	Bluetooth Tester	R&S	CBT	100946	N/A


No.	Signal Cable Description Of The Above Support Units
1.	N/A
Mater	

Note:

1. All power cords of the above support units are non-shielded (1.8m).

2. Items 1 acted as communication partners to transfer data.

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) FCC Public Notice DA 00-705 ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)		
0.009 ~ 0.490	2400/F (kHz)	300		
0.490 ~ 1.705	24000/F (kHz)	30		
1.705 ~ 30.0	30	30		
30 ~ 88	100	3		
88 ~ 216	150	3		
216 ~ 960	200	3		
Above 960	500	3		

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

4.1.2 Test Instruments

Description & Manufacturer	Model No.	Serial No.	Date of Calibration	Due Date of Calibration
Test Receiver Agilent	N9038A	MY51210203	Jan. 21, 2015	Jan. 21, 2016
Spectrum Analyzer Agilent	N9010A	MY52220314	Oct. 23, 2015	Oct. 22, 2016
Spectrum Analyzer ROHDE & SCHWARZ	FSU43	101261	Dec. 17, 2015	Dec. 16, 2016
BILOG Antenna SCHWARZBECK	VULB9168	9168-472	Jan. 07, 2016	Jan. 06, 2017
HORN Antenna SCHWARZBECK	BBHA 9120 D	9120D-969	Jan. 04, 2016	Jan. 03, 2017
HORN Antenna SCHWARZBECK	BBHA 9170	9170-480	Jan. 08, 2016	Jan. 07, 2017
Loop Antenna	EM-6879	269	Aug. 11, 2016	Aug. 10, 2017
Preamplifier EMCI	EMC 012645	980115	Dec. 21, 2015	Dec. 20, 2016
Preamplifier EMCI	EMC 184045	980116	Dec. 21, 2015	Dec. 20, 2016
Preamplifier EMCI	EMC 330H	980112	Dec. 28, 2015	Dec. 27, 2016
Power Meter Anritsu	ML2495A	1232002	Sep. 21, 2015	Sep. 20, 2016
Power Sensor Anritsu	MA2411B	1207325	Sep. 21, 2015	Sep. 20, 2016
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	309219/4 2950114	Oct. 12, 2015	Oct. 11, 2016
RF signal cable HUBER+SUHNNER	SUCOFLEX 104	250130/4	Oct. 12, 2015	Oct. 11, 2016
RF Coaxial Cable Worken	8D-FB	Cable-Ch10-01	Oct. 12, 2015	Oct. 11, 2016
Software BV ADT	E3 6.120103	NA	NA	NA
Antenna Tower MF	MFA-440H	NA	NA	NA
Turn Table MF	MFT-201SS	NA	NA	NA
Antenna Tower &Turn Table Controller MF	MF-7802	NA	NA	NA

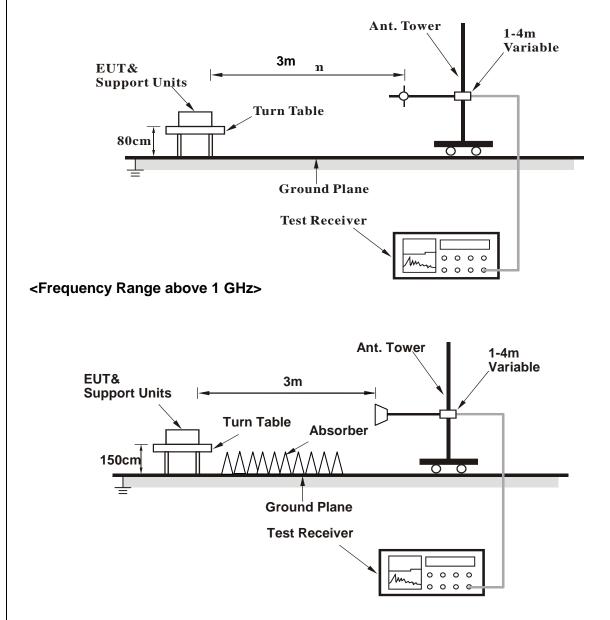
Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The test was performed in HwaYa Chamber 10.
- 3. The horn antenna and preamplifier (model: EMC 184045) are used only for the measurement of emission frequency above 1 GHz if tested.
- 4. The FCC Site Registration No. is 690701.
- 5. The IC Site Registration No. is IC7450F-10.

4.1.3 Test Procedures

- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1 GHz) / 1.5 meters (for above 1 GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detected function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz & 360 KHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1 GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 1/T for RMS Average (Duty cycle < 98 %) for Peak detection at frequency above 1 GHz.
- The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 10 Hz (Duty cycle ≥ 98 %) for Average detection (AV) at frequency above 1 GHz.
- 5. All modes of operation were investigated and the worst-case emissions are reported.
- 4.1.4 Deviation from Test Standard

No deviation.

4.1.5 Test Set Up

<Frequency Range below 1 GHz>

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1 GHz DATA :

8DPSK

EUT Test Condition		Measurement Detail				
Channel	hannel Channel 0		1 GHz ~ 25 GHz			
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Average (AV)			
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang			

		An	tenna Po	larity & T	est Distar	nce: Horiz	ontal at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2354.1	47.79	54.42	74	-26.21	26.81	4.05	37.49	188	360	Peak
2389.56	35.86	42.37	54	-18.14	26.91	4.08	37.5	188	360	Average
2402	99.18	105.7			26.91	4.09	37.52	188	360	Average
2402	104.68	111.2			26.91	4.09	37.52	188	360	Peak
4804	32.02	47.36	54	-21.98	30.97	6.79	53.1	102	250	Average
4804	42.01	57.35	74	-31.99	30.97	6.79	53.1	102	250	Peak
		A	Intenna P	olarity &	Test Dista	ance: Vert	tical at 3 i	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2360.31	47.19	53.82	74	-26.81	26.81	4.05	37.49	182	237	Peak
2389.02	35.85	42.36	54	-18.15	26.91	4.08	37.5	182	237	Average
2402	94.44	100.96			26.91	4.09	37.52	182	237	Average
2402	99.86	106.38			26.91	4.09	37.52	182	237	Peak
4804	32.54	47.88	54	-21.46	30.97	6.79	53.1	130	33	Average
4804	42.55	57.89	74	-31.45	30.97	6.79	53.1	130	33	Peak

Remarks:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2402 MHz: Fundamental frequency.

EUT Test Condition		Measurement Detail				
Channel Channel 39		Frequency Range	1 GHz ~ 25 GHz			
Input Power	120 Vac, 60 Hz		Peak (PK) Average (AV)			
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang			

	Antenna Polarity & Test Distance: Horizontal at 3 m											
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark		
2329.26	46.77	53.48	74	-27.23	26.72	4.04	37.47	186	360	Peak		
2388.21	35.85	42.36	54	-18.15	26.91	4.08	37.5	186	360	Average		
2441	98.78	104.99			27.06	4.12	37.39	186	360	Average		
2441	104.34	110.55			27.06	4.12	37.39	186	360	Peak		
2498.48	47.69	53.58	74	-26.31	27.2	4.16	37.25	186	360	Peak		
2499.72	36.38	42.27	54	-17.62	27.2	4.16	37.25	186	360	Average		
4882	33.71	48.85	54	-20.29	31.06	6.85	53.05	102	249	Average		
4882	43.95	59.09	74	-30.05	31.06	6.85	53.05	102	249	Peak		
		A	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n				

Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2361.84	47.5	54.13	74	-26.5	26.81	4.05	37.49	183	243	Peak
2389.11	35.86	42.37	54	-18.14	26.91	4.08	37.5	183	243	Average
2441	94.15	100.36			27.06	4.12	37.39	183	243	Average
2441	99.51	105.72			27.06	4.12	37.39	183	243	Peak
2484.12	47.56	53.58	74	-26.44	27.15	4.15	37.32	183	243	Peak
2500	36.41	42.3	54	-17.59	27.2	4.16	37.25	183	243	Average
4882	32.63	47.77	54	-21.37	31.06	6.85	53.05	133	29	Average
4882	43.62	58.76	74	-30.38	31.06	6.85	53.05	133	29	Peak

Remarks:

1. Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2441 MHz: Fundamental frequency.

EUT Test Condition		Measurement Detail				
Channel Channel 78		Frequency Range	1 GHz ~ 25 GHz			
Input Power	120 Vac, 60 Hz		Peak (PK) Average (AV)			
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang			

		An	tenna Po	larity & T	est Distar	nce: Horiz	ontal at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	98.64	104.66			27.15	4.15	37.32	200	360	Average
2480	104.06	110.08			27.15	4.15	37.32	200	360	Peak
2483.52	39.92	45.94	54	-14.08	27.15	4.15	37.32	200	360	Average
2483.6	51.7	57.72	74	-22.3	27.15	4.15	37.32	200	360	Peak
4960	32.78	47.75	54	-21.22	31.16	6.91	53.04	100	250	Average
4960	41.79	56.76	74	-32.21	31.16	6.91	53.04	100	250	Peak
		A	Intenna P	olarity &	Test Dista	ance: Vert	tical at 3 r	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
2480	94.37	100.39			27.15	4.15	37.32	179	244	Average
2480	99.81	105.83			27.15	4.15	37.32	179	244	Peak
2483.52	37.69	43.71	54	-16.31	27.15	4.15	37.32	179	244	Average
2495.68	47.7	53.59	74	-26.3	27.2	4.16	37.25	179	244	Peak
4960	32.88	47.85	54	-21.12	31.16	6.91	53.04	133	31	Average
4960	43.19	58.16	74	-30.81	31.16	6.91	53.04	133	31	Peak

Remarks:

 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

2. 2480 MHz: Fundamental frequency.

9 kHz ~ 30 MHz DATA:

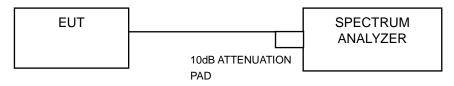
The amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required to be report.

30 MHz ~ 1 GHz WORST-CASE DATA:

EUT Test Condition		Measurement Detail					
Channel	hannel Channel 78 Frequency Range		Channel 78 Frequency Range		nel Channel 78 Frequency Ran		30 MHz ~ 1 GHz
Input Power	120 Vac, 60 Hz	Detector Function	Peak (PK) Quasi-peak (QP)				
Environmental Conditions	25 deg. C, 65 % RH	Tested By	Getaz Yang				

		An	tenna Po	larity & T	est Distar	nce: Horiz	ontal at 3	m		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
43.58	17.7	34.55	40	-22.3	13.59	0.67	31.11	104	353	Peak
148.34	15.74	33.58	43.5	-27.76	12.64	1.14	31.62	129	281	Peak
272.5	14.9	33.17	46	-31.1	12.14	1.56	31.97	113	304	Peak
339.43	18.16	34.35	46	-27.84	13.89	1.74	31.82	121	303	Peak
497.54	21.06	33.37	46	-24.94	17.27	2.08	31.66	112	198	Peak
618.79	23.07	33.11	46	-22.93	19.83	2.29	32.16	134	265	Peak
		A	ntenna P	olarity &	Test Dista	ance: Vert	ical at 3 r	n		
Frequency (MHz)	Emission Level (dBuV/m)	Read Level (dBuV)	Limit (dBuV/m)	Margin (dB)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Antenna Height (cm)	Table Angle (Degree)	Remark
41.64	16	32.83	40	-24	13.56	0.66	31.05	123	96	Peak
137.67	16.83	35.16	43.5	-26.67	12.21	1.15	31.69	133	239	Peak
223.03	15.77	35.79	46	-30.23	10.34	1.39	31.75	125	273	Peak
378.23	18.17	33.44	46	-27.83	14.82	1.85	31.94	122	279	Peak
485.9	21.48	34.18	46	-24.52	17.04	2.06	31.8	132	233	Peak
545.07	21.75	33.07	46	-24.25	18.35	2.17	31.84	134	189	Peak

Remarks:


 Emission Level = Read Level + Antenna Factor + Cable Loss - Preamp Factor Margin value = Emission level – Limit value

4.2 Number of Hopping Frequency Used

4.2.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.2.2 Test Setup

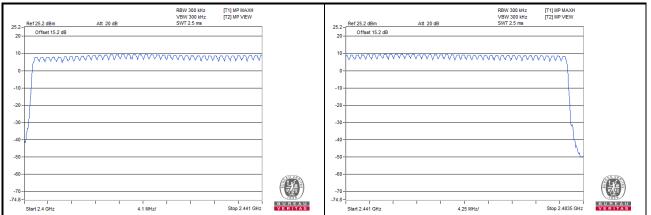
4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.2.5 Deviation fromTest Standard


No deviation.

4.2.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

8DPSK

4.3 Dwell Time on Each Channel

4.3.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.
- 4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

GFSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
DH1	10.00	443.00	0.14	0.4
DH3	5.20	1682.00	0.28	0.4
DH5	3.60	2932.00	0.33	0.4

NOTE:

1. Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time

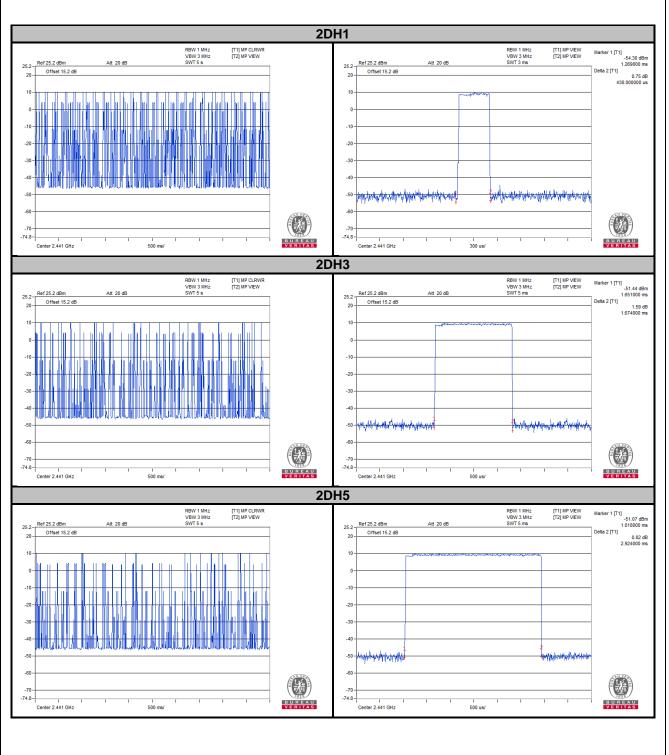
2. 79 channels come from the Hopping Channel number

3. Average Hopping Channel = hops/sweep time

4. t: Package Transfer Time(us)

5. Test plots of the transmitting time slot are shown as below.

Π/4-DQPSK


Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
2DH1	10.20	438.00	0.14	0.4
2DH3	5.40	1674.00	0.29	0.4
2DH5	3.20	2924.00	0.30	0.4

NOTE:

Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
 79 channels come from the Hopping Channel number
 Average Hopping Channel = hops/sweep time
 t: Package Transfer Time(us)

5. Test plots of the transmitting time slot are shown as below.

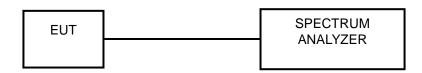
8DPSK

Mode	Average Hopping Channel	Package Transfer Time (usec)	Result (sec)	Limit (sec)
3DH1	10.00	418.00	0.13	0.4
3DH3	5.20	1674.00	0.28	0.4
3DH5	3.40	2924.00	0.31	0.4

NOTE:

Dwell Time=79(channels) x 0.4(s) x average hopping channel x package transfer time
 79 channels come from the Hopping Channel number
 Average Hopping Channel = hops/sweep time
 t: Package Transfer Time(us)

5. Test plots of the transmitting time slot are shown as below.



4.4 Channel Bandwidth

4.4.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5 MHz, if the 20 dB bandwidth of hopping channel is greater than 25 kHz, two-thirds 20 dB bandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.4.2 Test Setup

4.4.3 Test Instruments

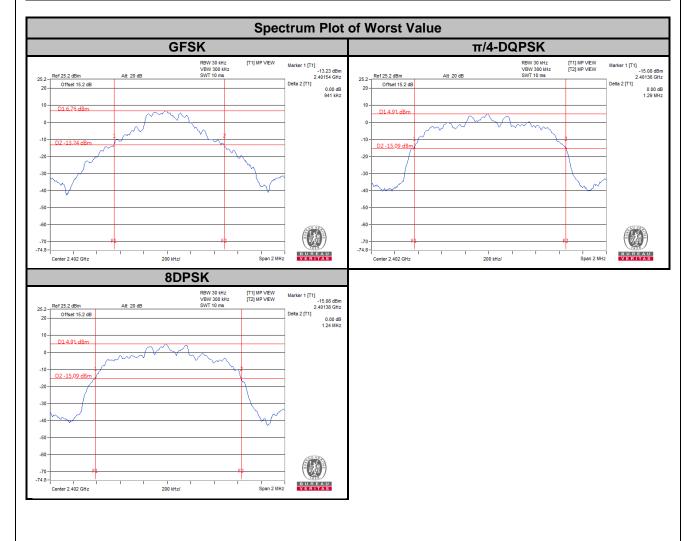
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20 dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.4.5 Deviation from Test Standard

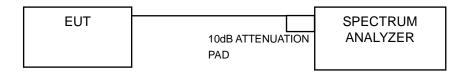
No deviation.


4.4.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.4.7 Test Results

Channel	Frequency	20 dB Bandwidth (MHz)						
Channel	(MHz)	GFSK	π/4-DQPSK	8DPSK				
0	2402	0.941	1.29	1.24				
39	2441	0.941	1.29	1.24				
78	2480	0.939	1.29	1.24				



4.5 Hopping Channel Separation

4.5.1 Limits of Hopping Channel Separation Measurement

At least 25 kHz or two-third of 20 dB hopping channel bandwidth (whichever is greater).

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

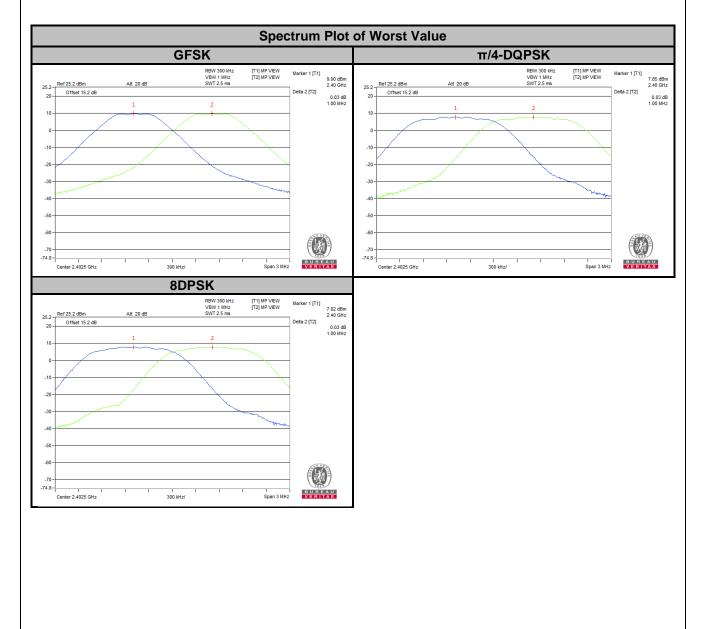
4.5.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.

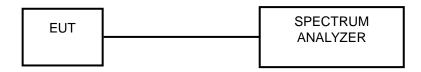


4.5.6 Test Results

Channel	Freq. (MHz)				Bar	20 dB ndwidth (M	lHz)	Minimum Limit (MHz)			Pass / Fail
		GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	
0	2402	1.00	1.00	1.00	0.941	1.29	1.24	0.627	0.860	0.827	Pass
39	2441	1.00	1.00	1.00	0.941	1.29	1.24	0.627	0.860	0.827	Pass
78	2480	1.00	1.00	1.00	0.939	1.29	1.24	0.626	0.860	0.827	Pass

NOTE:

1. The minimum limit is two-third 20 dB bandwidth.



4.6 Maximum Output Power

4.6.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125 mW.

4.6.2 Test Setup

4.6.3 Test Instruments

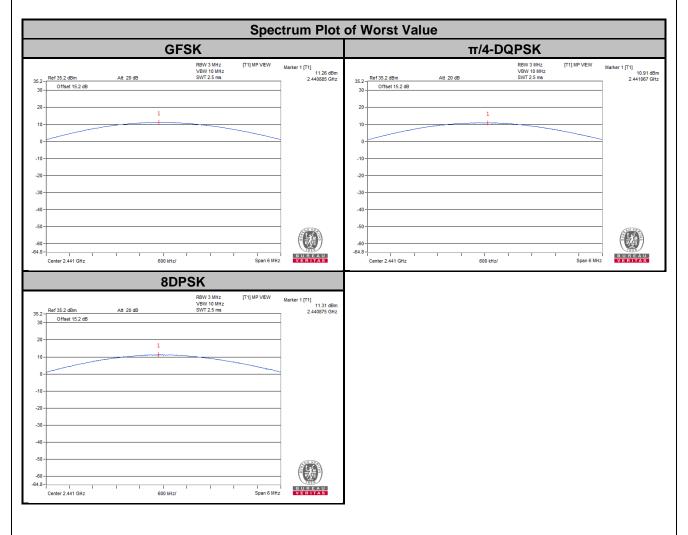
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3 MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.

4.6.5 Deviation fromTest Standard

No deviation.


4.6.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.6.7 Test Results

Channel (MHz)		С	output Powe (mW)	ər	C	output Powe (dBm)	Power Limit	Pass / Fail	
	(MHZ)	GFSK	π/4-DQPSK	8DPSK	GFSK	π/4-DQPSK	8DPSK	(mW)	
0	2402	10.495	9.572	10.593	10.21	9.81	10.25	125	PASS
39	2441	13.366	12.331	13.521	11.26	10.91	11.31	125	PASS
78	2480	11.588	10.617	11.776	10.64	10.26	10.71	125	PASS

4.7 Conducted Out of Band Emission Measurement

4.7.1 Limits Of Conducted Out Of Band Emission Measurement

Below –20 dB of the highest emission level of operating band (in 100 kHz RBW).

4.7.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

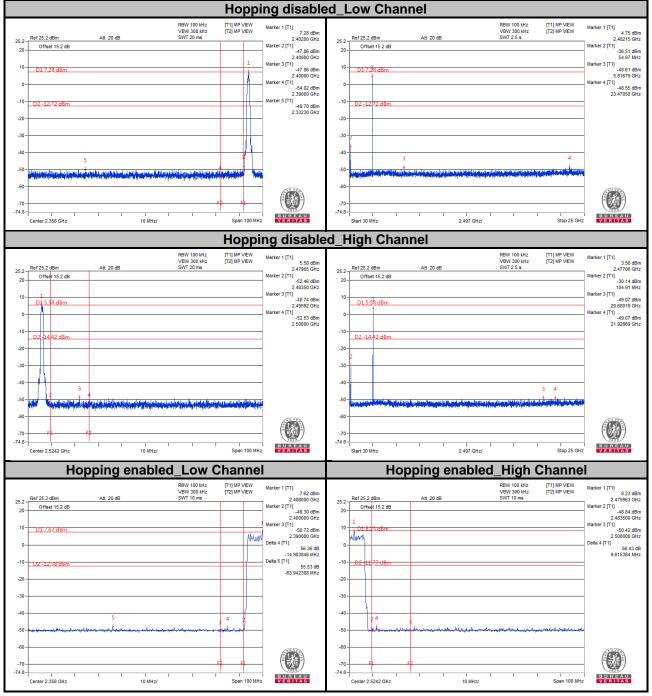
4.7.4 Deviation from Test Standard

No deviation.

4.7.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.6 Test Results


The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20 dB offset below D1. It shows compliance with the requirement.

			Норр	ing disable	d_Low	Chan	nel			
ef 25.2 dBm Offset 15.2 dB	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 20 ms	[T1] MP VIEW	Marker 1 [T1] 9.02 dBm 2.40200 GHz Marker 2 [T1]	25.2 - Ref 25.2 d	Bm t 15.2 dB	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 2.5 s	[T1] MP VIEW	Marker 1 [T1] 8.32 2.40215 Marker 2 [T1]
			1	-51.88 dBm 2.40000 GHz Marker 3 IT11	20-011se	2 40				-32.66 54.97 Marker 3 [T1]
D1 9.9< dbm				-47.98 dBm 2.39982 GHz Marker 4 [T1] -52.62 dBm 2.39000 GHz	0-	< uom				-48.68 2.80167 Marker 4 [T1]
D2 -10.98 dBm				-52.62 dBm 2.39000 GHz Marker 5 [T1] -48.17 dBm	-10- <u>D2-10</u>	9 <u>8 d8m</u>				-48.97 4.34981
				2.33700 GHz	-20 -					_
				-	-30-					_
	5			-	-40 -	3 4				_
			nenel horally has		-50 -	dini dia ya				
			F2 F1		-70 -					
enter 2.358 GHz	1 I I 10 MH	I I	I I Span 100 MH	BUREAU VERITAS	-74.8 - Start 30 M	Hz	1 1	2.497 GHz/	Stop 25 GH	
			Норрі	ng disable	d_High	Chan	nel			
lef 25.2 dBm	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 20 ms	[T1] MP VIEW [T2] MP VIEW	Marker 1 [T1] 9.24 dBm	Ref 25.2 d	P	Att 20 dB	RBW 100 kHz VBW 300 kHz SWT 2.5 s	[T1] MP VIEW [T2] MP VIEW	Marker 1 [T1] 8.
Offset 15.2 dB	All 2000	01110118		2.47995 GHz Marker 2 [T1] -51.88 dBm 2.48350 GHz		t 15.2 dB	All 20 db	01112.00		2.4770 Marker 2 [T1] -48.0 17.821
1 D1 9.24 dBm				2.46550 GH2 Marker 3 [T1] -49.54 dBm 2.48805 GHz	10- <u>D19.2</u>	l 1 dBm				Marker 3 [T1] -48. 21.110
				Marker 4 [T1] -53.48 dBm 2.50000 GHz	0					Marker 4 [T1] -48. 21.872
<u>D2/-10 76 dBm</u>				=	-10 - <u>D2 -10.</u>	7 <u>6 dBm</u>				=
					-20 -					
				-	-40				3 4	_
2 3	ann Anna I An Aranna (n' 1976 Alay 1976) Anna Anna 1988 Anna An Anna Anna An An An An An An An An An		from to be a second	-	-50-		an in state of the			
		11			-60 -					
		1 1	1 1		-70 -	1	1 1	1 1 1	1 1	
Center 2.5242 GHz	10 MH		Span 100 MH		Start 30 M		ning or	2.497 GHz/	Stop 25 GH	
по	pping enab	RBW 100 kHz VBW 300 kHz	[T1] MP VIEW	Marker 1 [T1]		пор	ping er	nabled_High	[T1] MP VIEW	Marker 1 (T1)
Offset 15.2 dBm	Att 20 dB	SWT 10 ms	[T2] MP VIEW	9.82 dBm 2.408000 GHz Marker 2 IT11	25.2 - Ref 25.2 d 20 - Offse	Bm t 15.2 dB	Att 20 dB	VBW 300 kHz SWT 10 ms	[12] MP VIEW	10. 2.4790 Marker 2 IT11
D1 9.82 dBm				-50.54 dBm 2.400000 GHz Marker 3 [T1] -50.68 dBm	1 10 D1 10	30 dBm				-50. 2.48350 Marker 3 [T1] -50.
				2.390000 GHz Deta 4 [T1] 58.23 dB	o- 1111					2.5000 Delta 4 [T1]
D2 -10.18 dBm			- 10.	-13.621795 MHz Delta 5 [T1] 58.26 dB	-10-D2-9.7	<u>'0 dBm</u>				8.3333
				-65.544872 MHz	-20 -					-
				-	-30-					-
L. L	5	La la constanta -	3 4 2		-40	4	3	and the state of the		
anter autor an antiparter and and	anna na aite ta sa taitig a taitig a	an an tha an an that a start and a start and a start and a start and a start a start a start a start a start a	· · • • • • • • • • • • • • • • • • • •		-50		a a an	a - non - é contra la contra confranta della	n in the second second second second	
			FR FL		-70 - F		F2			- ("1049")

π/4-DQPSK

8DPSK Hopping disabled_Low Channel Marker 1 [T1] 7.52 dBm 2.40185 GHz Marker 2 [T1] -51.84 dBm 2.40000 GHz Marker 3 [T1] -9.90 dBm 2.39450 GHz Marker 4 [T1] -52.90 dBm RBW 100 kHz VBW 300 kHz SWT 20 ms [T1] MP VIEW [T2] MP VIEW RBW 100 kHz VBW 300 kHz SWT 2.5 s [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] Marker 1 [T1] 5.92 dBm 2.40215 GHz -35.85 dBm 54.97 MHz Marker 3 [T1] -48.55 dBm 3.71931 GHz Marker 4 [T1] -48.28 dBm 17.19687 GHz 25.2 - Ref 25.2 dBm Att 20 dB 25.2 - Ref 25.2 dBm Att 20 dB 20 - Offset 15.2 dB Offset 15.2 dB 20-10 10 [1] -52.90 dBm 2.39000 GHz Marker 5 [T1] -10 -10 -49.05 dBm 2.31682 GHz -20 -20 30 -30 1 -40 -40 -50 -50 -60 -60 -70 -70 -74.8--74.8-B U R E A U VERITAS BUREAU VERITAS Center 2.358 GHz 2.497 GHz/ Stop 25 GHz 10 MHz/ Span 100 MHz Start 30 MHz Hopping disabled_High Channel Marker 1 [T1] 2.47997 GHz 2.47997 GHz 2.47997 GHz 2.427 GHz Marker 2 [T1] -49.06 dBm 2.48962 GHz Marker 4 [T1] -53.40 dBm 2.5300 GHz RBW 100 kHz VBW 300 kHz SWT 20 ms RBW 100 kHz VBW 300 kHz SWT 2.5 s (T1) MP VIEW (T2) MP VIEW [T1] MP VIEW [T2] MP VIEW Marker 1 [T1] 6.41 dBm 2.47706 GHz 4.47706 GHz -31.08 dBm 104.91 MHz 4.48163 GHz 4.88163 GHz 47.62 dBm 24.88763 GHz Marker 1 [T1] 25.2 - Ref 25.2 dBm 25.2-Ref 25.2 dBm Att 20 dB Att 20 dB Offset 15.2 dB Offset 15.2 dB 20-20-10 10 ſ -10 -10 -20 -20 -30 -30 -40 -50 -50 -70 -70 -74.8--74.8-I Span 100 MHz BUREAU Start 30 MHz I Stop 25 GHz BUREAU Center 2.5242 GHz 10 MHz/ 2.497 GHz/ Hopping enabled_Low Channel Hopping enabled_High Channel Marker 1 [T1] 8.45 dBm 2.478687 GHz Marker 2 [T1] -49.89 dBm 2.483500 GHz Marker 3 [T1] -49.39 dBm 2.50000 GHz Detta 4 [T1] 56.55 dB Marker 1 [T1] 7.83 dBm 2.401910 GHz Marker 2 [T1] -49.07 dBm 2.400000 GHz Marker 3 [T1] -50.18 dBm 2.390000 GHz Delta 4 [T1] RBW 100 kHz VBW 300 kHz SWT 10 ms RBW 100 kHz VBW 300 kHz SWT 10 ms [T1] MP VIEW [T2] MP VIEW [T1] MP VIEW [T2] MP VIEW 25.2 - Ref 25.2 dBm 25.2 - Ref 25.2 dBm 20 Offset 15.2 dB Att 20 dB Att 20 Offset 15.2 dB 20-20 1 10 10 MM WW - - - (11] 56.39 dB -4.487179 MHz Delta 5 [T1] 0 F1] 56.55 dB 12.500000 MHz -10 -10 56.26 dB -77.724359 MHz -20 -20 -30 -30 -40 -40 -50 -50 -60 -60 -70--74.8--70--74.8-Center 2.358 GHz BUREAU VERITAS VERITAS Span 100 MHz 10 MHz/ Span 100 MHz Center 2.5242 GHz 10 MHz/

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---