

SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the advanced extrapolation are:

averaged over 1 cm3 (1 g) of tissue:

42.0 mW/g \pm 16.8 % (k=2)²

averaged over 10 cm³ (10 g) of tissue: 22.0 mW/g \pm 16.2 % (k=2)²

Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:

 $Re\{Z\} = 46.6 \Omega$

 $Im \{Z\} = 5.1 \Omega$

Return Loss at 1900 MHz

-24.0 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Page 1 of 1

Date/Time: 02/17/04 14:13:01

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: HSL 1900 MHz;

Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_r = 38.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

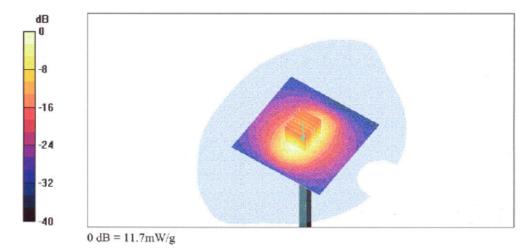
- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 98

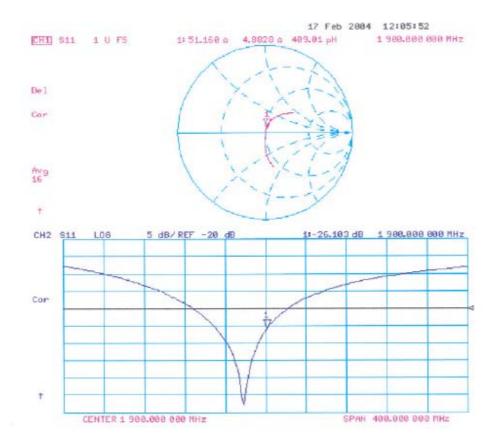
Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 93.8 V/m

Power Drift = 0.002 dB

Maximum value of SAR = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm,


Peak SAR (extrapolated) = 18.7 W/kg


SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g

Reference Value = 93.8 V/m

Power Drift = 0.002 dB

Maximum value of SAR = 11.7 mW/g

Page 1 of 1

Date/Time: 02/09/04 15:58:45

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1

Medium: Muscle 1900 MHz;

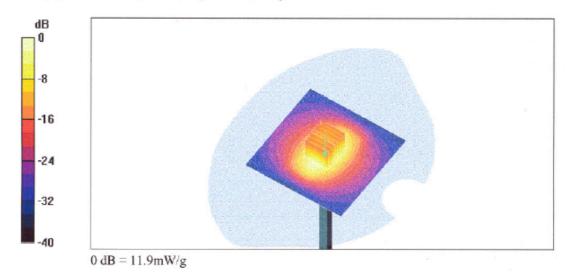
Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

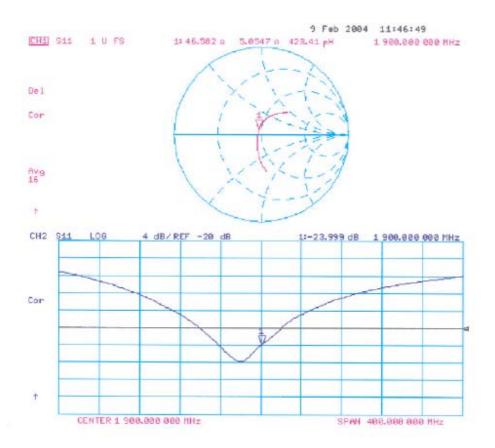
Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101


Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm
Reference Value = 92.6 V/m; Power Drift = 0.0 dB


Maximum value of SAR (measured) = 11.9 mW/g

Peak SAR (extrapolated) = 18.8 W/kg

SAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client

Auden > Sporton Int. Inc.

Object(s)	ET3DV6 - SN	1787	
Calibration procedure(s)	QA CAL-01.v2 Calibration pro	cedure for dosimetric E-field probe	S
Calibration date:	August 29, 200	03 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Condition of the calibrated item	In Tolerance (a	according to the specific calibration	document)
17025 international standard.		used in the calibration procedures and conformity of ry facility: environment temperature 22 +/- 2 degrees	
Calibration Equipment used (M&TE	critical for calibration)		
Model Type	ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
RF generator HP 8684C	US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05
Power sensor E4412A	MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power sensor HP 8481A	MY41092180	18-Sep-02 (Agillent, No. 20020918)	Sep-03
	GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04
Power meter EPM E4419B	US37390585	18-Oct-01 (Aglient, No. 24BR1033101)	in house check: Oct 03
	0931330303	in our at it decited the events and the	
Power meter EPM E4419B Network Analyzer HP 8753E Fluke Process Calibrator Type 702		3-Sep-01 (ELGAL, No.2350)	Sep 93
Network Analyzer HP 8753E			Signature
Network Analyzer HP 8753E	SN: 6295803	3-Sep-01 (ELGAL, No.2360)	
Network Analyzer HP 8753E Fluke Process Calibrator Type 702	SN: 6295803 Name	3-Sep-01 (ELGAL, No.2360) Function	
Network Analyzer HP 8753E Tuke Process Calibrator Type 702 Calibrated by:	SN: 6235803 Name -Nico-Vetteri	3-Sep-01 (ELGAL, No.2360) Function - Technicism	

Schmid & Partner Engineering AG

s p e a q

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1787

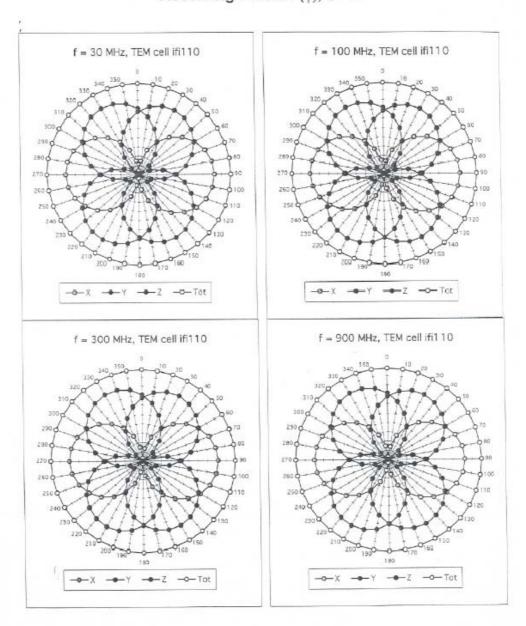
Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

ET3DV6 SN:1787 August 29, 2003

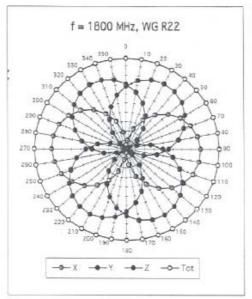
DASY - Parameters of Probe: ET3DV6 SN:1787

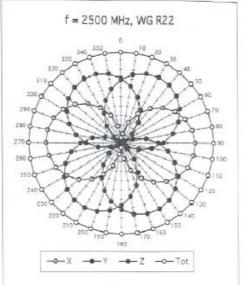

Sensit	ivity in Free	Space		Diode Co	ompressio	n	
•	NormX	1.62	$\mu V/(V/m)^2$		DCPX	94	mV
	NormY		$\mu V/(V/m)^2$		DCPY	94	mV
	NormZ		$\mu V/(V/m)^2$		DCP Z	94	mV
Sensit	ivity in Tissue	Simulating	g Liquid				
Head) MHz	ε _r = 41.5 ±	5% o	= 0.97 ± 5%	mho/m	
Valid for	f=800-1000 MHz w	vith Head Tissue	Simulating Liquid acco	ording to EN 5036	1, P1528-200	X	
	ConvF X	6.5	± 9.5% (k=2)		Boundary el	fect:	
	ConvF Y	6.5	± 9.5% (k=2)		Alpha	0.41	
	ConvF Z	6.5	± 9.5% (k=2)		Depth	2.23	
Head	1800	0 MHz	ε, = 40.0 ±	5% σ	= 1.40 ± 5%	mho/m	
Valid for	f=1710-1910 MHz	with Head Tissi	ue Simulating Liquid acc	cording to EN 503	61, P1 528-20	ox	
	ConvF X	5.3	± 9.5% (k=2)		Boundary e	ffect:	
	CanvF Y	5.3	± 9.5% (k=2)		Alpha	0.43	
	ConvF Z	5.3	\$ ± 9.5% (k=2)		Depth	2.90	
Bound	dary Effect						
		0.1411-	Toulant CAD and				
Head	90	0 MHz	Typical SAR gradie	nt: 5 % per mm			
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]	Without Cor	rection Algorithm		8.6	4.8	
	$\text{SAR}_{\text{be}} \left[\%\right]$	With Correc	tion Algorithm		0.2	0.4	
Head	180	00 MHz	Typical SAR gradie	nt: 10 % per mn	1		
	Probe Tip to	Boundary			1 mm	2 mm	
			rection Algorithm		13.3	9.3	
	SAR _{be} [%]		tion Algorithm		0.2	0.1	
Sense	or Offset						
	Probe Tip to	Sensor Cente	r	2.7		mm	
	Optical Surfa	ace Detection		1.4 ± 0.2		mm	

Page 2 of 10

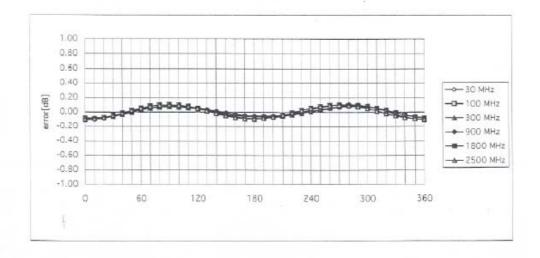
ET3DV6 SN:1787

August 29, 2003


Receiving Pattern (ϕ), $\theta = 0^{\circ}$

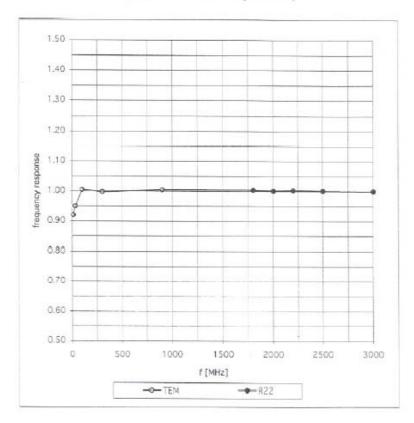


Page 3 of 10


ET3DV6 SN:1787

August 29, 2003

Isotropy Error (ϕ), $\theta = 0^{\circ}$

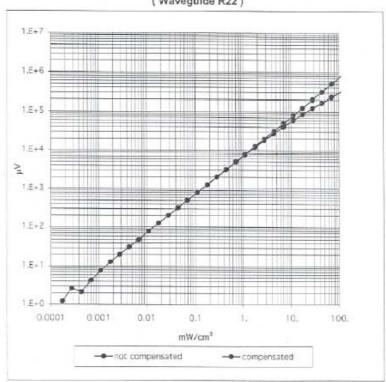

Page 4 of 10

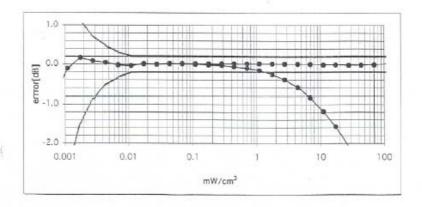
ET3DV6 SN:1787

August 29, 2003

Frequency Response of E-Field

(TEM-Cell:ifi110, Waveguide R22)

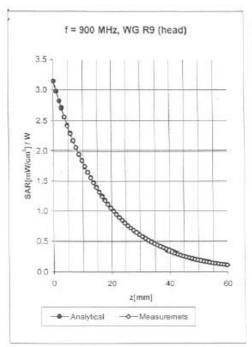


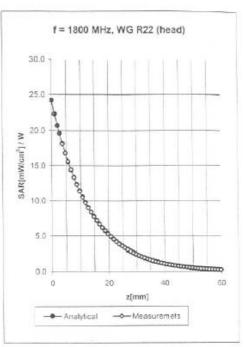

ET3DV6 SN:1787

August 29, 2003

Dynamic Range f(SAR_{brain})

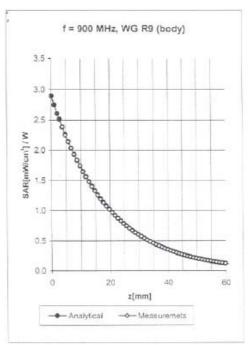
(Waveguide R22)

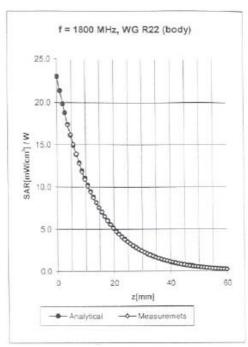



Page 6 of 10

ET3DV6 SN:1787 August 29, 2003

Conversion Factor Assessment


-


Head	900 M	Hz	Er = 41.5 ± 5%	σ = 0.97 \pm	5% mho/m
Valid for f	-800-1000 MHz with	Head Tissue Sim	ulating Liquid according t	o EN 50361, P1528	3-200X
	ConvF X	6.5 ±9	5% (k=2)	Bounda	ry effect:
	ConvF Y	6.5 ±9	.5% (k=2)	Alpha	0.41
	ConvF Z	6.5 ±9	.5% (k=2)	Depth	2.23
Head	1800 M	Hz	ϵ_r = 40.0 \pm 5%	σ= 1.40 ±	5% mho/m
Valid for f	=1710-1910 MHz wit	h Head Tissue Si	mulating Liquid according	to EN 50361, P15	28-200X
	ConvF X	5.3 ±9	.5% (k=2)	Bounda	ry effect:
1	ConvF Y	5.3 ±9	.5% (k=2)	Alpha	0.43
	ConvF Z	5.3 ±9	.5% (k=2)	Depth	2.90

Page 7 of 10

ET3DV6 SN:1787 August 29, 2003

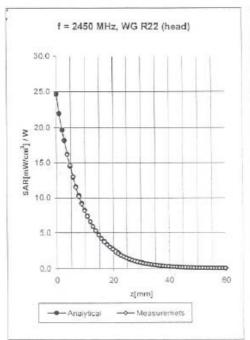
Conversion Factor Assessment

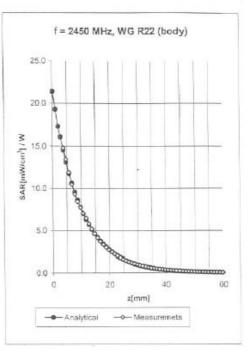
2.79

Depth

Body	900 MHz	€, = 55.0 ± 5%	σ = 1.05 ± 5% mho/m
Valid for f	=800-1000 MHz with Bod	y Tissue Simulating Liquid according to	o OET 65 Suppl. C
	ConvF X	6.4 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	6.4 ± 9.5% (k=2)	Alpha 0.34
	ConvF Z	6.4 ± 9.5% (k=2)	Depth 2.70
Body	1800 MHz	육= 53.3 ± 5%	σ = 1.52 ± 5% mho/m
Valid for t	f=1710-1910 MHz with Bo	dy Tissue Simulating Liquid according	to OET 65 Suppl. C
	ConvF X	4.9 ± 9.5% (k=2)	Boundary effect:
	ConvF Y	4.9 ±9.5% (k=2)	Alpha 0.51

4.9 ± 9.5% (k=2)


Page 8 of 10


ConvF Z

ET3DV6 SN:1787 August 29, 2003

Conversion Factor Assessment

Head	2450 MHz	E. = 39 2 + 5%	$\sigma = 1.80 + 5\% \text{ mho/m}$

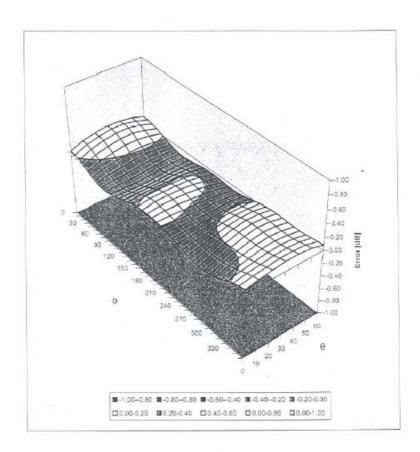
Valid for f≈2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

Convr. X	4.0 ± 8.9% (K=2)	Boundary ene	-CA.
ConvF Y	4.8 ± 8.9% (k=2)	Alpha	0.95
Comp.E.7	4 9 + 9 09/ /5-23	Donth	1.86

Body	2450 MHz	$\varepsilon_r = 52.7 \pm 5\%$	$\sigma = 1.95 \pm 5\% \text{ mho/m}$
------	----------	--------------------------------	---------------------------------------

Valid for f=2400-2500 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

ConvF X	4.5 ±8.9% (k=2)	Boundary effe	ect:
ConvF Y	4.5 ±8.9% (k=2)	Alpha	1.21
ConvF.Z	4.5 ±8.9% (k=2)	Depth	1.55


Page 9 of 10

ET3DV6 SN:1787

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Sporton (Auden)

Object(s)	DAE3 - SD 000 D03	3 AA - SN:577	
Calibration procedure(s)	QA CAL-06.v4 Calibration procedu	re for the data acquisi	tion unit (DAE)
Calibration date:	21.11.2003		
Condition of the calibrated item	In Tolerance (accord	ding to the specific ca	libration document)
his calibration statement docume 7025 international standard.	ents traceability of M&TE used in	the calibration procedures and	conformity of the procedures with the ISO/IE
Il calibrations have been conduc	ted in the closed laboratory facilit	ly environment temperature 22	+/- 2 degrees Celsius and humidity < 75%.
NI calibrations have been conduct		ly environment temperature 22	+i- 2 degrees Celsius and humidity < 75%.
		ly environment temperature 22 Cal Date	*i- 2 degrees Celsius and humidity < 75%. Scheduled Calibration
alibration Equipment used (M&T	E critical for calibration)		
alibration Equipment used (M&T	E critical for calibration)	Cal Date	Scheduled Calibration
alibration Equipment used (M&T	E critical for calibration)	Cal Date	Scheduled Calibration
alibration Equipment used (M&T	E critical for calibration)	Cal Date	Scheduled Calibration
alibration Equipment used (M&T	E critical for calibration)	Cal Date	Scheduled Calibration
alibration Equipment used (M&T	E critical for calibration)	Cal Date 8-Sep-03	Scheduled Calibration Sep-05
alibration Equipment used (M&T	ID # 2 SN. 6295803	Cal Date 8-Sep-03	Scheduled Calibration Sep-05
alibration Equipment used (M&T lodel Type luke Process Calibrator Type 70;	ID # 2 SN. 6295803	Cal Date 8-Sep-03	Scheduled Calibration Sep-05
alibration Equipment used (M&T lodel Type luke Process Calibrator Type 70;	ID # 2 SN. 6295803	Cal Date 8-Sep-03	Scheduled Calibration Sep-05
alibration Equipment used (M&T odel Type uke Process Calibrator Type 70:	E critical for calibration) ID # 2 SN. 6295803 Name Philipp Storchenegger	Cal Date 8-Sep-03	Scheduled Calibration Sep-05

DAE3 SN: 577

DATE: 21.11.2003

1. Cal Lab. Incoming Inspection & Pre Test

Modification Status	Note Status here → → → →	BC
Visual Inspection	Note anomalies	None
Pre Test	Indication	Yes/No
Probe Touch	Function	Yes
Probe Collision	Function	Yes
Probe Touch&Collision	Function	Yes

2. DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: $1LSB = 6.1\mu V$, full range = 400 mVLow Range: 1LSB = 61nV, full range = 4 mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Y	Z
High Range	404.434	403.889	404.352
Low Range	3.94303	3.94784	3.9501
Connector Angle to be used	in DASY System	127 °	

Input	Reading in µV	% Error
200mV	200000.6	0.00
20mV	20000.9	0.00
20mV	-19992.7	-0.04
200mV	200000.6	0.00
20mV	19999.1	0.00
20mV	-19994.7	-0.03
200mV	199999.8	0.00
20mV	19998.1	-0.01
20mV	-19999.2	0.00
	200mV 20mV 20mV 20mV 20mV 20mV 20mV 20mV	200mV 200000.6 20mV 20000.9 20mV -19992.7 200mV 200000.6 20mV 19999.1 20mV -19994.7 200mV 19999.8 20mV 19998.1

Low Range	Input	Reading in µV	% Error
Channel X + Input	2mV	1999.94	0.00
	0.2mV	199.08	-0.46
Channel X - Input	0.2mV	-200.24	0.12
Channel Y + Input	2mV	1999.98	0.00
	0.2mV	199.50	-0.25
Channel Y - Input	0.2mV	-200.80	0.40
Channel Z + Input	2mV	1999.98	0.00
	0.2mV	199.11	-0.44
Channel Z - Input	0.2mV	-201.12	0.56

Page 2 of 4

DAE3 SN: 577

DATE: 21.11.2003

3. Common mode sensitivity

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time: 3 sec

in μV	Common mode Input Voltage	High Range Reading	Low Range Reading
Channel X	200mV	12.00	11.9
	- 200mV	-10.76	-12.44
Channel Y	200mV	-8.55	-8.51
	- 200mV	7.58	6.67
Channel Z	200mV	-0.86	-0.58
	- 200mV	-0.85	-0.77

4. Channel separation

DASY measurement parameters:

Auto Zero Time: 3 sec,

Measuring time:

3 sec

in μV	Input Voltage	Channel X	Channel Y	Channel Z
Channel X	200mV	-	1.96	0.28
Channel Y	200mV	0.66	-	3.59
Channel Z	200mV	-0.89	-0.11	-

5.1 AD-Converter Values with Input Voltage set to 2.0 VDC

in Zero Low	Low Range Max - Min	Max.	Min
Channel X	17	16137	16120
Channel Y	27	16767	16740
Channel Z	8	15103	15077

5.2 AD-Converter Values with inputs shorted

in LSB	Low Range	High Range
Channel X	16134	15955
Channel Y	16740	15960
Channel Z	15093	16252

6. Input Offset Measurement

DAE3 SN: 577

DATE: 21.11.2003

DASY measurement parameters:

Auto Zero Time: 3 sec. Number of measurements: Measuring time: 3 sec

100, Low Range

Input 10MO

nput roivisz					
in μV	Average	min. Offset	max. Offset	Std. Deviation	
Channel X	-0.64	-1.84	0.71	0.49	
Channel Y	-1.77	-3.93	0.94	0.58	
Channel Z	-2.21	-3.14	-0.81	0.34	

Input shorted

in μV	Average	min. Offset	max. Offset	Std. Deviation
Channel X	0.12	-1.34	1.45	0.69
Channel Y	-0.69	-1.39	0.30	0.26
Channel Z	-0.94	-1.58	-0.30	0.23

7. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

8. Input Resistance

In MOhm	Calibrating	Measuring
Channel X	0.2000	197.1
Channel Y	0.1999	200.3
Channel Z	0.2001	198.3

9. Low Battery Alarm Voltage

in V	Alarm Level
Supply (+ Vcc)	7.58
Supply (- Vcc)	-7.65

10. Power Consumption

in mA	Switched off	Stand by	Transmitting
Supply (+ Vcc)	0.00	5.65	13.7
Supply (- Vcc)	-0.01	-7.69	-8.97