

ET3DV6 SN:1788

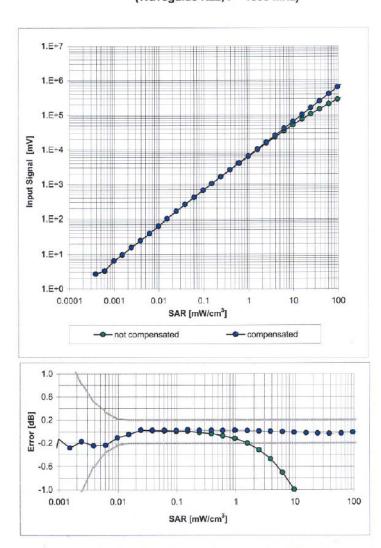
September 30, 2004

Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1788_Sep04

Page 6 of 9


©2004 SPORTON International Inc..SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01

ET3DV6 SN:1788

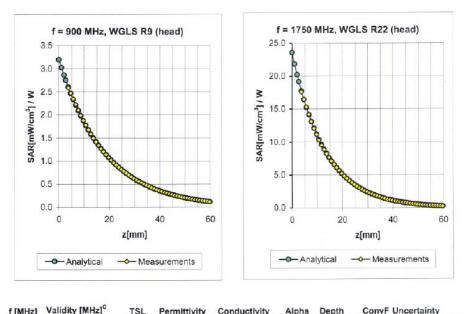
September 30, 2004

Dynamic Range f(SAR_{head}) (Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: ET3-1788_Sep04

Page 7 of 9


©2004 SPORTON International Inc..SAR Testing Lab

This report shall not be reproduced except in full, without the written approval of Sporton. Rev.01

ET3DV6 SN:1788

September 30, 2004

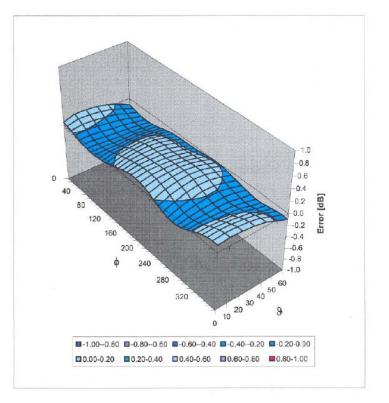
Conversion Factor Assessment

r[MHZ]	validity [winz]	ISL	Permittivity	Conductivity	Alpha	Depth	Convr Oncertainty
835	± 50 / ± 100	Head	41.5 ± 5%	0.90 ± 5%	1.12	1.42	6.74 ± 11.0% (k=2)
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	1.07	1.44	6.63 ± 11.0% (k=2)
1750	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.56	2.31	5.37 ± 11.0% (k=2)
1900	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.55	2.42	5.16 ± 11.0% (k=2)
2000	± 50 / ± 100	Head	40.0 ± 5%	1.40 ± 5%	0.54	2.59	4.88 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	39.2 ± 5%	1.80 ± 5%	0.65	2.22	4.56 ± 11.8% (k=2)
835	± 50 / ± 100	Body	55.2 ± 5%	0.97 ± 5%	1.04	1.52	6.53 ± 11.0% (k=2)
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.99	1.56	6.17 ± 11.0% (k=2)
1750	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.53	2.74	4.73 ± 11.0% (k=2)
1900	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.55	2.82	4.56 ± 11.0% (k=2)
2000	± 50 / ± 100	Body	53.3 ± 5%	1.52 ± 5%	0.54	2.98	4.43 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.72	2.00	4.26 ± 11.8% (k=2)

^c The validity of ± 100 MHz only applies for DASY 4.3 B17 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

Certificate No: ET3-1788_Sep04

Page 8 of 9



ET3DV6 SN:1788

September 30, 2004

Deviation from Isotropy in HSL

Error (\, \,), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep04

Page 9 of 9

	Switzerland	RIBRATE S	Swiss Calibration Service
ccredited by the Swiss Federal Off he Swiss Accreditation Service i Iultilateral Agreement for the rec	s one of the signatories	to the EA	n No.: SCS 108
lient Sporton (Auden)	Certificate N	o: DAE3-577_Nov04
CALIBRATION CI	ERTIFICATE		
Dbject	DAE3 - SD 000 D	03 AA - SN: 577	
Calibration procedure(s)	QA CAL-06.v10 Calibration proceed	lure for the data acquisition unit	(DAE)
Calibration date:	November 17, 200	04	
Condition of the calibrated item	In Tolerance		
The measurements and the uncerta	ainties with confidence pro	nal standards, which realize the physical ur obability are given on the following pages ar r facility: environment temperature (22 ± 3)*	nd are part of the certificate.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE	ainties with confidence pro ed in the closed laboratory critical for calibration)	obability are given on the following pages ar γ facility: environment temperature (22 ± 3) ^a	nd are part of the certificate. C and humidity < 70%.
The measurements and the uncert All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards	ainties with confidence pro ed in the closed laboratory critical for calibration)	obability are given on the following pages ar	nd are part of the certificate.
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702	ainties with confidence pro ed in the closed laboratory critical for calibration)	obability are given on the following pages ar (facility: environment temperature (22 ± 3)* Cal Date (Calibrated by, Certificate No.)	nd are part of the certificate. C and humidity < 70%. Scheduled Calibration
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ainties with confidence pro- ed in the closed laboratory critical for calibration) ID # SN: 6295803 ID #	bability are given on the following pages ar (facility: environment temperature (22 ± 3)* Cal Date (Calibrated by, Certificate No.) 7-Sep-04 (Sintrel, No.E-040073)	nd are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Sep-05
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ainties with confidence pro- ed in the closed laboratory critical for calibration) ID # SN: 6295803 ID #	bability are given on the following pages ar (facility: environment temperature (22 ± 3)* <u>Cal Date (Calibrated by, Certificate No.)</u> 7-Sep-04 (Sintrel, No.E-040073) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Sep-05 Scheduled Check
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards	ainties with confidence pro- ed in the closed laboratory critical for calibration) ID # SN: 6295803 ID #	bability are given on the following pages ar (facility: environment temperature (22 ± 3)* <u>Cal Date (Calibrated by, Certificate No.)</u> 7-Sep-04 (Sintrel, No.E-040073) Check Date (in house)	nd are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Sep-05 Scheduled Check
The measurements and the uncerta All calibrations have been conducte Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 Secondary Standards Calibrator Box V1.1	ainties with confidence pro- ed in the closed laboratory critical for calibration) ID # SN: 6295803 ID # SE UMS 006 AB 1002	obability are given on the following pages ar (facility: environment temperature (22 ± 3)* <u>Cal Date (Calibrated by, Certificate No.)</u> 7-Sep-04 (Sintrel, No.E-040073) <u>Check Date (in house)</u> 16-Jul-04 (SPEAG, in house check)	nd are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Sep-05 <u>Scheduled Check</u> In house check Jul-05
The measurements and the uncerta	ainties with confidence pro- ed in the closed laboratory critical for calibration) ID # SN: 6295803 ID # SE UMS 006 AB 1002	bability are given on the following pages ar (facility: environment temperature (22 ± 3)* <u>Cal Date (Calibrated by, Certificate No.)</u> 7-Sep-04 (Sintrel, No.E-040073) <u>Check Date (in house)</u> 16-Jul-04 (SPEAG, in house check) Function	nd are part of the certificate. C and humidity < 70%. <u>Scheduled Calibration</u> Sep-05 <u>Scheduled Check</u> In house check Jul-05

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S

С

S

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE Connector angle

digital acquisition electronics angle information used in DASY system to align probe sensor X to the robot coordinate system.

Methods Applied and Interpretation of Parameters

- *DC Voltage Measurement:* Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- *Power consumption:* Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov04

Page 2 of 5

DC Voltage Measurement

A/D - Converter Reso	lution nominal				
High Range:	1LSB =	6.1µV,	full range =	-100+300 mV	
Low Range:	1LSB =	61nV,	full range =	-1+3mV	
DASY measurement	parameters: Aut	o Zero Time: 3	sec; Measuring	time: 3 sec	

Calibration Factors	x	Y	Z
High Range	404.437 ± 0.1% (k=2)	$403.891 \pm 0.1\%$ (k=2)	$404.359\pm0.1\%$ (k=2)
Low Range	3.94121 ± 0.7% (k=2)	3.89867 ± 0.7% (k=2)	$3.95408 \pm 0.7\%$ (k=2)

Connector Angle

Connector Angle to be used in DASY system	127 ° ± 1 °
---	-------------

Certificate No: DAE3-577_Nov04

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Input (µV)	Reading (µV)	Error (%)
Channel X + Input	200000	200000.6	0.00
Channel X + Input	20000	20001.77	0.01
Channel X - Input	20000	-19991.81	-0.04
Channel Y + Input	200000	199999.7	0.00
Channel Y + Input	20000	19999.20	0.00
Channel Y - Input	20000	-19994.82	-0.03
Channel Z + Input	200000	200000.2	0.00
Channel Z + Input	20000	19996.22	-0.02
Channel Z - Input	20000	-19996.74	-0.02

Low Range		Input (µV)	Reading (µV)	Error (%)
Channel X	+ Input	2000	2000	0.00
Channel X	+ Input	200	200.05	0.03
Channel X	- Input	200	-200.88	0.44
Channel Y	+ Input	2000	1999.9	0.00
Channel Y	+ Input	200	199.73	-0.13
Channel Y	- Input	200	-200.53	0.27
Channel Z	+ Input	2000	2000.1	0.00
Channel Z	+ Input	200	199.25	-0.38
Channel Z	- Input	200	-201.42	0.71

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (µV)
Channel X	200	13.15	12.30
	- 200	-12.61	-12.86
Channel Y	200	-7.43	-7.53
	- 200	6.30	6.52
Channel Z	200	-0.16	0.31
	- 200	-1.51	-1.48

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Input Voltage (mV)	Channel X (µV)	Channel Y (µV)	Channel Z (µV)
Channel X	200	-	1.90	-0.22
Channel Y	200	1.47	-	4.60
Channel Z	200	-1.40	-0.08	÷

Certificate No: DAE3-577_Nov04

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15948	15814
Channel Y	15960	16073
Channel Z	16236	16172

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec Input $10 M \Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	0.03	-3.07	1.24	0.58
Channel Y	-0.66	-2.19	1.96	0.55
Channel Z	-0.91	-2.82	0.42	0.39

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.3
Channel Y	0.2000	200.4
Channel Z	0.2001	199.5

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

10. Common Mode Bit Generation (verified during pre test)

Typical values	Bit set to High at Common Mode Error (V _{DC})		
Channel X, Y, Z	+1.25		

Certificate No: DAE3-577_Nov04

Page 5 of 5