

# FCC Test Report (Co-Located)

Report No.: RFBCKT-WTW-P22080510-4 R1

FCC ID: HFS-GW03

Test Model: QTAX57

Received Date: 2022/3/21

Test Date: 2022/3/21 ~ 2022/9/7

Issued Date: 2022/11/9

Applicant: Quanta Computer Inc.

- Address: NO.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan
- **Issued By:** Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
- Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
- Test Location: No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan

FCC Registration / 788550 / TW0003 Designation Number:



This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at <a href="http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/">http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/</a> and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot form which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.



# **Table of Contents**

| R | eleas                                      | se Control Record                                                                                              |
|---|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| 1 |                                            | Certificate of Conformity 4                                                                                    |
| 2 |                                            | Summary of Test Results                                                                                        |
|   | 2.1<br>2.2                                 | Measurement Uncertainty                                                                                        |
| 3 |                                            | General Information                                                                                            |
|   | 3.1<br>3.2<br>3.2.7<br>3.3<br>3.3.7<br>3.4 | Description of Support Units                                                                                   |
| 4 |                                            | Test Types and Results 12                                                                                      |
|   | 4.1.3<br>4.1.4<br>4.1.8<br>4.1.6           | 2 Test Instruments       13         3 Test Procedures       14         4 Deviation from Test Standard       15 |
| 5 |                                            | Pictures of Test Arrangements                                                                                  |
| A | pper                                       | dix – Information of the Testing Laboratories                                                                  |



# **Release Control Record**

| Issue No.                 | Description                       | Date Issued |
|---------------------------|-----------------------------------|-------------|
| RFBCKT-WTW-P22080510-4    | Original release                  | 2022/9/19   |
| RFBCKT-WTW-P22080510-4 R1 | Add 2 <sup>nd</sup> Charger cable | 2022/11/9   |



#### 1 **Certificate of Conformity**

| Product:               | Smart Watch                                    |
|------------------------|------------------------------------------------|
| Brand:                 | NA                                             |
| Test Model:            | QTAX57                                         |
| Sample Status:         | Engineering sample                             |
| Applicant:             | Quanta Computer Inc.                           |
| Test Date:             | 2022/3/21 ~ 2022/9/7                           |
| Standards:             | 47 CFR FCC Part 15, Subpart C (Section 15.247) |
|                        | FCC Part 27, Subpart C, F, L                   |
| Measurement procedure: | ANSI C63.10-2013                               |
|                        | KDB 558074 D01 15.247 Meas Guidance v05r02     |

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Gina Liu / Specialist

Prepared by :

Date:

2022/11/9

Approved by :

Jeremy Lin

Date:

2022/11/9

Jeremy Lin / Project Engineer



# 2 Summary of Test Results

| Applied<br>Standard               | 47 CFR FCC Part 15, Subpart C (<br>FCC Part 27, Subpart C, F, L<br>ANSI C63.10-2013<br>KDB 558074 D01 15.247 Meas G |        |                                                                                      |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------|
| FCC<br>Clause                     | Test Item                                                                                                           | Result | Remarks                                                                              |
| 15.205 /<br>15.209 /<br>15.247(d) | Radiated Emissions                                                                                                  | Pass   | Meet the requirement of limit.<br>Minimum passing margin is<br>-5.5dB at 2390.00MHz. |
| 2.1053 27.53(h)                   | Radiated Spurious Emissions                                                                                         | Pass   | Meet the requirement of limit.<br>Minimum passing margin is<br>-39.1dB at 933.07MHz. |

#### 2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

| Measurement                    | Frequency          | Expanded Uncertainty<br>(k=2) (±) |
|--------------------------------|--------------------|-----------------------------------|
|                                | 9 kHz ~ 30 MHz     | 3.04 dB                           |
| Radiated Emissions up to 1 GHz | 30 MHz ~ 200 MHz   | 2.93 dB                           |
|                                | 200 MHz ~ 1000 MHz | 2.95 dB                           |
| Radiated Emissions above 1 GHz | 1 GHz ~ 18 GHz     | 2.26 dB                           |
|                                | 18 GHz ~ 40 GHz    | 1.94 dB                           |

# 2.2 Modification Record

There were no modifications required for compliance.



#### 3 General Information

#### 3.1 General Description of EUT

| Product               | Smart Watch                             |                     |
|-----------------------|-----------------------------------------|---------------------|
| Brand                 | NA                                      |                     |
| Test Model            | QTAX57                                  |                     |
| Status of EUT         | Engineering sample                      |                     |
| Devues Queselo Detina | 3.85 Vdc (Battery)                      |                     |
| Power Supply Rating   | 100-240 Vac (Adapter)                   |                     |
|                       | WLAN 2.4G                               | 2412 ~ 2462 MHz     |
|                       | Bluetooth EDR                           | 2402 ~ 2480MHz      |
|                       | Bluetooth LE                            | 2402 ~ 2480MHz      |
|                       | LTE Band 4 (Channel Bandwidth: 1.4 MHz) | 1710.7 ~ 1754.3 MHz |
|                       | LTE Band 4 (Channel Bandwidth: 3 MHz)   | 1711.5 ~ 1753.5 MHz |
| Operating Frequency   | LTE Band 4 (Channel Bandwidth: 5 MHz)   | 1712.5 ~ 1752.5 MHz |
|                       | LTE Band 4 (Channel Bandwidth: 10 MHz)  | 1715.0 ~ 1750.0 MHz |
|                       | LTE Band 4 (Channel Bandwidth: 15 MHz)  | 1717.5 ~ 1747.5 MHz |
|                       | LTE Band 4 (Channel Bandwidth: 20 MHz)  | 1720.0 ~ 1745.0 MHz |
|                       | LTE Band 13 (Channel Bandwidth: 5 MHz)  | 779.5 ~ 784.5 MHz   |
|                       | LTE Band 13 (Channel Bandwidth: 10 MHz) | 782.0 MHz           |
| Accessory Device      | NA                                      |                     |
| Data Cable Supplied   | NA                                      |                     |

Note:

#### 1. The EUT contains following accessory devices.

| Product         | Brand                                            | Model       | Description           |
|-----------------|--------------------------------------------------|-------------|-----------------------|
| Battery         | EVE<br>(EVE Energy Co., Ltd.)                    | P0963       | 3.85V, 495mAh, 1.91Wh |
| Charger Cable 1 | GREATLAND<br>(Greatland Electronics Taiwan Ltd.) | DDEMU080009 | Line length : 800mm   |
| Charger Cable 2 | GREATLAND<br>(Greatland Electronics Taiwan Ltd.) | DDEMU080012 | Line length : 800mm   |

2. Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

3. The above EUT information is declared by manufacturer and for more detailed features description, please refers to the manufacturer's specifications or user's manual.



# 3.2 Description of Test Modes

#### For WLAN:

11 channels are provided for 802.11b, 802.11g, 802.11n (HT20):

| Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|
| 1       | 2412 MHz  | 7       | 2442 MHz  |
| 2       | 2417 MHz  | 8       | 2447 MHz  |
| 3       | 2422 MHz  | 9       | 2452 MHz  |
| 4       | 2427 MHz  | 10      | 2457 MHz  |
| 5       | 2432 MHz  | 11      | 2462 MHz  |
| 6       | 2437 MHz  |         |           |

#### For BT EDR:

79 channels are provided to this EUT:

| Channel | Freq. (MHz) |
|---------|-------------|---------|-------------|---------|-------------|---------|-------------|
| 0       | 2402        | 20      | 2422        | 40      | 2442        | 60      | 2462        |
| 1       | 2403        | 21      | 2423        | 41      | 2443        | 61      | 2463        |
| 2       | 2404        | 22      | 2424        | 42      | 2444        | 62      | 2464        |
| 3       | 2405        | 23      | 2425        | 43      | 2445        | 63      | 2465        |
| 4       | 2406        | 24      | 2426        | 44      | 2446        | 64      | 2466        |
| 5       | 2407        | 25      | 2427        | 45      | 2447        | 65      | 2467        |
| 6       | 2408        | 26      | 2428        | 46      | 2448        | 66      | 2468        |
| 7       | 2409        | 27      | 2429        | 47      | 2449        | 67      | 2469        |
| 8       | 2410        | 28      | 2430        | 48      | 2450        | 68      | 2470        |
| 9       | 2411        | 29      | 2431        | 49      | 2451        | 69      | 2471        |
| 10      | 2412        | 30      | 2432        | 50      | 2452        | 70      | 2472        |
| 11      | 2413        | 31      | 2433        | 51      | 2453        | 71      | 2473        |
| 12      | 2414        | 32      | 2434        | 52      | 2454        | 72      | 2474        |
| 13      | 2415        | 33      | 2435        | 53      | 2455        | 73      | 2475        |
| 14      | 2416        | 34      | 2436        | 54      | 2456        | 74      | 2476        |
| 15      | 2417        | 35      | 2437        | 55      | 2457        | 75      | 2477        |
| 16      | 2418        | 36      | 2438        | 56      | 2458        | 76      | 2478        |
| 17      | 2419        | 37      | 2439        | 57      | 2459        | 77      | 2479        |
| 18      | 2420        | 38      | 2440        | 58      | 2460        | 78      | 2480        |
| 19      | 2421        | 39      | 2441        | 59      | 2461        |         |             |



# For BT LE

# 40 channels are provided for BT-LE:

| Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) | Channel | Frequency<br>(MHz) |
|---------|--------------------|---------|--------------------|---------|--------------------|---------|--------------------|
| 0       | 2402               | 10      | 2422               | 20      | 2442               | 30      | 2462               |
| 1       | 2404               | 11      | 2424               | 21      | 2444               | 31      | 2464               |
| 2       | 2406               | 12      | 2426               | 22      | 2446               | 32      | 2466               |
| 3       | 2408               | 13      | 2428               | 23      | 2448               | 33      | 2468               |
| 4       | 2410               | 14      | 2430               | 24      | 2450               | 34      | 2470               |
| 5       | 2412               | 15      | 2432               | 25      | 2452               | 35      | 2472               |
| 6       | 2414               | 16      | 2434               | 26      | 2454               | 36      | 2474               |
| 7       | 2416               | 17      | 2436               | 27      | 2456               | 37      | 2476               |
| 8       | 2418               | 18      | 2438               | 28      | 2458               | 38      | 2478               |
| 9       | 2420               | 19      | 2440               | 29      | 2460               | 39      | 2480               |



| 5.2.1 Test mode Applicability and Tested Channel Detail | 3.2.1 | Test Mode Applicability and Tested Channel Detail |
|---------------------------------------------------------|-------|---------------------------------------------------|
|---------------------------------------------------------|-------|---------------------------------------------------|

| UT Configure                                         | Appl                                                                       | icable to                                                                        |                                                                              | Descriptio                                     | -                                          |
|------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------|
| Mode                                                 | RE≥1G                                                                      | RE<1G                                                                            | 5                                                                            | Descriptio                                     | 11                                         |
| -                                                    |                                                                            | $\checkmark$                                                                     | -                                                                            |                                                |                                            |
| Band                                                 | 1G: Radiated Emission above<br>dedge Measurement<br>ission Test (Above 1GF |                                                                                  | 3: Radiated Emission I                                                       |                                                |                                            |
|                                                      |                                                                            |                                                                                  |                                                                              |                                                |                                            |
| between<br>architect                                 | ,                                                                          | lata rates and ant                                                               | enna ports (if EU⁻                                                           | Γ with antenna div                             |                                            |
| between<br>architect                                 | n available modulations, c                                                 | lata rates and ant                                                               | enna ports (if EU⁻                                                           | Γ with antenna div                             |                                            |
| between<br>architect<br>Followin<br>EUT<br>Configure | n available modulations, c<br>ture).<br>ng channel(s) was (were)<br>Mode   | lata rates and ant<br>selected for the fi<br>Frequency Band                      | enna ports (if EU <sup>-</sup><br>inal test as listed t                      | Γ with antenna div<br>below.<br>Tested Channel | ersity<br>Modulation                       |
| between<br>architect<br>Followin<br>EUT<br>Configure | n available modulations, c<br>ture).<br>ng channel(s) was (were)           | lata rates and ant<br>selected for the fi<br>Frequency Band<br>(MHz)             | enna ports (if EU <sup>-</sup><br>inal test as listed t<br>Available Channel | Γ with antenna div<br>pelow.                   | ersity<br>Modulation<br>Technology         |
| between<br>architect<br>Followin<br>EUT<br>Configure | n available modulations, c<br>ture).<br>ng channel(s) was (were)<br>Mode   | ata rates and ant<br>selected for the fi<br>Frequency Band<br>(MHz)<br>2402-2480 | inal test as listed t<br>Available Channel<br>0 to 78                        | Γ with antenna div<br>below.<br>Tested Channel | ersity<br>Modulation<br>Technology<br>GFSK |

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

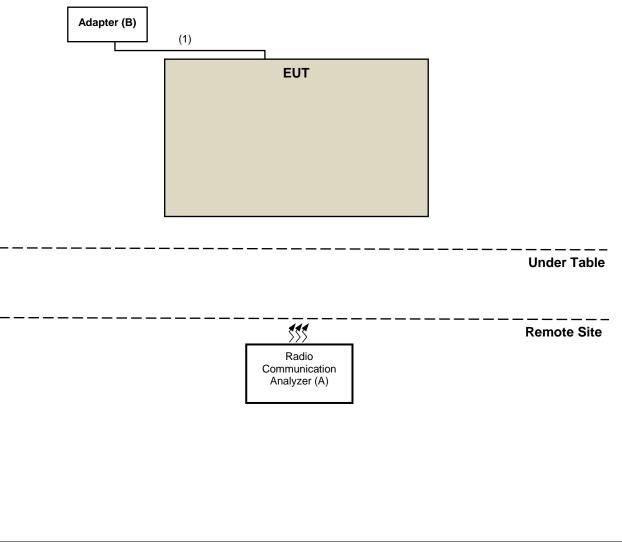
Following channel(s) was (were) selected for the final test as listed below.

| EUT<br>Configure<br>Mode | Mode                | Frequency Band<br>(MHz) | Available Channel | Tested Channel | Modulation<br>Technology |
|--------------------------|---------------------|-------------------------|-------------------|----------------|--------------------------|
|                          |                     | 2402-2480               | 0 to 78           | 0 + 20175      | GFSK                     |
| -                        | BT EDR + LTE Band 4 | 1720-1745               | 20050 to 20300    | 0 + 20175      | QPSK                     |

#### **Test Condition:**

| Applicable to | Environmental Conditions | Input Power  | Tested by                  |  |
|---------------|--------------------------|--------------|----------------------------|--|
| RE≥1G         | 21deg. C, 68%RH          | 120Vac, 60Hz | Thomas Cheng; Vincent Chen |  |
| RE<1G         | 21deg. C, 68%RH          | 120Vac, 60Hz | Thomas Cheng               |  |




# 3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

| ID | Product                            | Brand                                      | Model No.        | Serial No. | FCC ID | Remarks               |
|----|------------------------------------|--------------------------------------------|------------------|------------|--------|-----------------------|
| А  | Radio<br>Communication<br>Analyzer | Anritsu                                    | MT8820C          | 6201010284 | NA     | -                     |
| в  | Adapter                            | JIANGSU<br>CHENYANG<br>ELECTRON<br>CO.,LTD | CYSM06-050120-UL | N/A        | N/A    | Supplied by applicant |

| ID | Cable Descriptions | Qty. | Length<br>(m) | Shielding<br>(Yes/No) |   | Remarks          |
|----|--------------------|------|---------------|-----------------------|---|------------------|
| 1  | Adapter Cable      | 1    | 1             | Y                     | Ν | Accessory of EUT |

# 3.3.1 Configuration of System under Test





# 3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specification of the EUT declared by the manufacturer, it must comply with the requirements of the following standards:

# 47 CFR FCC Part 15, Subpart C (Section 15.247)

FCC Part 27, Subpart C, F, L

ANSI C63.10-2013 KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed and recorded as per the above standards.



#### 4 Test Types and Results

#### 4.1 Radiated Emission and Bandedge Measurement

#### 4.1.1 Limits of Radiated Emission and Bandedge Measurement

#### For BT EDR

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

| Frequencies (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) |  |
|-------------------|-----------------------------------|-------------------------------|--|
| 0.009 ~ 0.490     | 2400/F(kHz)                       | 300                           |  |
| 0.490 ~ 1.705     | 24000/F(kHz)                      | 30                            |  |
| 1.705 ~ 30.0      | 30                                | 30                            |  |
| 30 ~ 88           | 100                               | 3                             |  |
| 88 ~ 216          | 150                               | 3                             |  |
| 216 ~ 960         | 200                               | 3                             |  |
| Above 960         | 500                               | 3                             |  |

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

#### For LTE

According to FCC 27.53(h), for operations in the 1695-1710MHz, 1710-1755MHz, 1755-1780 MHz bands, the power of any emission outside a licensee's frequency block shall be attenuated below the transmitter power (P) in watts by at least 43 + 10 log (P) dB.



#### 4.1.2 Test Instruments

| Description &<br>Manufacturer        | Model No.                    | Serial No.                    | Cal. Date     | Cal. Due      |
|--------------------------------------|------------------------------|-------------------------------|---------------|---------------|
| Antenna Tower &Turn<br>Max-Full      | MFA-440H                     | AT93021705                    | N/A           | N/A           |
| Bi_Log Antenna<br>Schwarbeck         | VULB9168                     | 9168-472                      | Oct. 28, 2021 | Oct. 27, 2022 |
| Loop Antenna                         |                              | 45745                         | Jul. 21, 2021 | Jul. 20, 2022 |
| TESEQ                                | HLA 6121                     | 45745                         | Jul. 27, 2022 | Jul. 26, 2023 |
| HORN Antenna<br>SCHWARZBECK          | BBHA 9120D                   | 9120D-969                     | Nov. 14, 2021 | Nov. 13, 2022 |
| HORN Antenna<br>SCHWARZBECK          | BBHA 9170                    | 9170-480                      | Nov. 14, 2021 | Nov. 13, 2022 |
| Preamplifier<br>EMCI                 | EMC 012645                   | 980115                        | Oct. 05, 2021 | Oct. 04, 2022 |
| Preamplifier                         | 8447D                        | 2944A10638                    | Jun. 05, 2021 | Jun. 04, 2022 |
| Agilent                              | 0447 D                       | 2944A10038                    | May. 14, 2022 | May. 13, 2023 |
| Pre-amplifier<br>EMCI                | EMC 330H                     | 980112                        | Oct. 05, 2021 | Oct. 04, 2022 |
| Pre-amplifier<br>EMCI                | EMC 184045                   | 980116                        | Oct. 05, 2021 | Oct. 04, 2022 |
| RF Coaxial Cable<br>EMCI             | EMC104-SM-SM-8000            | 171005                        | Oct. 05, 2021 | Oct. 04, 2022 |
| RF Coaxial Cable<br>HUBER SUHNER     | SUCOFLEX 104                 | EMC104-SM-SM-100<br>0(140807) | Oct. 05, 2021 | Oct. 04, 2022 |
| RF Coaxial Cable<br>WOKEN            | 8D-FB                        | Cable-Ch10-01                 | Oct. 05, 2021 | Oct. 04, 2022 |
| Software<br>BV ADT                   | ADT_Radiated_<br>V7.6.15.9.5 | N/A                           | N/A           | N/A           |
| Spectrum Analyzer<br>ROHDE & SCHWARZ | FSP40                        | 100040                        | Sep. 15, 2021 | Sep. 14, 2022 |
| Signal Analyzer<br>Agilent           | N9010A                       | MY52220207                    | Jan. 06, 2022 | Jan. 05, 2023 |
| Test Receiver<br>Agilent             | N9038A                       | MY51210203                    | Sep. 22, 2021 | Sep. 21, 2022 |
| Turn Table<br>Max-Full               | MFT-201SS                    | NA                            | N/A           | N/A           |
| Turn Table Controller<br>Max-Full    | MG-7802                      | NA                            | N/A           | N/A           |
| Wideband Power Sensor<br>KEYSIGHT    | N1923A                       | MY58020002                    | Jan. 17, 2022 | Jan. 16 2023  |
| Peak Power Analyzer<br>KEYSIGHT      | 8990B                        | MY51000485                    | Jan. 18, 2022 | Jan. 17, 2023 |

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HY - 966 chamber 5.



#### 4.1.3 Test Procedures

#### For BT EDR

#### For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

#### For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Notes:

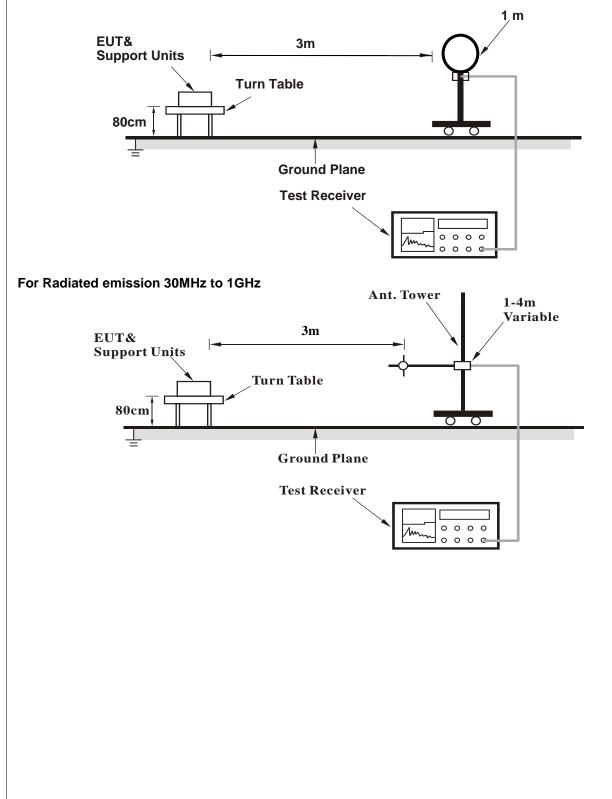
- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.

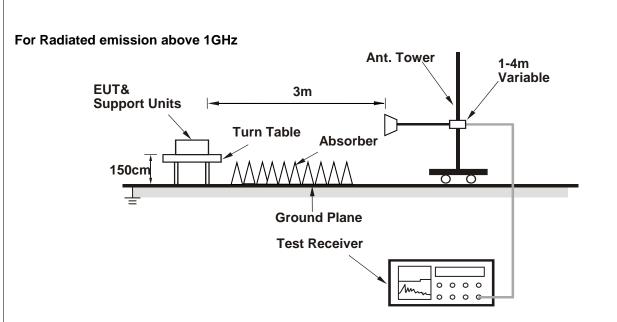


# For LTE

- a. In the semi-anechoic chamber, EUT placed on the 0.8m(below or equal 1GHz) and/or 1.5m(above 1GHz) height of Turn Table, rotated the table around 360 degrees to search the maximum radiation power and receiver antenna shall be rotated vertical and horizontal polarization and moved height from 1m to 4m to find the maximum polar radiated power. The "Read Value" is the spectrum reading the maximum power value.
- b. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- c. Perform a field strength measurement and record the worse read value, is the field strength value via a spectrum reading obtained corrected for antenna factor, cable loss and pre-amplifier factor and then mathematically convert the measured field strength level to EIRP/ERP level.
- d. Following C63.26 section 5.5 and 5.2.7 EIRP (dBm) = E (dBµV/m) + 20log(D) - 104.8; where D is the measurement distance (in the far field region) in m.
  ERP (dBm) = E (dBµV/m) + 20log(D) - 104.8 - 2.15; where D is the measurement distance (in the far field region) in m.

Note: The resolution bandwidth of spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz.


# 4.1.4 Deviation from Test Standard


No deviation.



# 4.1.5 Test Setup







For the actual test configuration, please refer to the attached file (Test Setup Photo).

# 4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Prepared a notebook to act as a communication partner and placed it outside of testing area.
- c. The communication partner connected with EUT via a RJ45 cable and ran a test program (CMD) to enable EUT under transmission condition continuously at specific channel frequency.
- d. The necessary accessories enable the system in full functions.



#### 4.1.7 Test Results

# For FCC Part 15, Subpart C

#### Above 1GHz Data:

#### BT GFSK + LTE Band 4

| CHANNEL         | CH 0 + CH 20175 |                   | Peak (PK)    |
|-----------------|-----------------|-------------------|--------------|
| FREQUENCY RANGE | 1GHz ~ 25GHz    | DETECTOR FUNCTION | Average (AV) |

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |                               |                   |                |                          |                            |                        |                                |  |  |
|----|------------------------------------------------------|-------------------------------|-------------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | 2390.00                                              | 57.5 PK                       | 74.0              | -16.5          | 1.24 H                   | 171                        | 26.6                   | 30.9                           |  |  |
| 2  | 2390.00                                              | 48.4 AV                       | 54.0              | -5.6           | 1.24 H                   | 171                        | 17.5                   | 30.9                           |  |  |
| 3  | #2402.00                                             | 99.1 PK                       |                   |                | 1.24 H                   | 171                        | 68.2                   | 30.9                           |  |  |
| 4  | #2402.00                                             | 69.2 AV                       |                   |                | 1.24 H                   | 171                        | 38.3                   | 30.9                           |  |  |
| 5  | 4804.00                                              | 41.7 PK                       | 74.0              | -32.3          | 2.36 H                   | 287                        | 57.4                   | -15.7                          |  |  |
| 6  | 4804.00                                              | 11.8 AV                       | 54.0              | -42.2          | 2.36 H                   | 287                        | 27.5                   | -15.7                          |  |  |
|    |                                                      | A                             | Antenna Polar     | ity & Test Dis | stance : Vertic          | al at 3 m                  |                        |                                |  |  |
| No | Frequency<br>(MHz)                                   | Emission<br>Level<br>(dBuV/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1  | 2390.00                                              | 57.1 PK                       | 74.0              | -16.9          | 1.23 V                   | 178                        | 26.2                   | 30.9                           |  |  |
| 2  | 2390.00                                              | 48.4 AV                       | 54.0              | -5.6           | 1.23 V                   | 178                        | 17.5                   | 30.9                           |  |  |
| 3  | #2402.00                                             | 100.0 PK                      |                   |                | 1.23 V                   | 178                        | 69.1                   | 30.9                           |  |  |
| 4  | #2402.00                                             | 70.1 AV                       |                   |                | 1.23 V                   | 178                        | 39.2                   | 30.9                           |  |  |
| 5  | 4804.00                                              | 42.7 PK                       | 74.0              | -31.3          | 2.36 V                   | 297                        | 58.4                   | -15.7                          |  |  |
| 6  | 4804.00                                              | 12.8 AV                       | 54.0              | -41.2          | 2.36 V                   | 297                        | 28.5                   | -15.7                          |  |  |

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) - Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " \* ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:
20 log(Duty cycle) = 20 log(3.2 ms / 100 ms) = -29.9 dB



#### BT GFSK + LTE Band 13

| CHANNEL         | CH 0 + CH 23230 | DETECTOR FUNCTION | Peak (PK)    |
|-----------------|-----------------|-------------------|--------------|
| FREQUENCY RANGE | 1GHz ~ 25GHz    | DETECTOR FUNCTION | Average (AV) |

|    | Antonno Dolority & Test Distance y Herizontal et 2 m |          |               |                |                 |           |        |            |  |  |
|----|------------------------------------------------------|----------|---------------|----------------|-----------------|-----------|--------|------------|--|--|
|    | Antenna Polarity & Test Distance : Horizontal at 3 m |          |               |                |                 |           |        |            |  |  |
|    | Frequency                                            | Emission | Limit         | Margin         | Antenna         | Table     | Raw    | Correction |  |  |
| No | (MHz)                                                | Level    | (dBuV/m)      | •              | Height          | Angle     | Value  | Factor     |  |  |
|    |                                                      | (dBuV/m) | (ubuv/iii)    | (dB)           | (m)             | (Degree)  | (dBuV) | (dB/m)     |  |  |
| 1  | 2390.00                                              | 56.2 PK  | 74.0          | -17.8          | 1.17 H          | 162       | 25.3   | 30.9       |  |  |
| 2  | 2390.00                                              | 47.9 AV  | 54.0          | -6.1           | 1.17 H          | 162       | 17.0   | 30.9       |  |  |
| 3  | #2402.00                                             | 98.5 PK  |               |                | 1.17 H          | 162       | 67.6   | 30.9       |  |  |
| 4  | #2402.00                                             | 68.6 AV  |               |                | 1.17 H          | 162       | 37.7   | 30.9       |  |  |
| 5  | 4804.00                                              | 41.6 PK  | 74.0          | -32.4          | 3.32 H          | 174       | 57.3   | -15.7      |  |  |
| 6  | 4804.00                                              | 11.7 AV  | 54.0          | -42.3          | 3.32 H          | 174       | 27.4   | -15.7      |  |  |
|    |                                                      | A        | Antenna Polar | ity & Test Dis | stance : Vertic | al at 3 m |        |            |  |  |
|    | Fraguanay                                            | Emission | Limit         | Morgin         | Antenna         | Table     | Raw    | Correction |  |  |
| No | Frequency                                            | Level    |               | Margin         | Height          | Angle     | Value  | Factor     |  |  |
|    | (MHz)                                                | (dBuV/m) | (dBuV/m)      | (dB)           | (m)             | (Degree)  | (dBuV) | (dB/m)     |  |  |
| 1  | 2390.00                                              | 57.2 PK  | 74.0          | -16.8          | 1.15 V          | 179       | 26.3   | 30.9       |  |  |
| 2  | 2390.00                                              | 48.5 AV  | 54.0          | -5.5           | 1.15 V          | 179       | 17.6   | 30.9       |  |  |
| 3  | #2402.00                                             | 99.2 PK  |               |                | 1.15 V          | 179       | 68.3   | 30.9       |  |  |
| 4  | #2402.00                                             | 69.3 AV  |               |                | 1.15 V          | 179       | 38.4   | 30.9       |  |  |
| 5  | 4804.00                                              | 43.0 PK  | 74.0          | -31.0          | 3.47 V          | 159       | 58.7   | -15.7      |  |  |
| 6  | 4804.00                                              | 13.1 AV  | 54.0          | -40.9          | 3.47 V          | 159       | 28.8   | -15.7      |  |  |

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

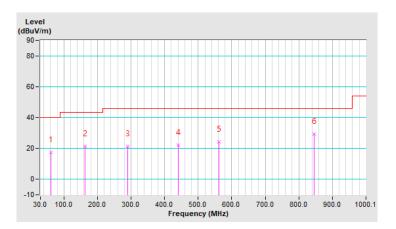
5. " \* ": Fundamental frequency, the limit was restricted at the RF Output Power.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty cycle correction factor is calculated from following formula:

20 log(Duty cycle) = 20 log(3.2 ms / 100 ms) = -29.9 dB



#### Below 1GHz data

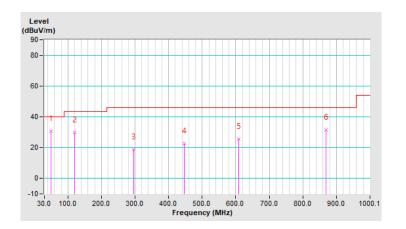

BT GFSK + LTE Band 4

| CHANNEL         | CH 0 + CH 20175 | DETECTOR |                 |
|-----------------|-----------------|----------|-----------------|
| FREQUENCY RANGE | 9kHz ~ 1GHz     | FUNCTION | Quasi-Peak (QP) |

|     | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M |                               |                   |             |                       |                            |                     |                                |  |  |  |
|-----|-----------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--|--|--|
| NO. | FREQ. (MHz)                                         | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |  |
| 1   | 61.04                                               | 17.5 QP                       | 40.0              | -22.5       | 1.46 H                | 122                        | 31.0                | -13.5                          |  |  |  |
| 2   | 162.90                                              | 21.5 QP                       | 43.5              | -22.0       | 1.83 H                | 84                         | 34.1                | -12.6                          |  |  |  |
| 3   | 289.99                                              | 21.2 QP                       | 46.0              | -24.8       | 2.14 H                | 17                         | 33.7                | -12.5                          |  |  |  |
| 4   | 440.35                                              | 22.0 QP                       | 46.0              | -24.0       | 3.11 H                | 108                        | 29.4                | -7.4                           |  |  |  |
| 5   | 561.61                                              | 24.3 QP                       | 46.0              | -21.7       | 2.82 H                | 222                        | 29.2                | -4.9                           |  |  |  |
| 6   | 844.88                                              | 29.5 QP                       | 46.0              | -16.5       | 1.14 H                | 123                        | 28.6                | 0.9                            |  |  |  |

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.




| CHANNEL         | CH 0 + CH 20175 | DETECTOR | Quasi Back (OD) |
|-----------------|-----------------|----------|-----------------|
| FREQUENCY RANGE | 9kHz ~ 1GHz     | FUNCTION | Quasi-Peak (QP) |

|     | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M |                               |                   |             |                       |                            |                     |                                |  |  |
|-----|---------------------------------------------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--|--|
| NO. | FREQ. (MHz)                                       | EMISSION<br>LEVEL<br>(dBuV/m) | LIMIT<br>(dBuV/m) | MARGIN (dB) | ANTENNA<br>HEIGHT (m) | TABLE<br>ANGLE<br>(Degree) | RAW VALUE<br>(dBuV) | CORRECTION<br>FACTOR<br>(dB/m) |  |  |
| 1   | 50.37                                             | 30.8 QP                       | 40.0              | -9.2        | 1.56 V                | 198                        | 43.4                | -12.6                          |  |  |
| 2   | 119.25                                            | 30.0 QP                       | 43.5              | -13.5       | 1.72 V                | 93                         | 44.5                | -14.5                          |  |  |
| 3   | 295.81                                            | 18.7 QP                       | 46.0              | -27.3       | 2.60 V                | 177                        | 31.1                | -12.4                          |  |  |
| 4   | 447.14                                            | 22.5 QP                       | 46.0              | -23.5       | 1.82 V                | 242                        | 30.0                | -7.5                           |  |  |
| 5   | 608.18                                            | 25.6 QP                       | 46.0              | -20.4       | 1.74 V                | 340                        | 28.9                | -3.3                           |  |  |
| 6   | 868.17                                            | 31.6 QP                       | 46.0              | -14.4       | 2.41 V                | 33                         | 30.3                | 1.3                            |  |  |

#### Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The emission levels were very low against the limit of frequency range 9kHz ~ 30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.







# For FCC Part 27

Above 1GHz Data:

BT GFSK + LTE Band 4

#### CHANNEL

# CH 0 + CH 20175

# FREQUENCY RANGE 1 GHz ~ 18 GHz

|    | Antenna Polarity & Test Distance : Horizontal at 3 m |               |                |                |                          |                            |                        |                                |  |
|----|------------------------------------------------------|---------------|----------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| No | Frequency<br>(MHz)                                   | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1  | 3465.00                                              | -54.95        | -13.00         | -41.95         | 1.52 H                   | 278                        | 61.37                  | -116.32                        |  |
|    |                                                      | A             | ntenna Polar   | ity & Test Dis | tance : Vertic           | al at 3 m                  |                        |                                |  |
| No | Frequency<br>(MHz)                                   | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1  | 3465.00                                              | -54.89        | -13.00         | -41.89         | 1.78 V                   | 220                        | 61.43                  | -116.32                        |  |

Remarks:

1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + 20log(D) – 104.8

3. Margin value = EIRP - Limit value

4. The other EIRP levels were very low against the limit.



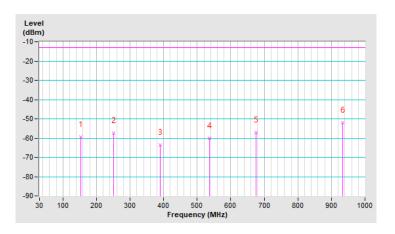
#### Below 1GHz data

BT GFSK + LTE Band 4

| CHANNEL | CH 0 + CH 20175 | FREQUENCY RANGE | 30 MHz ~ 1 GHz |
|---------|-----------------|-----------------|----------------|
|---------|-----------------|-----------------|----------------|

|     | Antenna Polarity & Test Distance : Horizontal at 3 m |               |                |                |                          |                            |                        |                                |  |
|-----|------------------------------------------------------|---------------|----------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|
| NO. | Frequency<br>(MHz)                                   | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |
| 1   | 153.19                                               | -59.4         | -13.0          | -46.4          | 3.67 H                   | 216                        | 48.2                   | -107.6                         |  |
| 2   | 251.16                                               | -57.3         | -13.0          | -44.3          | 2.80 H                   | 310                        | 52.4                   | -109.7                         |  |
| 3   | 388.90                                               | -63.4         | -13.0          | -50.4          | 1.55 H                   | 330                        | 41.2                   | -104.6                         |  |
| 4   | 537.31                                               | -60.0         | -13.0          | -47.0          | 2.07 H                   | 78                         | 40.8                   | -100.8                         |  |
| 5   | 675.05                                               | -57.0         | -13.0          | -44.0          | 1.40 H                   | 46                         | 40.4                   | -97.4                          |  |
| 6   | 933.07                                               | -52.1         | -13.0          | -39.1          | 3.52 H                   | 59                         | 41.0                   | -93.1                          |  |

Remarks:


1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + 20log(D) – 104.8

3. Margin value = EIRP – Limit value

4. The other EIRP levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The EIRP levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

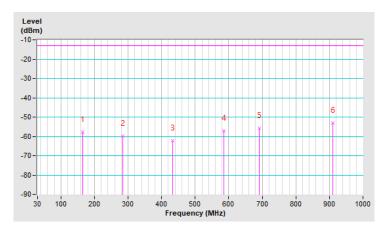




| CHANNEL | CH 0 + CH 20175 | FREQUENCY RANGE | 30 MHz ~ 1 GHz |
|---------|-----------------|-----------------|----------------|

|     | Antenna Polarity & Test Distance : Vertical at 3 m |               |                |                |                          |                            |                        |                                |  |  |
|-----|----------------------------------------------------|---------------|----------------|----------------|--------------------------|----------------------------|------------------------|--------------------------------|--|--|
| NO. | Frequency<br>(MHz)                                 | EIRP<br>(dBm) | Limit<br>(dBm) | Margin<br>(dB) | Antenna<br>Height<br>(m) | Table<br>Angle<br>(Degree) | Raw<br>Value<br>(dBuV) | Correction<br>Factor<br>(dB/m) |  |  |
| 1   | 165.80                                             | -57.9         | -13.0          | -44.9          | 1.58 V                   | 248                        | 50.2                   | -108.1                         |  |  |
| 2   | 284.14                                             | -59.8         | -13.0          | -46.8          | 2.64 V                   | 182                        | 48.3                   | -108.1                         |  |  |
| 3   | 433.52                                             | -62.3         | -13.0          | -49.3          | 1.15 V                   | 131                        | 40.8                   | -103.1                         |  |  |
| 4   | 584.84                                             | -57.2         | -13.0          | -44.2          | 2.74 V                   | 134                        | 42.1                   | -99.3                          |  |  |
| 5   | 690.57                                             | -55.7         | -13.0          | -42.7          | 1.57 V                   | 51                         | 41.6                   | -97.3                          |  |  |
| 6   | 910.76                                             | -53.1         | -13.0          | -40.1          | 1.45 V                   | 310                        | 40.3                   | -93.4                          |  |  |

Remarks:


1. EIRP(dBm) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB) + 20log(D) – 104.8

3. Margin value = EIRP - Limit value

4. The other EIRP levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.

5. The EIRP levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.





# 5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).



#### Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ----