

TEST REPORT

CERTIFICATE OF CONFORMITY

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Report No.: RFBCKT-WTW-P22080510-2 R1

FCC ID: HFS-GW03

Model No.: QTAX57

Received Date: 2022/3/21

Test Date: 2022/8/17 ~ 2022/8/31

Issued Date: 2022/11/9

Applicant: Quanta Computer Inc.

Address: NO.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Lin Kou Laboratories

Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan

Test Location(1): No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kewi Shan Dist., Taoyuan City 33383, Taiwan

Test Location(2): No. 70, Wenming Rd., Guishan Dist., Taoyuan City 333, Taiwan

FCC Registration / 788550 / TW0003

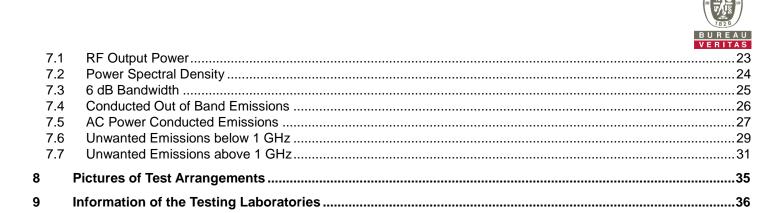
Designation Number(1):

FCC Registration / 281270 / TW0032

Designation Number(2):

Jeremy Lin / Project Engineer

This test report consists of 36 pages in total. It may be duplicated completely for legal use with the approval of the applicant. It should not be reproduced except in full, without the written approval of our laboratory. The test results in the report only apply to the tested sample. The test results in this report are traceable to the national or international standards.


Prepared by : Gina Liu / Specialist

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Table of Contents

Relea	ase Control Record	4
1	Certificate	5
2	Summary of Test Results	6
2.1 2.2	,	
3	General Information	7
3.1	General Description	7
3.2	·	
3.3		
3.4		
3.5 3.6	, ,	
3.6	· ·	
3.8	· · · · · · · · · · · · · · · · · · ·	
	Test Instruments	
4		
4.1		
4.2	and the second of the second o	
4.3 4.4		
4.4 4.5		
4.6		
4.7		
5	Limits of Test Items	15
5.1		
5.2		
5.3	1	
5.4		
5.5	AC Power Conducted Emissions	15
5.6		
5.7	7 Unwanted Emissions above 1 GHz	16
6	Test Arrangements	17
6.1	RF Output Power	17
6.1	· ·	
6.1		
6.2		
6.2 6.2	·	
6.3		
6.3		
6.3	·	
6.4	Conducted Out of Band Emissions	18
6.4	· ·	
6.4		
6.5		
6.5 6.5	·	
6.6		
6.6		
6.6	·	
6.7		
6.7	·	
6.7		
7	Test Results of Test Item	23

Release Control Record

Issue No.	Description	Date Issued
RFBCKT-WTW-P22080510-2	Original release.	2022/9/19
RFBCKT-WTW-P22080510-2 R1	Add 2 nd Charger cable	2022/11/9

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 4 / 36 Report Format Version: 7.1.0 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

1 Certificate

Product: Smart Watch

Brand: NA

Test Model: QTAX57

Sample Status: Engineering sample

Applicant: Quanta Computer Inc.

Test Date: 2022/8/17 ~ 2022/8/31

Standard: 47 CFR FCC Part 15, Subpart C (Section 15.247)

Measurement ANSI C63.10-2013

procedure: KDB 558074 D01 15.247 Meas Guidance v05r02

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (Section 15.247)						
Standard / Clause	Test Item	Result	Remark			
15.247(b)	RF Output Power	Pass	Meet the requirement of limit.			
15.247(e)	Power Spectral Density	Pass	Meet the requirement of limit.			
15.247(a)(2)	6 dB Bandwidth	Pass	Meet the requirement of limit.			
15.247(d)	Conducted Out of Band Emissions	Pass	Meet the requirement of limit.			
15.207	AC Power Conducted Emissions	Pass	Minimum passing margin is -25.22 dB at 0.78600 MHz			
15.205 / 15.209 / 15.247(d)	Unwanted Emissions below 1 GHz	Pass	Minimum passing margin is -15.7 dB at 30.00 MHz			
15.205 / 15.209 / 15.247(d)	Unwanted Emissions above 1 GHz	Pass	Minimum passing margin is -6.3 dB at 2483.50 MHz			
15.203	Antenna Requirement	Pass	No antenna connector is used.			

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Specification	Expanded Uncertainty (k=2) (±)		
Conducted Out of Band Emissions	9 kHz ~ 40 GHz	2.79 dB		
AC Power Conducted Emissions	9 kHz ~ 30 MHz	2.79 dB		
Howanted Emissions halow 4 CHz	9 kHz ~ 30 MHz	3 dB		
Unwanted Emissions below 1 GHz	30 MHz ~ 1 GHz	2.93 dB		
Hausantod Emissions above 4 CH-	1 GHz ~ 18 GHz	1.76 dB		
Unwanted Emissions above 1 GHz	18 GHz ~ 40 GHz	1.77 dB		

The other instruments specified are routine verified to remain within the calibrated levels, no measurement uncertainty is required to be calculated.

2.2 Supplementary Information

There is not any deviation from the test standards for the test method, and no modifications required for compliance.

3 General Information

3.1 General Description

Product	Smart Watch
Brand	NA
Test Model	QTAX57
Status of EUT	Engineering sample
Dawer Cumply Dating	3.85 Vdc (Battery)
Power Supply Rating	100-240 Vac (Adapter)
Modulation Type	GFSK
Modulation Technology	DTS
Transfer Rate	Up to 1 Mbps
Operating Frequency	2.402 GHz ~ 2.48 GHz
Number of Channel	40
Output Power	1.791 mW (2.53 dBm)

Note:

1. The EUT uses following accessories.

Battery		
Brand	Model	Spec.
EVE (EVE Energy Co., Ltd.)	P0963	3.85V, 495mAh, 1.91Wh
Charger cable		
Brand	Model	Spec
GREATLAND (Greatland Electronics Taiwan Ltd.)	DDEMU080009	Line length: 800mm
GREATLAND (Greatland Electronics Taiwan Ltd.)	DDEMU080012	Line length: 800mm

^{2.} The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Antenna Description of EUT

1. The antenna information is listed as below.

A . (N.)	Gain (dBi)	A . (T	O				
Antenna No.	2400~2483.5 MHz	Antenna Type	Connector Type				
1	-3.5	Monopole	Murata MM8930				

^{*} Detail antenna specification please refer to antenna datasheet and/or antenna measurement report.

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 7 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

3.3 Channel List

40 channels are provided for BT-LE:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.4 Test Mode Applicability and Tested Channel Detail

Pre-Scan: EUT can be used in the following ways: X-axis/ Y-axis/ Z-axis. Pre-scan these ways and case as a representative test condition.	
Worst Case:	Worst Condition: Z-axis

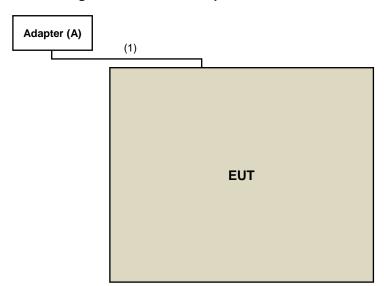

Following channel(s) was (were) selected for the final test as listed below:

Test Item	Mode	Tested Channel	Modulation	Data Rate Parameter
RF Output Power / Power Spectral Density	BT LE-1M	0, 19, 39	GFSK	1Mb/s
6 dB Bandwidth / Conducted Out of Band Emissions	BT-LE 1M	0, 19, 39	GFSK	1Mb/s
AC Power Conducted Emissions	BT-LE 1M	0	GFSK	1Mb/s
Unwanted Emissions below 1 GHz	BT-LE 1M	0	GFSK	1Mb/s
Unwanted Emissions above 1 GHz	BT-LE 1M	0, 19, 39	GFSK	1Mb/s

3.5 Duty Cycle of Test Signal

Duty cycle of test signal is < 98 %, duty factor shall be considered.

BT-LE 1M: Duty cycle = 0.387 ms / 0.627 ms x 100% = 61.7%, duty factor = 10 * log (1/Duty cycle) = 2.10 dB



Test Program Used and Operation Descriptions 3.6

Controlling software QRCT4.0_4.0.00185.0 has been activated to set the EUT under transmission condition continuously at specific channel frequency.

3.7 **Connection Diagram of EUT and Peripheral Devices**

3.8 **Configuration of Peripheral Devices and Cable Connections**

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α	Adapter	JIANGSU CHENYANG ELECTRON CO.,LTD	CYSM06-050120- UL	N/A	N/A	Supplied by applicant

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	Adapter Cable	1	1	Υ	N	Accessory of EUT

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 10 / 36 Report Format Version: 7.1.0

4 Test Instruments

The calibration interval of the all test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.1 RF Output Power

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Peak Power Analyzer KEYSIGHT	8990B	MY51000485	2022/1/18	2023/1/17
Power sensor Keysight	U2021XA	MY55380009	2022/3/23	2023/3/22
Wideband Power Sensor(N1923A) KEYSIGHT	N1923A	MY58020002	2022/1/17	2023/1/16

Notes:

1. The test was performed in Oven room.

2. Tested Date: 2022/8/31

4.2 Power Spectral Density

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Software BV	ADT_RF Test Software V6.6.5.4	N/A	N/A	N/A
Spectrum Analyzer R&S	FSV40	100979	2022/3/25	2023/3/24

Notes:

1. The test was performed in Oven room.

2. Tested Date: 2022/8/31

4.3 6 dB Bandwidth

Refer to section 4.2 to get information of the instruments.

4.4 Conducted Out of Band Emissions

Refer to section 4.2 to get information of the instruments.

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 11 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

4.5 **AC Power Conducted Emissions**

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
DC-LISN SCHWARZBECK MESS- ELETRONIK	NNBM 8126G	8126G-069	2021/11/10	2022/11/9
LISN	ESH2-Z5	100100	2022/2/17	2023/2/16
R&S	ESH3-Z5	100312	2021/9/17	2022/9/16
RF Coaxial Cable WORKEN	5D-FB	Cable-cond2-01	2021/9/4	2022/9/3
Software BVADT	BVADT_Cond_ V7.3.7.4	N/A	N/A	N/A
Test Receiver R&S	ESR3	102783	2021/12/20	2022/12/19
V-LISN Schwarzbeck	NNBL 8226-2	8226-142	2021/8/20	2022/8/19

Notes:

The test was performed in HY - Conduction 2.
 Tested Date: 2022/8/17

4.6 Unwanted Emissions below 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower Max-Full	MFA-515BSN	N/A	N/A	N/A
Bi-log Broadband Antenna Schwarzbeck	VULB9168	9168-1214	2021/10/27	2022/10/26
Loop Antenna EMCI	EM-6879	269	2021/9/16	2022/9/15
Loop Antenna TESEQ	HLA 6121	45745	2022/7/27	2023/7/26
MXA Signal Analyzer KEYSIGHT	N9020B	MY60110513	2021/12/24	2022/12/23
MXE EMI Receiver KEYSIGHT	N9038B	MY60180018	2022/2/18	2023/2/17
Pre-amplifier EMCI	EMC001340	980201	2021/9/15	2022/9/14
Pre_Amplifier EMCI	EMC330N	980798	2022/1/17	2023/1/16
	5D-NM-BM	140903+140902	2022/1/15	2023/1/14
RF Coaxial Cable	EMCCFD400-NM-NM- 500	201248	2022/1/17	2023/1/16
EMCI	EMCCFD400-NM-NM- 3000	201249	2022/1/17	2023/1/16
	EMCCFD400-NM-NM- 9000	201251	2022/1/17	2023/1/16
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table Max-Full	MFT-201SS	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802BS	MF780208676	N/A	N/A

Notes:

1. The test was performed in WM - 966 chamber 9.

2. Tested Date: 2022/8/24

4.7 Unwanted Emissions above 1 GHz

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower Max-Full	MFA-515BSN	N/A	N/A	N/A
Horn Antenna RFSPIN	DRH18-E	210104A18E	2021/11/14	2022/11/13
Horn Antenna Schwarzbeck	BBHA 9170	9170-1048	2021/11/14	2022/11/13
MXA Signal Analyzer KEYSIGHT	N9020B	MY60110513	2021/12/24	2022/12/23
MXE EMI Receiver KEYSIGHT	N9038B	MY60180018	2022/2/18	2023/2/17
Pre_Amplifier	EMC118A45SE	980809	2021/12/30	2022/12/29
EMCI	EMC184045SE	980786	2022/1/17	2023/1/16
	EMC101G-KM-KM-2000	201255	2022/1/17	2023/1/16
	EMC101G-KM-KM-3000	201258	2022/1/17	2023/1/16
RF Coaxial Cable	EMC101G-KM-KM-5000	201261	2022/1/17	2023/1/16
EMCI	EMC104-SM-SM-1000	210103	2022/1/17	2023/1/16
	EMC104-SM-SM-3000	201232	2022/1/17	2023/1/16
	EMC104-SM-SM-9000	201244	2022/1/17	2023/1/16
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table Max-Full	MFT-201SS	N/A	N/A	N/A
Turn Table Controller Max-Full	MF-7802BS	MF780208676	N/A	N/A

Notes:

1. The test was performed in WM - 966 chamber 9.

2. Tested Date: 2022/8/23

5 Limits of Test Items

5.1 RF Output Power

For systems using digital modulation in the 2400-2483.5 MHz bands: 1 Watt (30 dBm)

5.2 Power Spectral Density

The Maximum of Power Spectral Density Measurement is 8 dBm in any 3 kHz.

5.3 6 dB Bandwidth

The minimum of 6 dB Bandwidth Measurement is 0.5 MHz.

5.4 Conducted Out of Band Emissions

Below 20 dB of the highest emission level of operating band (in 100 kHz Resolution Bandwidth).

5.5 AC Power Conducted Emissions

Frequency (MHz)	Conducted Limit (dBuV)		
	Quasi-peak	Average	
0.15 - 0.5	66 - 56	56 - 46	
0.50 - 5.0	56	46	
5.0 - 30.0	60	50	

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50 MHz.

5.6 Unwanted Emissions below 1 GHz

Radiated emissions up to 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- Emission level (dBuV/m) = 20 log Emission level (uV/m).

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 15 / 36 Report Format Version: 7.1.0

5.7 Unwanted Emissions above 1 GHz

Radiated emissions above 1 GHz which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20 dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
Above 960	500	3

Notes:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.
- 3. For frequencies above 1000 MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20 dB under any condition of modulation.

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 16 / 36 Report Format Version: 7.1.0


Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

6 Test Arrangements

6.1 RF Output Power

6.1.1 Test Setup

6.1.2 Test Procedure

Peak Power:

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

Average Power:

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

6.2 Power Spectral Density

6.2.1 Test Setup

6.2.2 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: 3 kHz.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 17 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

6.3 6 dB Bandwidth

6.3.1 Test Setup

6.3.2 Test Procedure

- a. Set resolution bandwidth (RBW) = 100 kHz.
- b. Set the video bandwidth (VBW) \geq 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

6.4 Conducted Out of Band Emissions

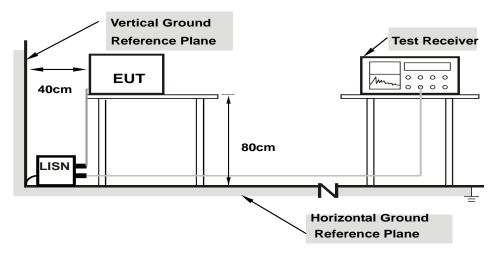
6.4.1 Test Setup

6.4.2 Test Procedure

MEASUREMENT PROCEDURE REF

- a. Set the RBW = 100 kHz.
- b. Set the VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep time = auto couple.
- e. Trace mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE


- a. Set RBW = 100 kHz.
- b. Set VBW ≥ 300 kHz.
- c. Detector = peak.
- d. Sweep = auto couple.
- e. Trace Mode = max hold.
- f. Allow trace to fully stabilize.
- g. Use the peak marker function to determine the maximum amplitude level.

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 18 / 36 Report Format Version: 7.1.0

6.5 AC Power Conducted Emissions

6.5.1 Test Setup

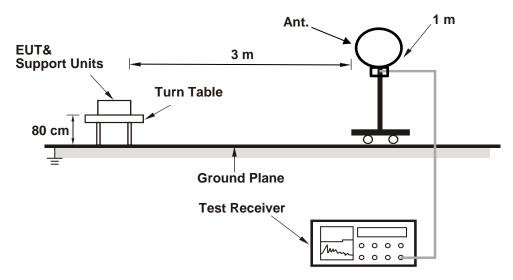
Note: 1.Support units were connected to second LISN.

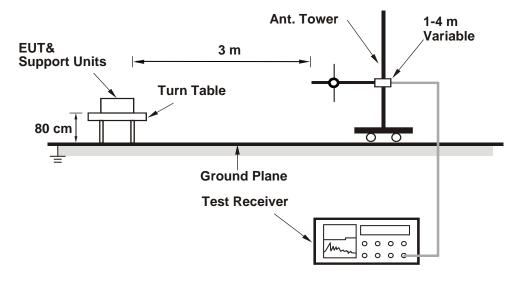
For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.5.2 Test Procedure

- a. The EUT was placed on a 0.8 meter to the top of table and placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50 uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150 kHz to 30 MHz was searched. Emission levels under (Limit 20 dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9 kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15 MHz-30 MHz.


Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 19 / 36 Report Format Version: 7.1.0 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022


6.6 Unwanted Emissions below 1 GHz

6.6.1 Test Setup

For Radiated emission below 30 MHz

For Radiated emission above 30 MHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 20 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

6.6.2 Test Procedure

For Radiated emission below 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode, except for the frequency band (9 kHz to 90 kHz and 110 kHz to 490 kHz) set to average detect function and peak detect function.

Notes:

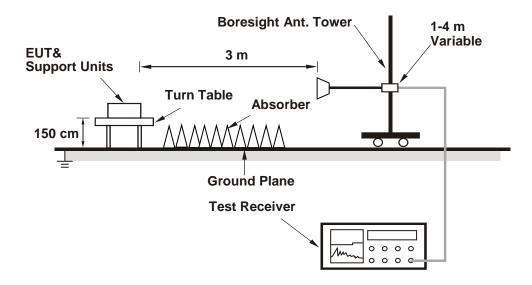
- The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 200 Hz at frequency below 150 kHz.
- 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9 kHz or 10 kHz at frequency (150 kHz to 30 MHz).
- 3. All modes of operation were investigated and the worst-case emissions are reported.

For Radiated emission above 30 MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.

Notes:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 kHz for Quasi-peak detection (QP) at frequency below 1 GHz.
- 2. All modes of operation were investigated and the worst-case emissions are reported.


Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

6.7 Unwanted Emissions above 1 GHz

6.7.1 Test Setup

For Radiated emission above 1 GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

6.7.2 Test Procedure

- a. The EUT was placed on the top of a rotating table 1.5 meters above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to peak and average detects function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Notes:

- 1. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (AV) at frequency above 1 GHz.
- For fundamental and harmonic signal measurement, the resolution bandwidth of test receiver/spectrum analyzer
 is 1 MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10 Hz (Duty cycle ≥ 98%) for Average detection
 (AV) at frequency above 1 GHz.
- 3. All modes of operation were investigated and the worst-case emissions are reported.

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 22 / 36 Report Format Version: 7.1.0

7 Test Results of Test Item

7.1 RF Output Power

Input Power:	3.85 Vdc	Environmental Conditions:	25°C, 60% RH	Tested By:	Jisyong Wang	
--------------	----------	---------------------------	--------------	------------	--------------	--

For Peak Power

BT-LE 1M

Chan.	Chan. Freq. (MHz)	Peak Power (mW)	Peak Power (dBm)	Power Limit (dBm)	Test Result
0	2402	1.791	2.53	30	Pass
19	2440	1.466	1.66	30	Pass
39	2480	1.607	2.06	30	Pass

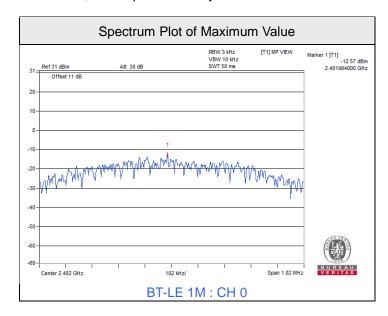
Note: The antenna gain is -3.5 dBi < 6 dBi, so the output power limit shall not be reduced.

For Average Power

BT-LE 1M

Chan.	Chan. Freq. (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	1.517	1.81
19	2440	1.14	0.57
39	2480	1.321	1.21

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 23 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

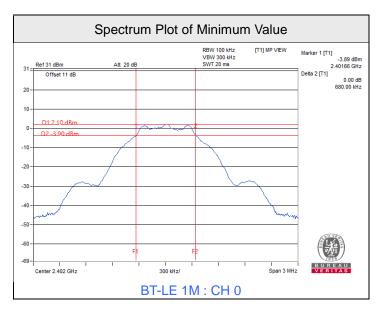

7.2 Power Spectral Density

Input Power:	3.85 Vdc	Environmental Conditions:	25°C, 60% RH	Tested By:	Jisyong Wang	
--------------	----------	---------------------------	--------------	------------	--------------	--

BT-LE 1M

Chan.	Chan. Freq. (MHz)	PSD (dBm/3kHz)	PSD Limit (dBm/3kHz)	Test Result
0	2402	-12.57	8.00	Pass
19	2440	-13.28	8.00	Pass
39	2480	-13.03	8.00	Pass

Note: The antenna gain is -3.5 dBi < 6 dBi, so the power density limit shall not be reduced.

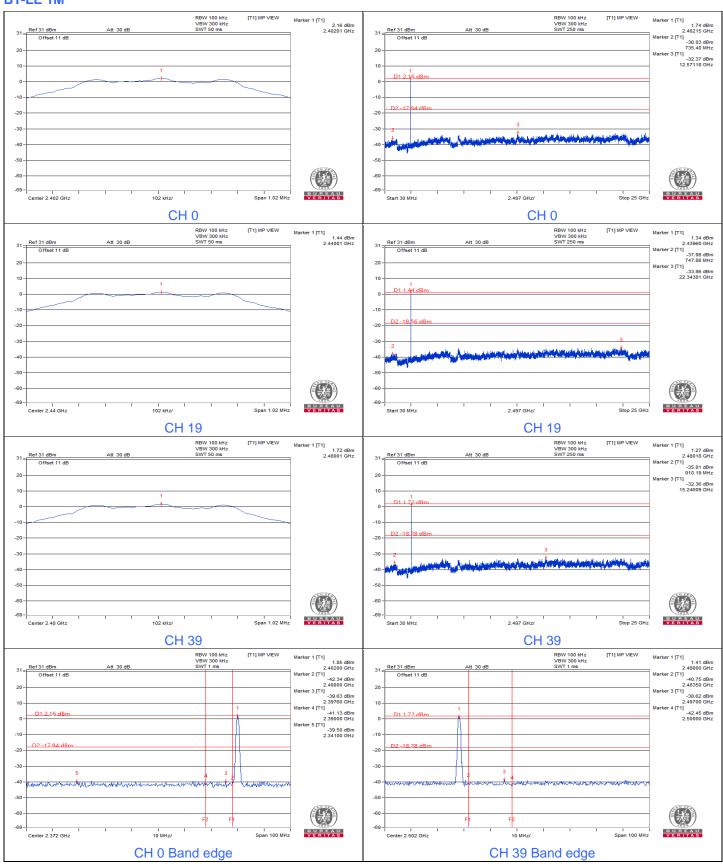


7.3 6 dB Bandwidth

Input Power:	3.85 Vdc	Environmental Conditions:	25°C, 60% RH	Tested By:	Jisyong Wang
--------------	----------	---------------------------	--------------	------------	--------------

BT-LE 1M

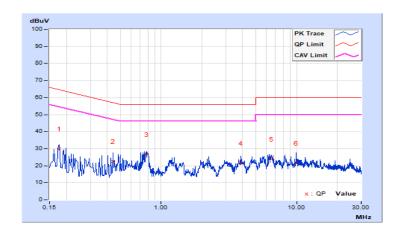
Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Test Result
0	2402	0.68	0.5	Pass
19	2440	0.68	0.5	Pass
39	2480	0.68	0.5	Pass



7.4 Conducted Out of Band Emissions

Input Power:	3.85 Vdc	Environmental Conditions:	25°C, 60% RH	Tested By:	Jisyong Wang
--------------	----------	---------------------------	--------------	------------	--------------

BT-LE 1M

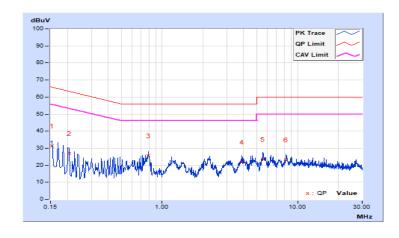

7.5 AC Power Conducted Emissions

RF Mode	TX BT-LE 1M	Channel	CH 0: 2402 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	21°C, 66% RH
Tested By	Thomas Cheng		

	Phase Of Power : Line (L)											
No	Frequency	Correction Factor	Reading (dB	g Value uV)		n Level uV)		Limit (dBuV)		Margin (dB)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.17708	10.15	19.76	4.27	29.91	14.42	64.62	54.62	-34.71	-40.20		
2	0.44200	10.24	12.38	3.00	22.62	13.24	57.02	47.02	-34.40	-33.78		
3	0.78600	10.28	16.39	10.50	26.67	20.78	56.00	46.00	-29.33	-25.22		
4	3.87000	10.40	11.09	3.73	21.49	14.13	56.00	46.00	-34.51	-31.87		
5	6.53800	10.43	13.49	3.95	23.92	14.38	60.00	50.00	-36.08	-35.62		
6	9.93000	10.46	11.23	2.36	21.69	12.82	60.00	50.00	-38.31	-37.18		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value



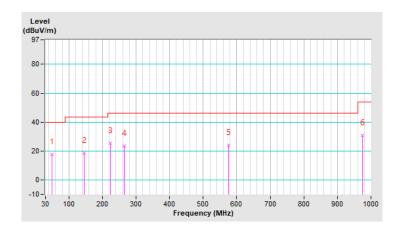
			VERITAS
RF Mode	TX BT-LE 1M	Channel	CH 0: 2402 MHz
Frequency Range	150 kHz ~ 30 MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	21°C, 66% RH
Tested By	Thomas Cheng		

	Phase Of Power : Neutral (N)											
No	Frequency	Correction Factor		g Value uV)		n Level uV)		nit uV)		gin B)		
	(MHz)	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.15400	10.14	21.05	8.46	31.19	18.60	65.78	55.78	-34.59	-37.18		
2	0.20600	10.19	16.90	2.71	27.09	12.90	63.37	53.37	-36.28	-40.47		
3	0.79000	10.29	15.43	10.20	25.72	20.49	56.00	46.00	-30.28	-25.51		
4	3.87400	10.40	11.42	3.11	21.82	13.51	56.00	46.00	-34.18	-32.49		
5	5.57000	10.43	13.22	3.78	23.65	14.21	60.00	50.00	-36.35	-35.79		
6	8.20200	10.48	12.60	2.88	23.08	13.36	60.00	50.00	-36.92	-36.64		

Remarks:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 28 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

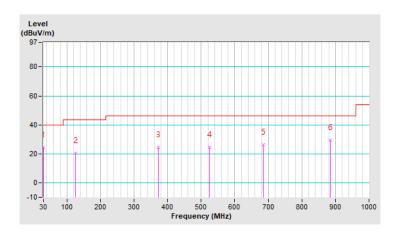

7.6 Unwanted Emissions below 1 GHz

RF Mode	TX BT-LE 1M	Channel	CH 0: 2402 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	24°C, 65% RH
Tested By	Greg Lin		

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	50.40	17.6 QP	40.0	-22.4	1.00 H	356	30.8	-13.2			
2	145.40	18.4 QP	43.5	-25.1	1.50 H	262	31.6	-13.2			
3	224.00	25.3 QP	46.0	-20.7	1.25 H	273	41.7	-16.4			
4	263.80	23.7 QP	46.0	-22.3	1.00 H	38	37.5	-13.8			
5	575.10	24.0 QP	46.0	-22.0	1.25 H	302	30.2	-6.2			
6	974.80	30.7 QP	54.0	-23.3	1.00 H	3	30.9	-0.2			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



			VERITAS
RF Mode	TX BT-LE 1M	Channel	CH 0: 2402 MHz
Frequency Range	9 kHz ~ 1 GHz	Detector Function & Bandwidth	(QP) RB = 120kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	24°C, 65% RH
Tested By	Greg Lin		

	Antenna Polarity & Test Distance : Vertical at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	30.00	24.3 QP	40.0	-15.7	1.25 V	242	38.7	-14.4			
2	125.10	20.6 QP	43.5	-22.9	1.25 V	172	35.4	-14.8			
3	371.40	24.3 QP	46.0	-21.7	1.00 V	228	34.9	-10.6			
4	524.70	24.5 QP	46.0	-21.5	1.00 V	66	31.8	-7.3			
5	684.80	26.2 QP	46.0	-19.8	1.50 V	2	30.5	-4.3			
6	884.60	29.4 QP	46.0	-16.6	1.00 V	245	31.2	-1.8			

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30 MHz ~ 1 GHz.
- 5. The emission levels were very low against the limit of frequency range 9 kHz ~ 30 MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

7.7 Unwanted Emissions above 1 GHz

RF Mode	TX BT-LE 1M	Channel	CH 0: 2402 MHz		
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 kHz		
Input Power	120 Vac, 60 Hz	Environmental Conditions 24°C, 69% RH			
Tested By	Greg Lin				

Antenna Polarity & Test Distance: Horizontal at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	56.8 PK	74.0	-17.2	1.19 H	202	24.8	32.0
2	2390.00	47.2 AV	54.0	-6.8	1.19 H	202	15.2	32.0
3	*2402.00	91.5 PK			1.19 H	202	59.5	32.0
4	*2402.00	90.5 AV			1.19 H	202	58.5	32.0
5	4804.00	47.8 PK	74.0	-26.2	1.37 H	116	44.7	3.1
6	4804.00	38.3 AV	54.0	-15.7	1.37 H	116	35.2	3.1
			Antenna Pola	rity & Test Dis	stance : Vertic	al at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2390.00	57.3 PK	74.0	-16.7	1.02 V	189	25.3	32.0
2	2390.00	47.6 AV	54.0	-6.4	1.02 V	189	15.6	32.0
3	*2402.00	93.2 PK			1.02 V	189	61.2	32.0
4	*2402.00	92.1 AV			1.02 V	189	60.1	32.0
5	4804.00	48.3 PK	74.0	-25.7	1.53 V	89	45.2	3.1
6	4804.00	38.6 AV	54.0	-15.4	1.53 V	89	35.5	3.1

Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 31 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

			VERITAS
RF Mode	TX BT-LE 1M	Channel	CH 19: 2440 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	24°C, 69% RH
Tested By	Greg Lin		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2440.00	90.6 PK			1.25 H	206	58.6	32.0	
2	*2440.00	89.6 AV			1.25 H	206	57.6	32.0	
3	4880.00	47.7 PK	74.0	-26.3	1.34 H	117	44.5	3.2	
4	4880.00	38.3 AV	54.0	-15.7	1.34 H	117	35.1	3.2	
			Antenna Pola	rity & Test Dis	stance : Vertic	al at 3 m			
No	No Frequency (MHz) Emission Limit (dBuV/m) (dB)				Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	*2440.00	92.2 PK			1.04 V	213	60.2	32.0	
2	*2440.00	91.1 AV			1.04 V	213	59.1	32.0	
3	4880.00	48.3 PK	74.0	-25.7	1.64 V	93	45.1	3.2	
4	4880.00	38.5 AV	54.0	-15.5	1.64 V	93	35.3	3.2	

Remarks:

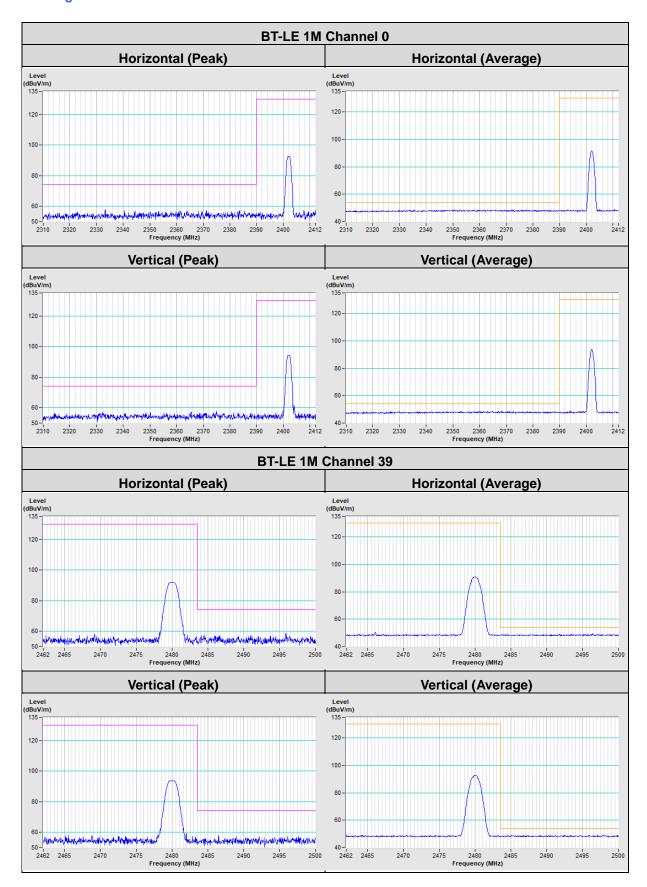
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 32 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

			VERITAS
RF Mode	TX BT-LE 1M	Channel	CH 39: 2480 MHz
Frequency Range	1 GHz ~ 25 GHz	Detector Function & Bandwidth	(PK) RB = 1 MHz, VB = 3 MHz (AV) RB = 1 MHz, VB = 3 kHz
Input Power	120 Vac, 60 Hz	Environmental Conditions	24°C, 69% RH
Tested By	Greg Lin		

Antenna Polarity & Test Distance : Horizontal at 3 m

No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	90.9 PK			1.27 H	208	58.9	32.0
2	*2480.00	89.8 AV			1.27 H	208	57.8	32.0
3	2483.50	57.4 PK	74.0	-16.6	1.27 H	208	25.4	32.0
4	2483.50	47.3 AV	54.0	-6.7	1.27 H	208	15.3	32.0
5	4960.00	47.6 PK	74.0	-26.4	1.29 H	117	44.4	3.2
6	4960.00	38.2 AV	54.0	-15.8	1.29 H	117	35.0	3.2
	Antenna Polarity & Test Distance : Vertical at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	*2480.00	92.5 PK			1.11 V	208	60.5	32.0
2	*2480.00	91.4 AV			1.11 V	208	59.4	32.0
3	2483.50	57.8 PK	74.0	-16.2	1.11 V	208	25.8	32.0
4	2483.50	47.7 AV	54.0	-6.3	1.11 V	208	15.7	32.0
5	4960.00	48.1 PK	74.0	-25.9	1.59 V	85	44.9	3.2
6	4960.00	38.8 AV	54.0	-15.2	1.59 V	85	35.6	3.2


Remarks:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency, the limit was restricted at the RF Output Power.

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 33 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

Plot of Band Edge

8 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo)

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 35 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

9 Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@bureauveritas.com
Web Site: http://ee.bureauveritas.com.tw

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RFBCKT-WTW-P22080510-2 R1 Page No. 36 / 36 Cancels and replaces the report no.: RFBCKT-WTW-P22080510-2 dated on Sep. 19, 2022

Report Format Version: 7.1.0