

Report No.: FR413008B

FCC RADIO TEST REPORT

FCC ID : HFS-GRS6B

Equipment : Wireless Device

Model Name : GRS6B

Applicant : Quanta Computer Inc.

No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan

Standard : FCC Part 15 Subpart C §15.247

The product was received on Feb. 02, 2024 and testing was performed from Feb. 23, 2024 to Mar. 23, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868 Page Number : 1 of 26
FAX: 886-3-327-0855 Issue Date : May 07, 2024

Table of Contents

Report No.: FR413008B

His	tory o	of this test report	3		
Su	mmar	y of Test Result	4		
1	Gene	eral Description	5		
	1.1	Product Feature of Equipment Under Test	5		
	1.2	Modification of EUT	5		
	1.3	Testing Location	6		
	1.4	Applicable Standards	6		
2	Test	Configuration of Equipment Under Test	7		
	2.1	Carrier Frequency Channel	7		
	2.2	Test Mode	8		
	2.3	Connection Diagram of Test System	10		
	2.4	Support Unit used in test configuration and system	11		
	2.5	EUT Operation Test Setup	11		
	2.6	Measurement Results Explanation Example	12		
3	Test Result				
	3.1	6dB and 99% Bandwidth Measurement	13		
	3.2	Output Power Measurement	14		
	3.3	Power Spectral Density Measurement	15		
	3.4	Conducted Band Edges and Spurious Emission Measurement	16		
	3.5	Radiated Band Edges and Spurious Emission Measurement	17		
	3.6	AC Conducted Emission Measurement	21		
	3.7	Antenna Requirements	23		
4	List	of Measuring Equipment	24		
5	Meas	surement Uncertainty	26		
Ар	pendi	x A. Conducted Test Results			
Ар	pendi	x B. AC Conducted Emission Test Result			
Аp	pendi	x C. Radiated Spurious Emission			
Αp	pendi	x D. Radiated Spurious Emission Plots			
Αp	pendi	x E. Duty Cycle Plots			
Αp	pendi	x F. Setup Photographs			

History of this test report

Report No.: FR413008B

Report No.	Version	Description	Issue Date
FR413008B	01	Initial issue of report	Apr. 02, 2024
FR413008B	02	Revise Section 2.2~2.4 and List of Measuring Equipment This report is an updated version, replacing the report issued on Apr. 02, 2024.	May 07, 2024

TEL: 886-3-327-0868 Page Number : 3 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

Summary of Test Result

Report No.: FR413008B

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark	
3.1	15.247(a)(2)	6dB Bandwidth	Pass	-	
3.1	2.1049	99% Occupied Bandwidth	Reporting only	-	
3.2	15.247(b)(3) 15.247(b)(4)	Output Power	Pass	-	
3.3	15.247(e)	Power Spectral Density	al Density Pass		
3.4	15.247(d)	Conducted Band Edges and Spurious Emission Pass		-	
3.5	15.247(d)	Radiated Band Edges and Spurious Emission	diated Band Edges and Spurious Emission Pass		
3.6	15.207	AC Conducted Emission	Pass	15.86 dB under the limit at 0.16 MHz	
3.7	15.203	Antenna Requirement	Pass	-	

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the
 regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who
 shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken
 into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Avis Chuang Report Producer: Lucy Wu

TEL: 886-3-327-0868 Page Number : 4 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature

Report No.: FR413008B

General Specs

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n, Wi-Fi 5GHz 802.11a/n/ac, and Thread.

Antenna Type

WLAN

<ant. 1>: PIFA Antenna <ant. 2>: PIFA Antenna Bluetooth: PIFA Antenna Thread: PIFA Antenna

Antenna information				
2400 MHz ~ 2483.5 MHz	Peak Gain (dBi)	1.43		

Remark: The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report summary.

EUT Information List				
S/N	Performed Test Item			
41301HFBS011W3	RF Conducted Measurement			
41311HFBS012CP	Radiated Spurious Emission			
41311HFBS012BG 41311HFBS012CP	Conducted Emission			

1.2 Modification of EUT

No modifications made to the EUT during the testing.

TEL: 886-3-327-0868 Page Number : 5 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855
Test Site No.	Sporton Site No. TH05-HY, CO07-HY, 03CH11-HY

Report No.: FR413008B

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 414788 D01 Radiated Test Site v01r01
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

TEL: 886-3-327-0868 Page Number : 6 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

2 Test Configuration of Equipment Under Test

2.1 Carrier Frequency Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	0	2402	21	2444
	1	2404	22	2446
	2	2406	23	2448
	3	2408	24	2450
	4	2410	25	2452
	5	2412	26	2454
	6	2414	27	2456
	7 8 9 10	2416	28	2458
		2418	29	2460
		2420	30	2462
2400-2483.5 MHz		2422	31	2464
	11	2424	32	2466
	12	2426	33	2468
	13	2428	34	2470
	14	2430	35	2472
	15	2432	36	2474
	16	2434	37	2476
	17	2436	38	2478
	18	2438	39	2480
	19	2440	-	-
	20	2442	-	-

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : 7 of 26
FAX: 886-3-327-0855 Issue Date : May 07, 2024

2.2 Test Mode

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz), radiation emission (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Full connection mode (Ethernet port connected to WLAN AP and HDMI port connected to TV) and stand-alone mode have been verified. Based on the verification results, the worst case (stand-alone mode) were recorded in this report.

Report No.: FR413008B

b. AC power line Conducted Emission was tested under maximum output power.

TEL: 886-3-327-0868 Page Number : 8 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

The following summary table is showing all test modes to demonstrate in compliance with the standard.

Report No.: FR413008B

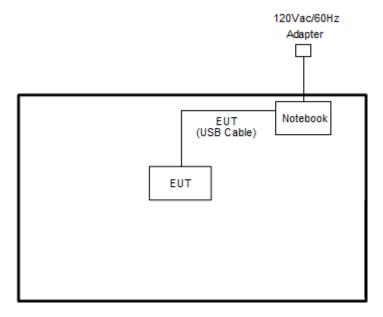
Summary table of Test Cases				
Test Item	Data Rate / Modulation			
	Bluetooth – LE / GFSK			
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps			
Conducted	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps			
Test Cases	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps			
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps			
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps			
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps			
	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps			
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps			
Radiated	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps			
Test Cases	Mode 4: Bluetooth Tx CH00_2402 MHz_2Mbps			
	Mode 5: Bluetooth Tx CH19_2440 MHz_2Mbps			
	Mode 6: Bluetooth Tx CH39_2480 MHz_2Mbps			
	Mode 1 : Bluetooth TX (BDR 1M) Channel 39 + USB Cable 1 (Charging from AC			
	Adapter 1)			
AC Conducted	Mode 2 : Bluetooth-LE TX (1Mbps) Channel 19 + USB Cable 1 (Charging from			
AC Conducted	AC Adapter 1)			
Emission	Mode 3 : Thread TX Channel 18 + USB Cable 1 (Charging from AC Adapter 1)			
	Mode 4 : WLAN (2.4GHz) 802.11b TX Channel 6 + USB Cable 1 (Charging from			
	AC Adapter 1)			
Remark:				

Remark:

- 1. The worst case of Conducted Emission is mode 4; only the test data of it was reported.
- 2. For Radiated Test Cases, the tests were performed with USB Cable 2
- 3. For radiation spurious emission, the modulation and the data rate picked for testing are determined by the Max. RF conducted power.

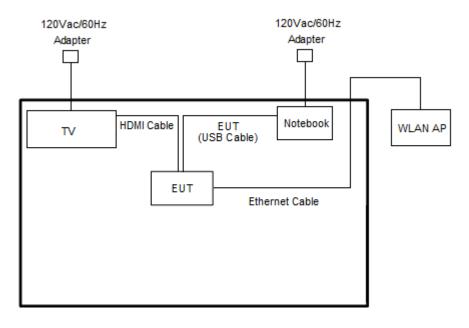
TEL: 886-3-327-0868 Page Number : 9 of 26
FAX: 886-3-327-0855 Issue Date : May 07, 2024

2.3 Connection Diagram of Test System


<Stand-alone Mode>

<AC Conducted Emission Mode>

Report No.: FR413008B


<Bluetooth-LE Tx Mode>

TEL: 886-3-327-0868 Page Number : 10 of 26
FAX: 886-3-327-0855 Issue Date : May 07, 2024

<Full Connection Mode>

<AC Conducted Emission Mode / Bluetooth-LE Tx Mode>

Report No.: FR413008B

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	DELL	Latitude 3400	FCC DoC	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
2.	TV	LG	LG49SM8111PWA	FCC DoC	N/A	Unshielded, 1.8 m
3.	TV	Sharp	LC-50UA6800T	FCC DoC	N/A	Unshielded, 1.8 m
4.	WLAN AP	ASUS	RT-AC66U	MSQ-RTAC66U	N/A	Unshielded, 1.8 m
5.	WLAN AP	ASUS	RT-AX88U	MSQ-RTAXHP00	N/A	Unshielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "adb version 1.0.40" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

TEL: 886-3-327-0868 Page Number : 11 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Report No.: FR413008B

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10 dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).
=
$$4.2 + 10 = 14.2$$
 (dB)

TEL: 886-3-327-0868 Page Number : 12 of 26
FAX: 886-3-327-0855 Issue Date : May 07, 2024

3 Test Result

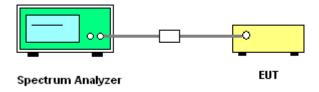
3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.1.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 6.9.3 (OBW) and 11.8.1 (6dB BW).
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.

Report No.: FR413008B

- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set
 1-5% of the emission bandwidth and set the Video bandwidth (VBW) ≥ 3 * RBW.
- 6. Measure and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of 6dB Bandwidth

Please refer to Appendix A.

3.1.6 Test Result of 99% Occupied Bandwidth

Please refer to Appendix A.

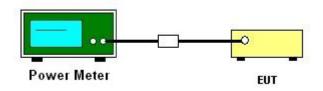
TEL: 886-3-327-0868 Page Number : 13 of 26
FAX: 886-3-327-0855 Issue Date : May 07, 2024

3.2 Output Power Measurement

3.2.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna of directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: FR413008B


3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator.
- 3. The path loss is compensated to the results for each measurement.
- 4. Set the maximum power setting and enable the EUT to transmit continuously.
- 5. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

3.2.5 Test Result of Average Output Power

Please refer to Appendix A.

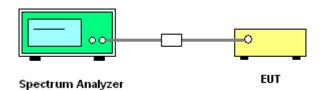
TEL: 886-3-327-0868 Page Number : 14 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8 dBm in any 3 kHz band at any time interval of continuous transmission.

Report No.: FR413008B


3.3.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.3.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.10.2 Method PKPSD.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth (VBW) = 10 kHz. In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6 dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100 kHz is a reference level and is used as 20 dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

3.3.5 Test Result of Power Spectral Density

Please refer to Appendix A.

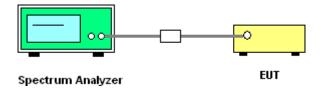
TEL: 886-3-327-0868 Page Number : 15 of 26
FAX: 886-3-327-0855 Issue Date : May 07, 2024

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 30 dB down from the highest emission level within the authorized band.

Report No.: FR413008B


3.4.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.4.3 Test Procedure

- 1. The testing follows the ANSI C63.10 Section 11.11.3 Emission level measurement.
- 2. The RF output of EUT is connected to the spectrum analyzer by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Set RBW = 100 kHz, VBW = 300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup

3.4.5 Test Result of Conducted Band Edges Plots

Please refer to Appendix A.

3.4.6 Test Result of Conducted Spurious Emission Plots

Please refer to Appendix A.

TEL: 886-3-327-0868 Page Number : 16 of 26
FAX: 886-3-327-0855 Issue Date : May 07, 2024

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Report No.: FR413008B

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 - 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

3.5.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

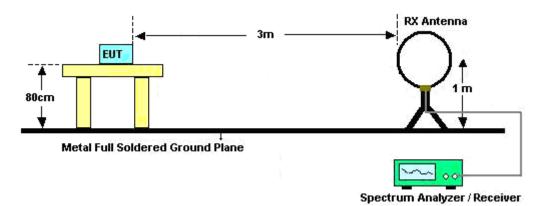
TEL: 886-3-327-0868 Page Number : 17 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

3.5.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.

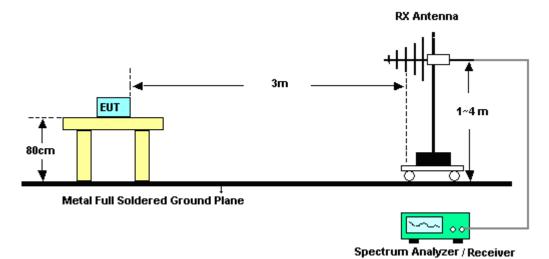
Report No.: FR413008B

- The EUT is placed on a turntable with 0.8 meter for frequency below 1 GHz and 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing below 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading. When there is no suspected emission found and the emission level is with at least 6 dB margin against QP limit line, the position is marked as "-".
- 7. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 8. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW = 100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW = 3 MHz for f ≥ 1 GHz for peak measurement.

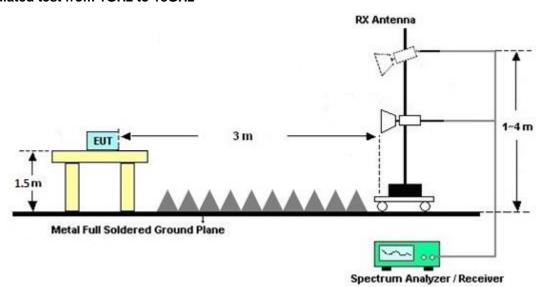

For average measurement:

- VBW = 10 Hz, when duty cycle is no less than 98 percent.
- VBW ≥ 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

TEL: 886-3-327-0868 Page Number : 18 of 26
FAX: 886-3-327-0855 Issue Date : May 07, 2024

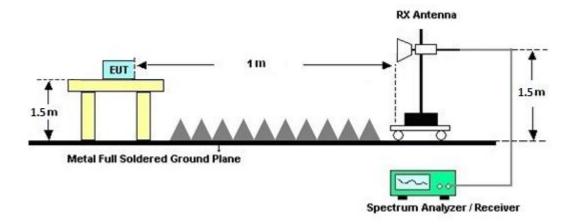

3.5.4 Test Setup

For radiated test below 30MHz



Report No.: FR413008B

For radiated test from 30MHz to 1GHz



For radiated test from 1GHz to 18GHz

TEL: 886-3-327-0868 Page Number : 19 of 26
FAX: 886-3-327-0855 Issue Date : May 07, 2024

For radiated test above 18GHz

Report No.: FR413008B

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which starts from 9 kHz to 30 MHz, is pre-scanned and the result which is 20 dB lower than the limit line is not reported.

There is adequate comparison measurement of both open-field test site and alternative test site - semi-Anechoic chamber according to 414788 D01 Radiated Test Site v01r01, and the result comes out very similar.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix C and D.

3.5.7 Duty Cycle

Please refer to Appendix E.

3.5.8 Test Result of Radiated Spurious Emission (30 MHz ~ 10th Harmonic)

Please refer to Appendix C and D.

TEL: 886-3-327-0868 Page Number : 20 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

3.6 AC Conducted Emission Measurement

3.6.1 Limit of AC Conducted Emission

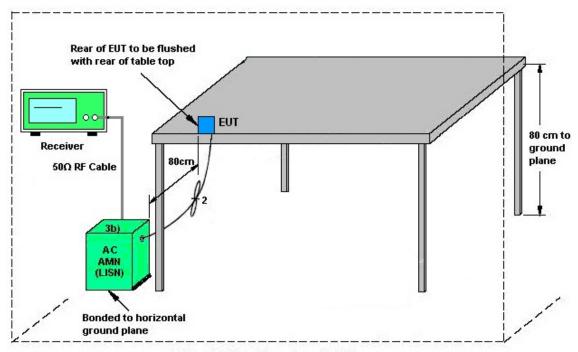
For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Report No.: FR413008B

Eroquency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*}Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


Please refer to the measuring equipment list in this test report.

3.6.3 Test Procedures

- 1. The EUT is placed 0.4 meter away from the conducting wall of the shielding room, and is kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN shall be used.
- 6. Both Line and Neutral shall be tested in order to find out the maximum conducted emission.
- 7. The frequency range from 150 kHz to 30 MHz is scanned.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9 kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

TEL: 886-3-327-0868 Page Number : 21 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

3.6.4 Test Setup

Report No.: FR413008B

AMN = Artificial mains network (LISN)

AE = Associated equipment

EUT = Equipment under test

ISN = Impedance stabilization network

3.6.5 Test Result of AC Conducted Emission

Please refer to Appendix B.

TEL: 886-3-327-0868 Page Number : 22 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

3.7 Antenna Requirements

3.7.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

Report No.: FR413008B

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

TEL: 886-3-327-0868 Page Number : 23 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Bilog Antenna	TESEQ	CBL 6111D & N-6-06	35414 & AT-N0602	30MHz~1GHz	Oct. 07, 2023	Feb. 23, 2024~ Mar. 15, 2024	Oct. 06, 2024	Radiation (03CH11-HY)
Loop Antenna	Rohde & Schwarz	HFH2-Z2	100488	9 kHz~30 MHz	Sep. 12, 2023	Feb. 23, 2024~ Mar. 15, 2024	Sep. 11, 2024	Radiation (03CH11-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-01620	1GHz~18GHz	Aug. 17, 2023	Feb. 23, 2024~ Mar. 15, 2024	Aug. 16, 2024	Radiation (03CH11-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	00993	18GHz~40GHz	Nov. 24, 2023	Feb. 23, 2024~ Mar. 15, 2024	Nov. 23, 2024	Radiation (03CH11-HY)
Amplifier	SONOMA	310N	187312	9kHz~1GHz	Dec. 08, 2023	Feb. 23, 2024~ Mar. 15, 2024	Dec. 07, 2024	Radiation (03CH11-HY)
Preamplifier	E-INSTRUME NT TECH LTD.	ERA-10M-7000- MR	EC1900245	10MHz-7GHz	Jan. 09, 2024	Feb. 23, 2024~ Mar. 15, 2024	Jan. 08, 2025	Radiation (03CH11-HY)
Preamplifier	Jet-Power	JPA0118-55-303	17100018000 55007	1GHz~18GHz	Jun. 14, 2023	Feb. 23, 2024~ Mar. 15, 2024	Jun. 13, 2024	Radiation (03CH11-HY)
Preamplifier	EMEC	EM18G40G	060801	18GHz~40GHz	Jun. 27, 2023	Feb. 23, 2024~ Mar. 15, 2024	Jun. 26, 2024	Radiation (03CH11-HY)
Spectrum Analyzer	Keysight	N9010A	MY54200486	10Hz~44GHz	Oct. 05, 2023	Feb. 23, 2024~ Mar. 15, 2024	Oct. 04, 2024	Radiation (03CH11-HY)
EMI Test Receiver	Keysight	N9038A(MXE)	MY55420170	20MHz~8.4GHz	Aug. 02, 2023	Feb. 23, 2024~ Mar. 15, 2024	Aug. 01, 2024	Radiation (03CH11-HY)
Controller	EMEC	EM 1000	N/A	Control Turn table & Ant Mast	N/A	Feb. 23, 2024~ Mar. 15, 2024	N/A	Radiation (03CH11-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1~4m	N/A	Feb. 23, 2024~ Mar. 15, 2024	N/A	Radiation (03CH11-HY)
Turn Table	EMEC	TT 2000	N/A	0~360 Degree	N/A	Feb. 23, 2024~ Mar. 15, 2024	N/A	Radiation (03CH11-HY)
Software	Audix	E3 6.2009-8-24	RK-001053	N/A	N/A	Feb. 23, 2024~ Mar. 15, 2024	N/A	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY1595/2	30MHz~40GHz	Mar. 07, 2023	Feb. 23, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz~40GHz	Mar. 07, 2023	Feb. 23, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 07, 2023	Feb. 23, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 07, 2023	Feb. 23, 2024~ Mar. 05, 2024	Mar. 06, 2024	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY1595/2	30MHz~40GHz	Mar. 06, 2024	Mar. 06, 2024~ Mar. 15, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	MY2859/2	30MHz~40GHz	Mar. 06, 2024	Mar. 06, 2024~ Mar. 15, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	9K~30M	Mar. 06, 2024	Mar. 06, 2024~ Mar. 15, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803951/2	30M~40G	Mar. 06, 2024	Mar. 06, 2024~ Mar. 15, 2024	Mar. 05, 2025	Radiation (03CH11-HY)
Filter	Wainwright	WLK4-1000-153 0-8000-40SS	SN11	1.53G Low Pass	Sep. 11, 2023	Feb. 23, 2024~ Mar. 15, 2024	Sep. 10, 2024	Radiation (03CH11-HY)
Filter	Wainwright	WHKX12-2700-3 000-18000-60SS	SN3	3GHz High Pass Filter	Sep. 11, 2023	Feb. 23, 2024~ Mar. 15, 2024	Sep. 10, 2024	Radiation (03CH11-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Dec. 08, 2023	Feb. 23, 2024~ Mar. 15, 2024	Dec. 07, 2024	Radiation (03CH11-HY)

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : 24 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

Instrument	Brand Name	Brand Name Model No.		Characteristics	Calibration Date	Test Date	Due Date	Remark
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Mar. 23, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Jun. 05, 2023	Mar. 23, 2024	Jun. 04, 2024	Conducted (TH05-HY)
Spectrum Analyzer	Rohde & Schwarz	FSP40	100057	9kHz-40GHz	Dec. 22, 2023	Mar. 23, 2024	Dec. 21, 2024	Conducted (TH05-HY)
Switch Control Mainframe	E-Instument	ETF-1405-0	EC1900067 (BOX7)	N/A	Jul. 10, 2023	Mar. 23, 2024	Jul. 09, 2024	Conducted (TH05-HY)
AC Power Source	ACPOWER	AFC-11003G	F317040033	N/A	N/A	Mar. 20, 2024	N/A	Conduction (CO07-HY)
Software	Rohde & Schwarz	EMC32 V10.30	N/A	N/A	N/A	Mar. 20, 2024	N/A	Conduction (CO07-HY)
Pulse Limiter	SCHWARZBE CK	VTSD 9561-F N	9561-F N00373	9kHz-200MHz	Oct. 20, 2023	Mar. 20, 2024	Oct. 19, 2024	Conduction (CO07-HY)
RF Cable	HUBER + SUHNER	RG 214/U	1358175	9kHz~30MHz	Mar. 14, 2024	Mar. 20, 2024	Mar. 13, 2025	Conduction (CO07-HY)
Two-Line V-Network	TESEQ	NNB 51	45051	N/A	Mar. 10, 2024	Mar. 20, 2024	Mar. 09, 2025	Conduction (CO07-HY)
Four-Line V-Network	TESEO I NNB 5		36122	N/A	Mar. 07, 2024	Mar. 20, 2024	Mar. 06, 2025	Conduction (CO07-HY)
EMI Test Receiver	Rohde & Schwarz	ESR3	102317	9kHz~3.6GHz	Sep. 20, 2023	Mar. 20, 2024	Sep. 19, 2024	Conduction (CO07-HY)

Report No.: FR413008B

5 Measurement Uncertainty

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	3.44 dB
of 95% (U = 2Uc(y))	3.44 UB

Report No.: FR413008B

<u>Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)</u>

Measuring Uncertainty for a Level of Confidence	C 1 dD
of 95% (U = 2Uc(y))	6.1 dB

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4 2 40
of 95% (U = 2Uc(y))	4.3 dB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4 2 dB
of 95% (U = 2Uc(y))	4.3 dB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3 dB
of 95% (U = 2Uc(y))	3.3 dB

TEL: 886-3-327-0868 Page Number : 26 of 26 FAX: 886-3-327-0855 Issue Date : May 07, 2024

Report Number: FR413008B

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Willy Chang	Temperature:	21~25	ů
Test Date:	2024/3/23	Relative Humidity:	51~54	%

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	1Mbps	1	0	2402	1.035	0.685	0.50	Pass
BLE	1Mbps	1	19	2440	1.033	0.694	0.50	Pass
BLE	1Mbps	1	39	2480	1.035	0.703	0.50	Pass

TEST RESULTS DATA Average Power Table

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	1Mbps	1	0	2402	5.10	30.00	1.43	6.53	36.00	Pass
BLE	1Mbps	1	19	2440	4.90	30.00	1.43	6.33	36.00	Pass
BLE	1Mbps	1	39	2480	4.90	30.00	1.43	6.33	36.00	Pass

TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	1Mbps	1	0	2402	5.21	-9.20	1.43	8.00	Pass
BLE	1Mbps	1	19	2440	4.85	-9.36	1.43	8.00	Pass
BLE	1Mbps	1	39	2480	5.17	-9.24	1.43	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

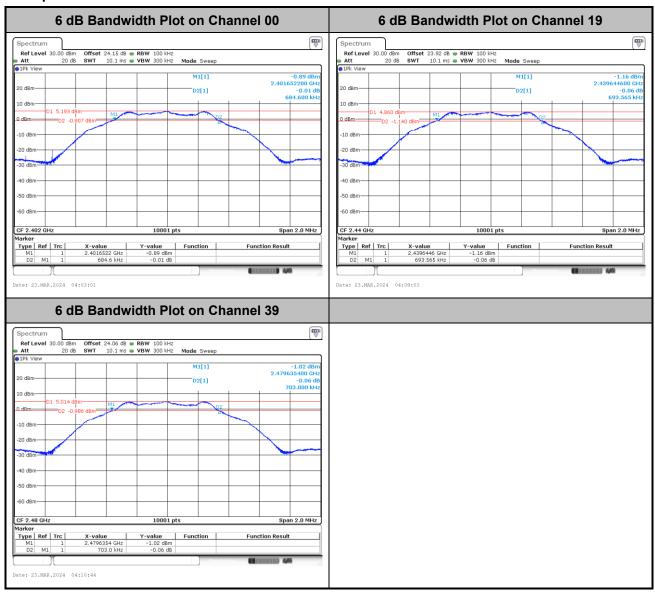
Report Number: FR413008B

TEST RESULTS DATA 6dB and 99% Occupied Bandwidth

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	99% Occupied BW (MHz)	6dB BW (MHz)	6dB BW Limit (MHz)	Pass/Fail
BLE	2Mbps	1	0	2402	2.118	1.163	0.50	Pass
BLE	2Mbps	1	19	2440	2.062	1.237	0.50	Pass
BLE	2Mbps	1	39	2480	2.062	1.157	0.50	Pass

TEST RESULTS DATA Average Power Table

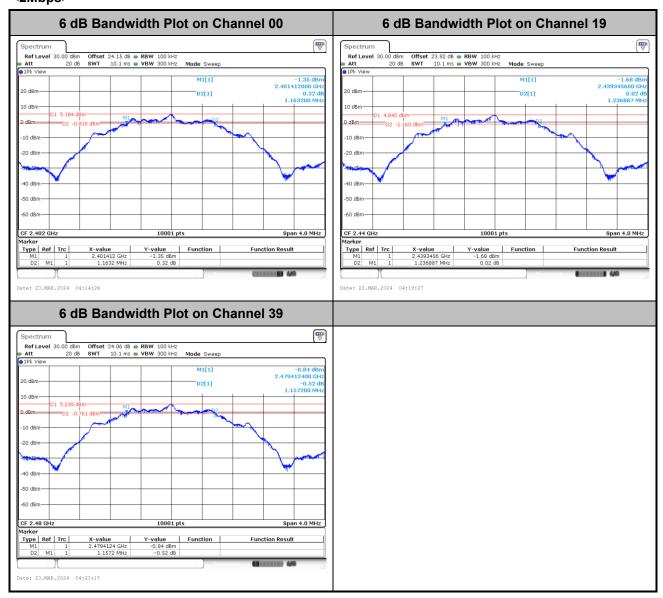
Mod.	Data Rate	N⊤x	CH.	Freq. (MHz)	Average Conducted Power (dBm)	Conducted Power Limit (dBm)	DG (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)	Pass /Fail
BLE	2Mbps	1	0	2402	5.20	30.00	1.43	6.63	36.00	Pass
BLE	2Mbps	1	19	2440	5.00	30.00	1.43	6.43	36.00	Pass
BLE	2Mbps	1	39	2480	5.10	30.00	1.43	6.53	36.00	Pass


TEST RESULTS DATA Peak Power Density

Mod.	Data Rate	NTX	CH.	Freq. (MHz)	Peak PSD (dBm /100kHz)	Peak PSD (dBm /3kHz)	DG (dBi)	Peak PSD Limit (dBm /3kHz)	Pass/Fail
BLE	2Mbps	1	0	2402	5.21	-11.64	1.43	8.00	Pass
BLE	2Mbps	1	19	2440	4.84	-11.92	1.43	8.00	Pass
BLE	2Mbps	1	39	2480	5.25	-11.59	1.43	8.00	Pass

Note: PSD (dBm/ 100kHz) is a reference level used for Conducted Band Edges and Conducted Spurious Emission 30dBc limit.

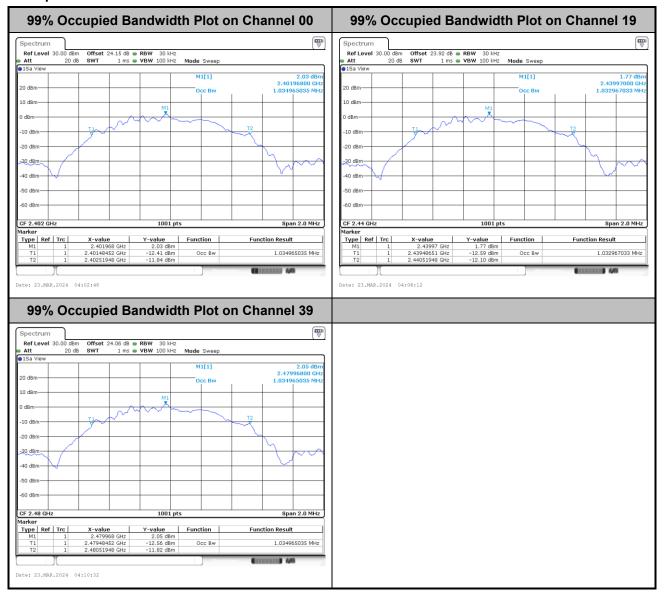
6dB Bandwidth


<1Mbps>

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : A2-1 of 12

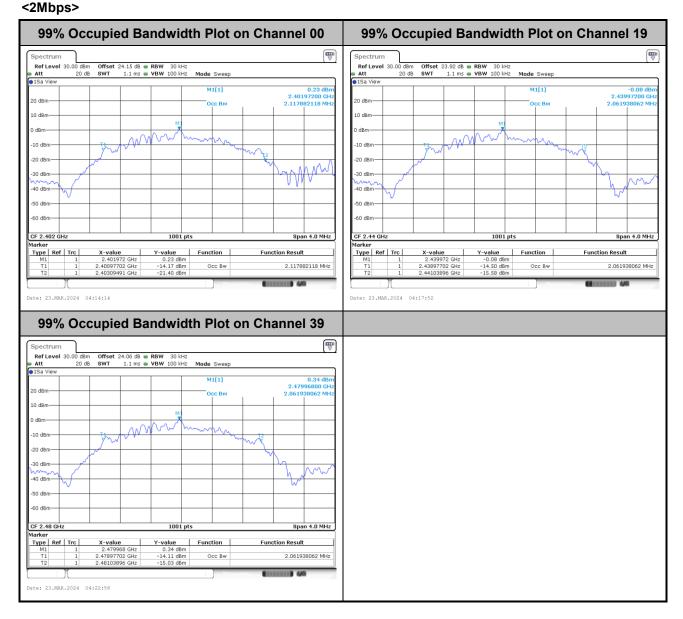
<2Mbps>



Report No.: FR413008B

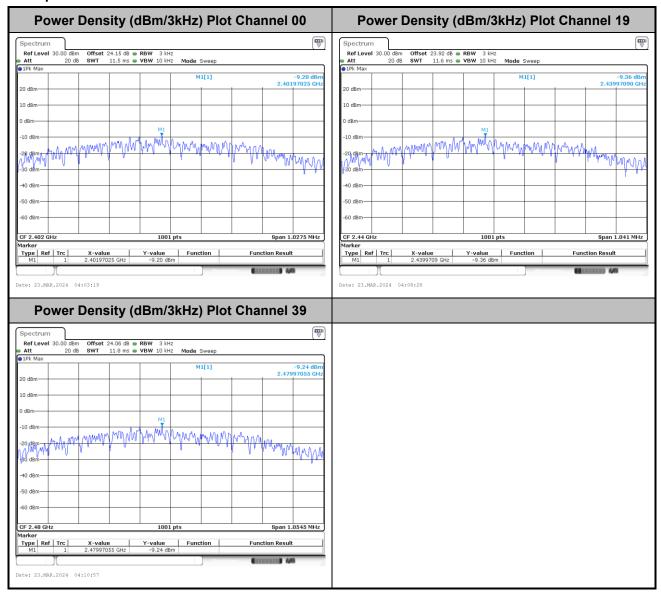
TEL: 886-3-327-0868 Page Number : A2-2 of 12

99% Occupied Bandwidth


<1Mbps>

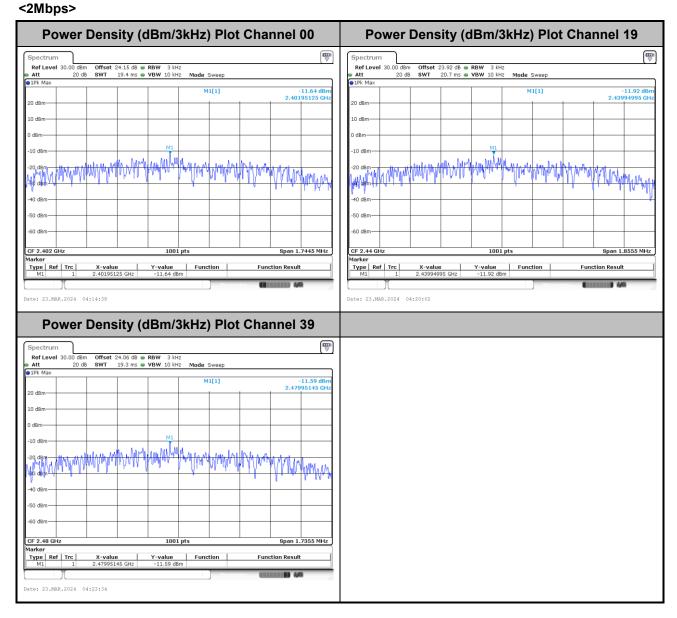
Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : A2-3 of 12



Report No.: FR413008B

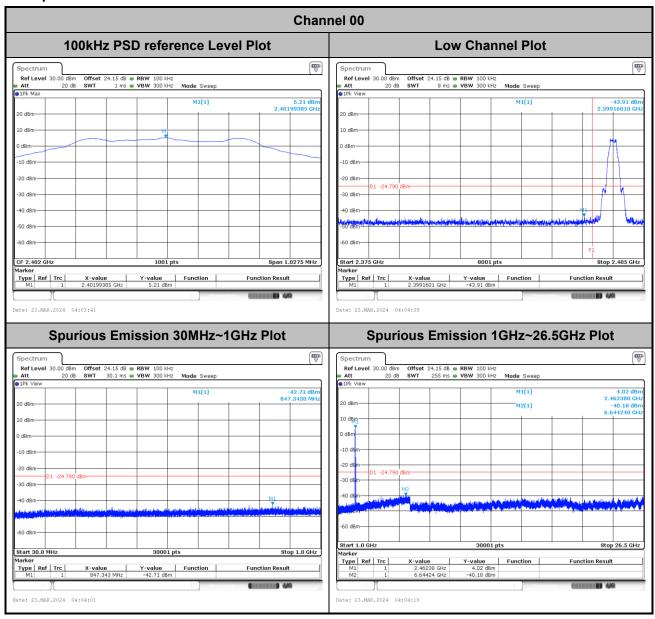
TEL: 886-3-327-0868 Page Number : A2-4 of 12


Power Spectral Density (dBm/3kHz)

<1Mbps>

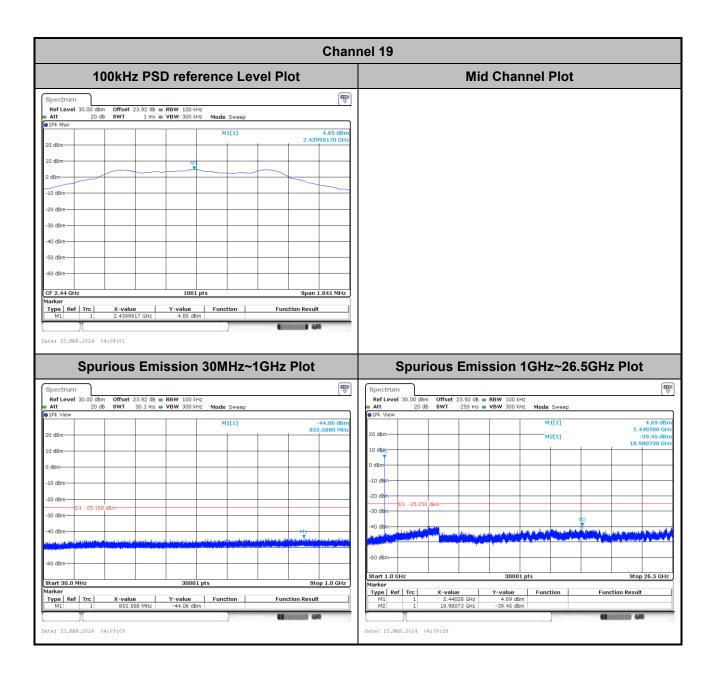
Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : A2-5 of 12



Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : A2-6 of 12


Band Edge and Conducted Spurious Emission

<1Mbps>

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : A2-7 of 12

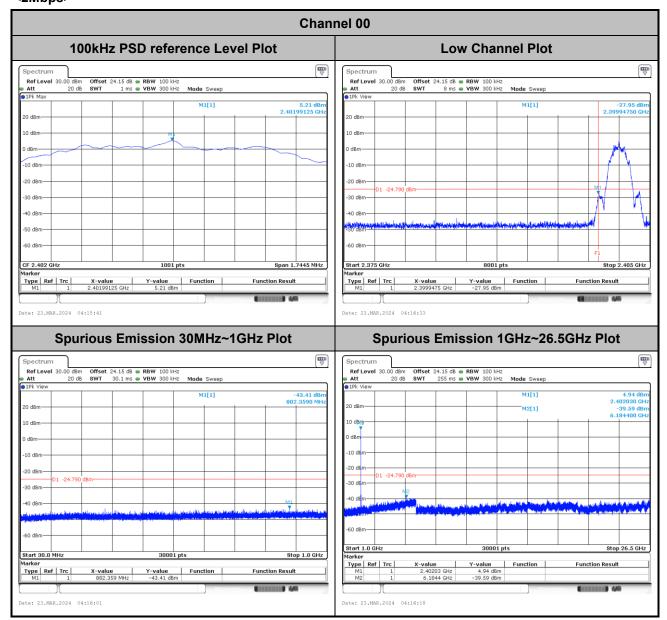
Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : A2-8 of 12

Channel 39 100kHz PSD reference Level Plot **High Channel Plot**
 Ref Level
 30.00 dBm
 Offset
 24.06 dB ■ RBW
 100 kHz

 Att
 20 dB
 SWT
 8 ms ■ VBW
 300 kHz
 Mode
 Sweep
 5.17 dBm 2.47998945 GHz 20 dBm -10 dBm-30 dBn 30 dBm-40 dBm Start 2.475 GHz CF 2.48 GHz Stop 2.505 GHz Type Ref Trc Type Ref Trc Function Function Function Result Spurious Emission 30MHz~1GHz Plot Spurious Emission 1GHz~26.5GHz Plot Ref Level 30.00 Offset 24.06 dB • RBW 100 kHz SWT 30.1 ms • VBW 300 kHz Mode Sweep 10 dBm 10 dBm -10 dB -20 dBm D1 -24.83 30 dBm 60 dBm Start 1.0 GHz Stop 1.0 GHz X-value 2.47938 GHz 6.69524 GHz Y-value 3.47 dBm -38.85 dBm Function **Function Result** Type Ref Trc Function Function Result

Date: 23.MAR.2024 04:12:05


Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : A2-9 of 12

FAX: 886-3-327-0855

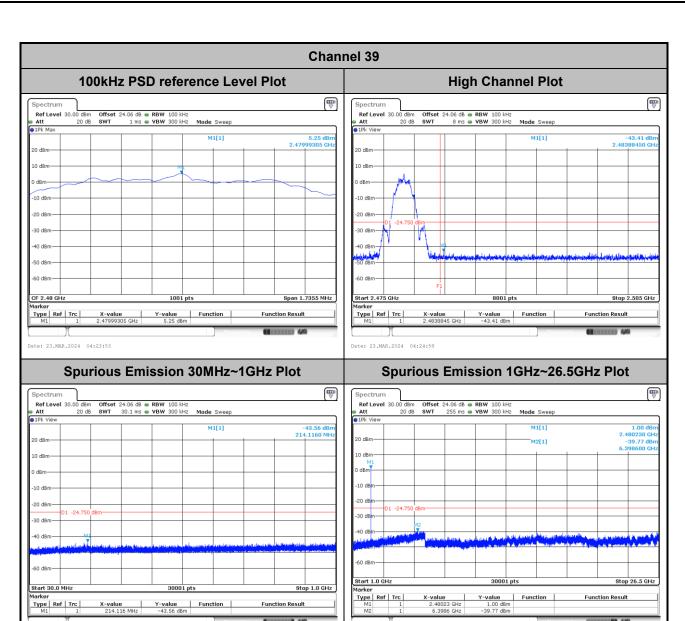
Date: 23.MAR.2024 04:11:48

<2Mbps>

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : A2-10 of 12

Channel 19 Mid Channel Plot 100kHz PSD reference Level Plot 4.84 dBm 2.43999445 GHz -10 dBm 30 dBn 40 dBm CF 2.44 GHz Type Ref Trc Function Spurious Emission 30MHz~1GHz Plot Spurious Emission 1GHz~26.5GHz Plot Ref Level 30.00 de
Att 20 Ref Level 30.00 Offset 23.92 dB • RBW 100 kHz SWT 30.1 ms • VBW 300 kHz Mode Sweep 10 dBm -10 di -20 dBn 30 dBm 60 dBm Start 1.0 GHz Stop 1.0 GHz Y-value : 0.42 dBm : -39.46 dBm X-value 2.43943 GHz 6.99018 GHz Type Ref Trc Function **Function Result** Function Function Result


Date: 23.MAR.2024 04:21:28

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : A2-11 of 12

FAX: 886-3-327-0855

Date: 23.MAR.2024 04:21:07

Date: 23.MAR.2024 04:24:39

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : A2-12 of 12

FAX: 886-3-327-0855

Date: 23.MAR.2024 04:24:13

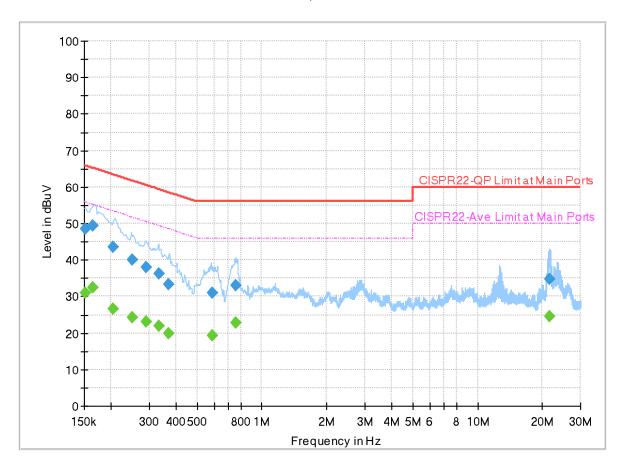
Appendix B. AC Conducted Emission Test Results

Toot Engineer	Louis Chung	Temperature :	18.5~22.7°C
Test Engineer :	Louis Chung	Relative Humidity :	43.3~48.7%

Report No. : FR413008B

TEL: 886-3-327-0868 Page Number : B1 of B

EUT Information


 Report NO :
 413008

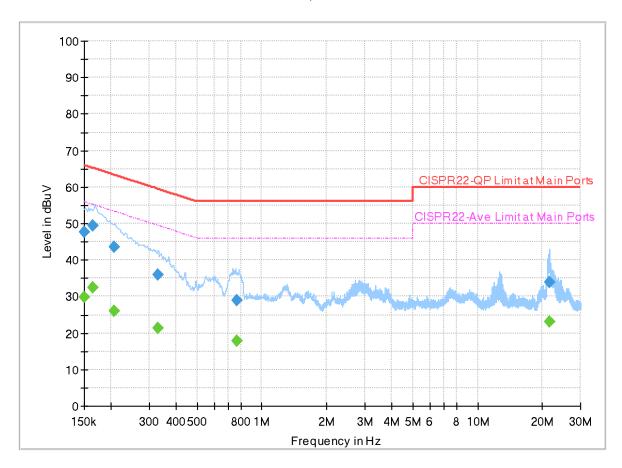
 Test Mode :
 Mode 4

 Test Voltage :
 120Vac/60Hz

Phase: Line

Full Spectrum

Final Result


Frequency	QuasiPeak	CAverage	Limit	Margin	Line	Filter	Corr.
(MHz)	(dBuV)	(dBuV)	(dBuV)	(dB)			(dB)
0.151755		30.88	55.90	25.02	L1	OFF	19.9
0.151755	48.64		65.90	17.26	L1	OFF	19.9
0.163860		32.54	55.27	22.73	L1	OFF	19.9
0.163860	49.35		65.27	15.92	L1	OFF	19.9
0.204000		26.63	53.45	26.82	L1	OFF	19.9
0.204000	43.69		63.45	19.76	L1	OFF	19.9
0.249450		24.25	51.78	27.53	L1	OFF	19.9
0.249450	40.02		61.78	21.76	L1	OFF	19.9
0.289320		23.09	50.54	27.45	L1	OFF	19.9
0.289320	38.07		60.54	22.47	L1	OFF	19.9
0.331260		21.83	49.42	27.59	L1	OFF	19.9
0.331260	36.40		59.42	23.02	L1	OFF	19.9
0.369330		19.93	48.52	28.59	L1	OFF	19.9
0.369330	33.31		58.52	25.21	L1	OFF	19.9
0.586500		19.23	46.00	26.77	L1	OFF	19.9
0.586500	30.86		56.00	25.14	L1	OFF	19.9
0.753000		22.79	46.00	23.21	L1	OFF	19.9
0.753000	32.92		56.00	23.08	L1	OFF	19.9
21.540750		24.59	50.00	25.41	L1	OFF	20.1

21.540750	34.87	 60.00	25.13	L1	OFF	20.1

EUT Information

Report NO: 413008
Test Mode: Mode 4
Test Voltage: 120Vac/60Hz
Phase: Neutral

Full Spectrum

Final_Result

Frequency (MHz)	QuasiPeak (dBuV)	CAverage (dBuV)	Limit (dBuV)	Margin (dB)	Line	Filter	Corr. (dB)
0.150000		29.89	56.00	26.11	N	OFF	19.9
0.150000	47.56		66.00	18.44	N	OFF	19.9
0.163500		32.59	55.28	22.69	N	OFF	19.9
0.163500	49.42		65.28	15.86	N	OFF	19.9
0.207240		26.15	53.32	27.17	N	OFF	19.9
0.207240	43.46		63.32	19.86	N	OFF	19.9
0.328020		21.26	49.50	28.24	N	OFF	19.9
0.328020	36.07		59.50	23.43	N	OFF	19.9
0.762000		17.92	46.00	28.08	N	OFF	19.9
0.762000	28.90		56.00	27.10	N	OFF	19.9
21.438960		23.17	50.00	26.83	N	OFF	20.2
21.438960	33.97		60.00	26.03	N	OFF	20.2

Appendix C. Radiated Spurious Emission

Test Engineer :	Fu Chen, Sam Chou and Troye Hsieh	Temperature :	18.9~21.8°C
rest Engineer.		Relative Humidity :	42.5~65.8%

Report No.: FR413008B

<1Mbps>

2.4GHz 2400~2483.5MHz

BLE (Harmonic @ 3m)

Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
				Line	Level	Factor	Loss	Factor	Pos		Avg.	
									(cm)	(deg)		
	4804	40.32	-33.68	74	53.89	32.42	11.81	57.8	-	-	Р	Н
												Н
												Н
												Н
												Н
												Н
												Н
												Н
												Н
												Н
												Н
	4804	40.27	-33.73	74	53.84	32.42	11.81	57.8	-	-	Р	٧
												٧
												٧
												٧
												٧
												٧
												٧
												V
												V
												V
												V
		(MHz) 4804	4804 40.32	4804 40.32 -33.68	(MHz) (dBμV/m) (dB) (dBμV/m) 4804 40.32 -33.68 74	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) 4804 40.32 -33.68 74 53.89	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) 4804 40.32 -33.68 74 53.89 32.42	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) 4804 40.32 -33.68 74 53.89 32.42 11.81	(MHz) (dBμV/m) (dB) (dBμV/m) (dBμV) (dB/m) (dB) (dB) 4804 40.32 -33.68 74 53.89 32.42 11.81 57.8	(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) 4804 40.32 -33.68 74 53.89 32.42 11.81 57.8 -	(MHz) (dBμV/m) (dBμV/m) (dBμV) (dBm) (dB) (cm) (deg) 4804 40.32 -33.68 74 53.89 32.42 11.81 57.8 - - 1	(MHz) (dBμV/m) (dBμV/m) (dBμV/m) (dBμV) (dB/m) (dB) (dB) (cm) (deg) (P/A) 4804 40.32 -33.68 74 53.89 32.42 11.81 57.8 - - P

TEL: 886-3-327-0868 Page Number : C1 of C9

BLE Antenna Path Preamp Table Peak Pol. Note Frequency Level Margin Limit Read Ant Line Level **Factor** Loss Factor Pos Pos Avg. (dBµV/m) (deg) (P/A) (H/V) (MHz) (dB) (dBµV/m) (dBµV) (dB/m) (dB) (dB) (cm) 4880 40.19 -33.81 74 53.5 32.7 11.81 57.82 Н Р 7320 44.02 -29.98 74 50.88 36.82 14.77 58.45 Н Н Η Н Н Н Н Н Н Н BLE Н **CH 19** 4880 41.32 -32.68 74 54.63 32.7 11.81 57.82 Ρ ٧ 2440MHz Ρ ٧ 7320 44.62 -29.38 74 51.48 36.82 14.77 58.45 ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧ ٧

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : C2 of C9

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
		(MHz)	(dBμV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg.	(H/V)
		4960	41.31	-32.69	74	54.32	33.04	11.8	57.85	-	-	P	H
		7440	42.79	-31.21	74	49.96	36.32	14.91	58.4	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
DI E													Н
BLE CH 39													Н
2480MHz		4960	41.62	-32.38	74	54.63	33.04	11.8	57.85	-	-	Р	V
240011112		7440	42.85	-31.15	74	50.02	36.32	14.91	58.4	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
													V
													V
													V
		o other spurious											
Remark		I results are PA											
		ne emission pos	sition marked	l as "-" m	eans no sus _l	pected em	ission found	d with suf	ticient mar	gin agai	ınst limit	line or	noise
	flo	oor only.											

Report No. : FR413008B

TEL: 886-3-327-0868 Page Number : C3 of C9

Emission above 18GHz

Report No.: FR413008B

2.4GHz BLE (SHF)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/\
		24734	38.82	-35.18	74	35.67	39.16	17.4	53.41	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE		24979	39.7	-34.3	74	36.09	39.18	17.74	53.31	-	-	Р	٧
SHF													٧
													٧
													V
													٧
													V
													V
													V
													V
													V
													V
													V

Remark

- 3. The emission position marked as "-" means no suspected emission found with sufficient margin against limit line or noise floor only.

TEL: 886-3-327-0868 : C4 of C9 Page Number

Emission below 1GHz 2.4GHz BLE (LF)

Report No.: FR413008B

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	($dB\mu V/m$)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V
		54.03	23.5	-16.5	40	42.26	12.63	0.78	32.17	-	-	Р	Н
		89.4	23.99	-19.51	43.5	40.64	14.61	1.16	32.42	-	-	Р	Н
		222.78	31.35	-14.65	46	46.31	15.31	2	32.27	-	-	Р	Н
		479.9	31.7	-14.3	46	37.51	23.48	3.03	32.32	-	-	Р	Н
		664.7	36.64	-9.36	46	38.45	26.36	3.67	31.84	100	287	Q	Н
		972.7	35.92	-18.08	54	30.95	31.1	4.59	30.72	-	-	Р	Н
													Н
													Н
													Н
													Н
													Н
2.4GHz													Н
BLE LF		41.07	33.47	-6.53	40	46.22	18.91	0.66	32.32	-	-	Р	٧
LF		127.47	26.6	-16.9	43.5	39.94	17.38	1.43	32.15	-	-	Р	٧
		213.33	31.15	-12.35	43.5	46.76	14.75	1.95	32.31	-	-	Р	٧
		472.9	29.5	-16.5	46	35.41	23.35	3	32.26	-	-	Р	٧
		664	39.4	-6.6	46	41.23	26.35	3.66	31.84	-	-	Р	V
		997.2	35.8	-18.2	54	31.37	30.22	4.63	30.42	-	-	Р	V
													V
													٧
													V
													V
													V
													V

1. No other spurious found.

Remark

2. All results are PASS against limit line.

3. The emission position marked as "-" means no suspected emission found and emission level has at least 6dB margin against limit or emission is noise floor only.

TEL: 886-3-327-0868 Page Number : C5 of C9

<2Mbps>

2.4GHz 2400~2483.5MHz

Report No. : FR413008B

BLE (Band Edge @ 3m)

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dB _µ V)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		2383.815	50.81	-23.19	74	41.46	27.44	16.71	34.8	150	127	Р	Н
		2384.655	42.06	-11.94	54	32.7	27.45	16.71	34.8	150	127	Α	Н
	*	2402	102.93	-	-	93.51	27.5	16.72	34.8	150	127	Р	Н
	*	2402	101.51	-	-	92.09	27.5	16.72	34.8	150	127	Α	Н
BLE													Н
CH 00													Н
2402MHz		2387.7	51.3	-22.7	74	41.91	27.48	16.71	34.8	300	75	Р	V
2402111112		2382.66	41.72	-12.28	54	32.38	27.43	16.71	34.8	300	75	Α	V
	*	2402	97.68	-	-	88.26	27.5	16.72	34.8	300	75	Р	V
	*	2402	95.98	-	-	86.56	27.5	16.72	34.8	300	75	Α	V
													V
													V
		2383.44	50.47	-23.53	74	41.13	27.43	16.71	34.8	200	112	Р	Н
		2385.36	42.1	-11.9	54	32.74	27.45	16.71	34.8	200	112	Α	Н
	*	2440	102.76	-	-	93.18	27.6	16.78	34.8	200	112	Р	Н
	*	2440	101.23	-	-	91.65	27.6	16.78	34.8	200	112	Α	Н
DI E		2484.16	50.68	-23.32	74	40.94	27.7	16.84	34.8	200	112	Р	Н
BLE CH 19		2483.52	41.85	-12.15	54	32.11	27.7	16.84	34.8	200	112	Α	Н
2440MHz		2315.12	49.98	-24.02	74	40.81	27.3	16.66	34.79	250	330	Р	V
277VIVII IZ		2336.88	41.88	-12.12	54	32.73	27.27	16.67	34.79	250	330	Α	V
	*	2440	91.57	-	-	81.99	27.6	16.78	34.8	250	330	Р	٧
	*	2440	90.2	-	-	80.62	27.6	16.78	34.8	250	330	Α	V
		2486.8	50.68	-23.32	74	40.93	27.7	16.85	34.8	250	330	Р	V
		2483.52	41.81	-12.19	54	32.07	27.7	16.84	34.8	250	330	Α	V

TEL: 886-3-327-0868 Page Number : C6 of C9

* 2480 102.32 92.58 27.7 16.84 34.8 100 116 Ρ Н * 2480 100.95 -91.21 27.7 16.84 34.8 100 116 Α Н -Ρ 2483.72 54.26 -19.74 74 44.52 27.7 16.84 34.8 100 116 Н 2483.52 45.14 27.7 16.84 34.8 100 116 -8.86 54 35.4 Α Η Н BLE Н **CH 39** Ρ ٧ 2480 99.78 90.04 27.7 16.84 34.8 400 67 2480MHz 2480 98.36 88.62 27.7 16.84 400 ٧ -34.8 67 Α 2483.8 52.55 -21.45 74 27.7 400 67 ٧ 42.81 16.84 34.8 2483.6 43.76 -10.24 34.02 27.7 16.84 34.8 400 67 Α ٧ 54 ٧ ٧ No other spurious found. Remark All results are PASS against Peak and Average limit line.

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : C7 of C9

Note symbol

Report No.: FR413008B

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

TEL: 886-3-327-0868 Page Number : C8 of C9

A calculation example for radiated spurious emission is shown as below:

Report No.: FR413008B

BLE	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
BLE		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 00													
2402MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	Α	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level($dB\mu V/m$) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dB μ V) - Preamp Factor(dB)

3. Margin (dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- $= 55.45 (dB\mu V/m)$
- 2. Margin (dB)
- = Level($dB\mu V/m$) Limit Line($dB\mu V/m$)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- $= 43.54 (dB\mu V/m)$
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".

TEL: 886-3-327-0868 Page Number : C9 of C9

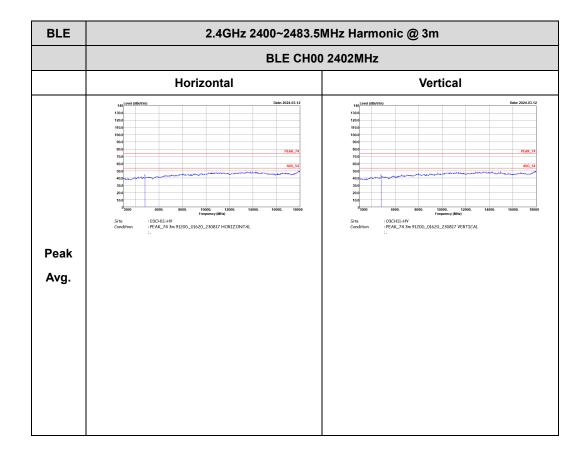
Appendix D. Radiated Spurious Emission Plots

Test Engineer :	Fu Chen, Sam Chou and Troye Hsieh	Temperature :	18.9~21.8°C
		Relative Humidity :	42.5~65.8%

Report No.: FR413008B

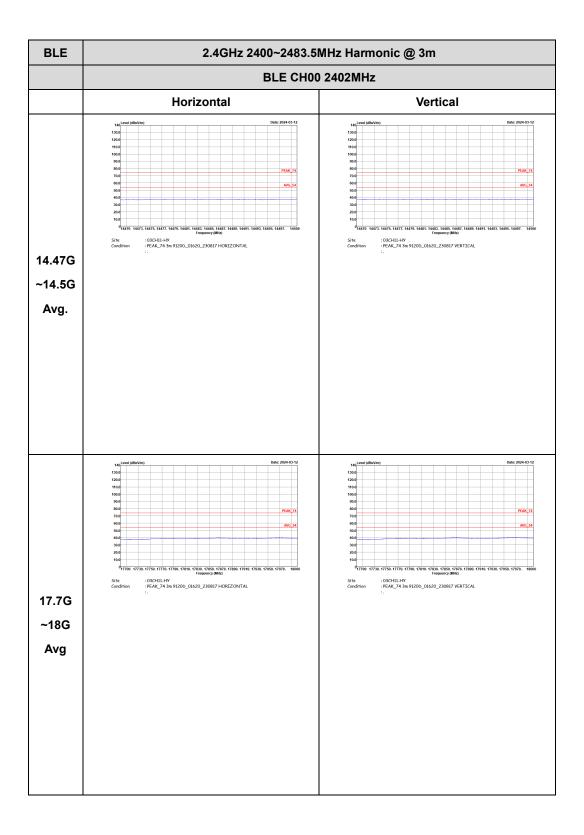
Note symbol

-L	Low channel location
-R	High channel location

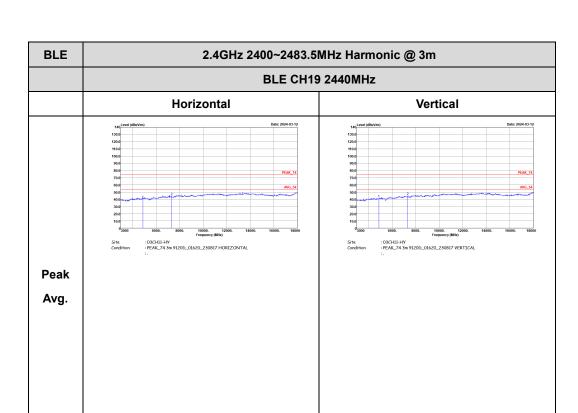

TEL: 886-3-327-0868 Page Number: D1 of D17

<1Mbps>

2.4GHz 2400~2483.5MHz

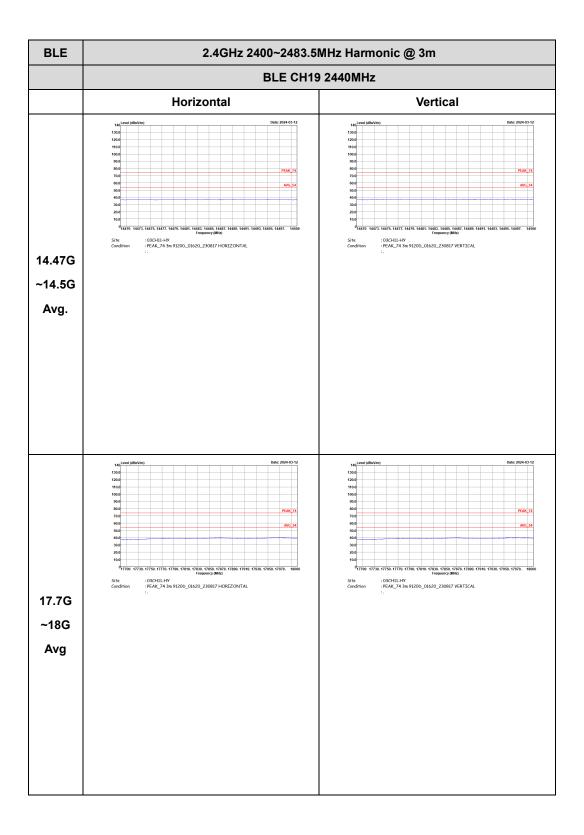

Report No.: FR413008B

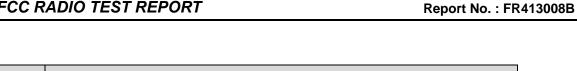
BLE (Harmonic @ 3m)

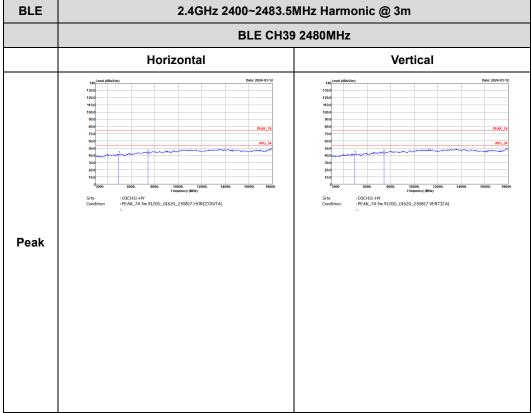


TEL: 886-3-327-0868 Page Number: D2 of D17

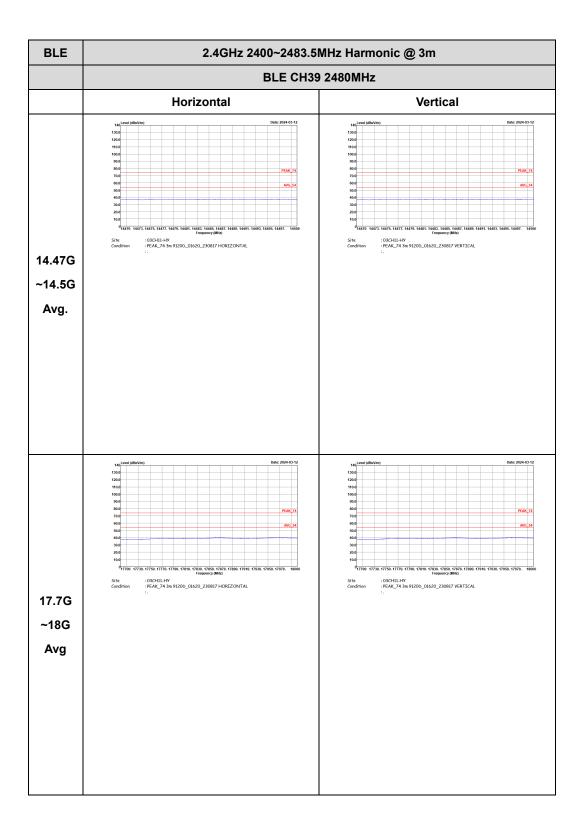
RADIO TEST REPORT Report No. : FR413008B


TEL: 886-3-327-0868 Page Number: D3 of D17

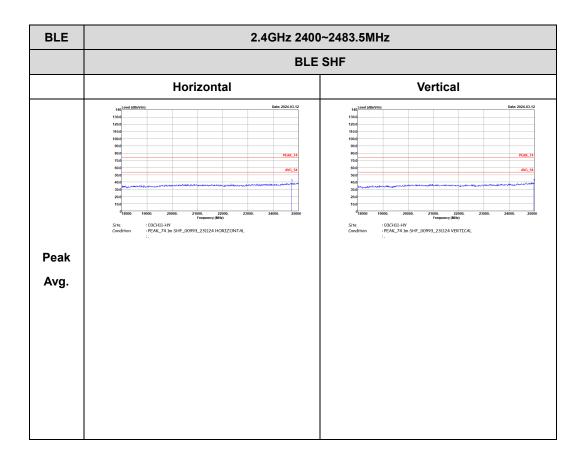

Report No. : FR413008B


TEL: 886-3-327-0868 Page Number: D4 of D17

RADIO TEST REPORT Report No. : FR413008B

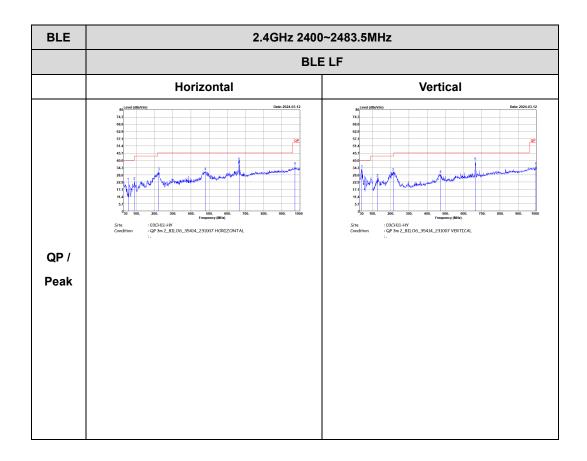

TEL: 886-3-327-0868 Page Number: D5 of D17

TEL: 886-3-327-0868 Page Number: D6 of D17


Report No. : FR413008B

TEL: 886-3-327-0868 Page Number: D7 of D17

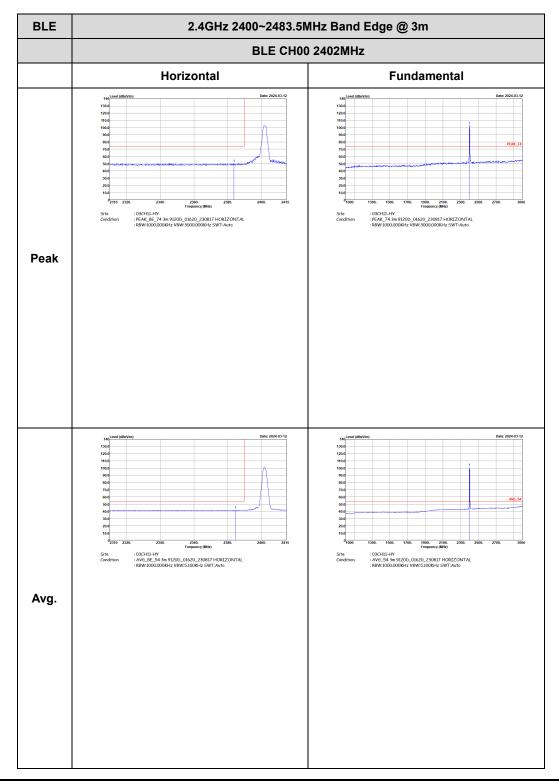
Emission above 18GHz 2.4GHz BLE (SHF @ 1m)


Report No.: FR413008B

TEL: 886-3-327-0868 Page Number: D8 of D17

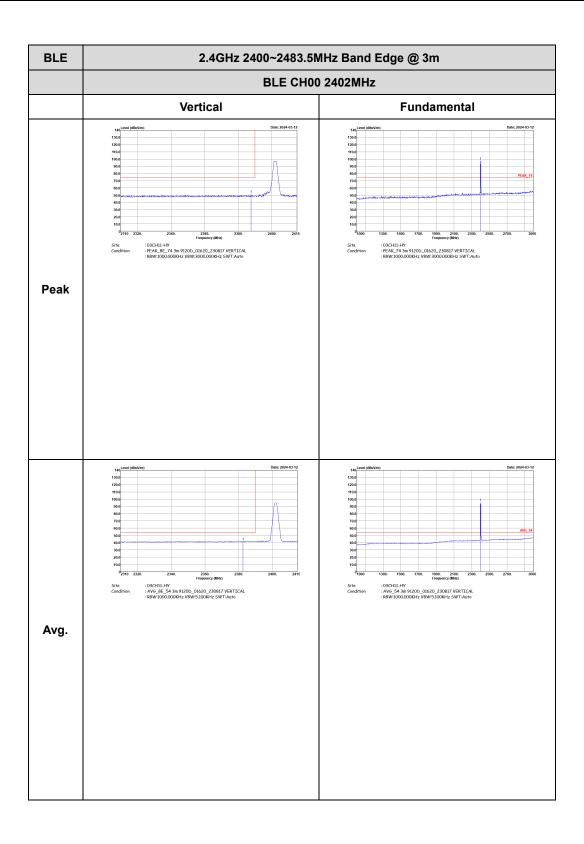
Emission below 1GHz 2.4GHz BLE (LF)

Report No.: FR413008B



TEL: 886-3-327-0868 Page Number: D9 of D17

<2Mbps>


2.4GHz 2400~2483.5MHz BLE (Band Edge @ 3m)

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : D10 of D17

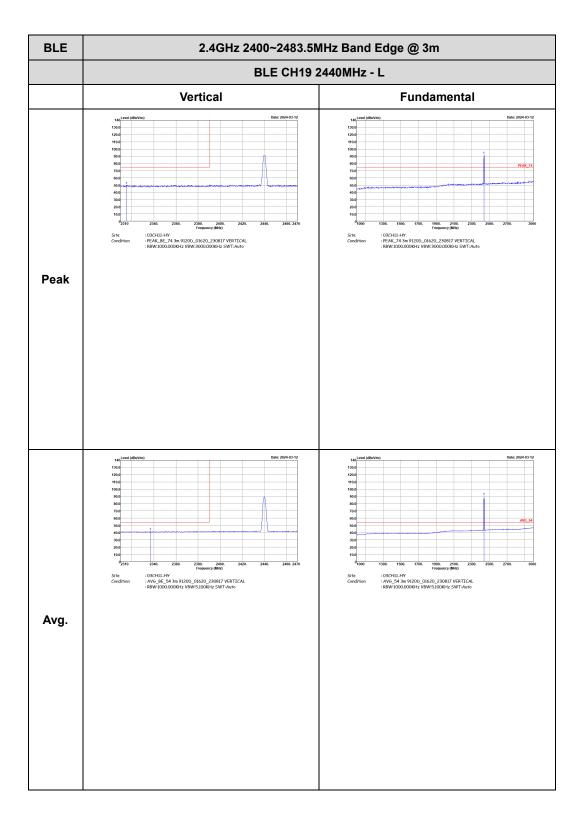
FCC RADIO TEST REPORT

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : D11 of D17

BLE 2.4GHz 2400~2483.5MHz Band Edge @ 3m BLE CH19 2440MHz - L Horizontal **Fundamental** : 03CH11-HY : PEAK_74 3m 9120b_01620_230817 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto : 03CHI1-HY : PEAK_BE_74 3m 9120b_01620_230817 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak : 03CH11-HY : AV6_54 3m 9120D_01620_230817 HORIZONTAL : RBW:1000.000KHz VBW:5.100KHz 5WT:Auto : 03CH11-HY : AV6_BE_54 3m 9120D_01620_230817 HORIZONTAL : RBW:1000.000KHz VBW:5.100KHz SWT:Auto Avg.

Report No.: FR413008B

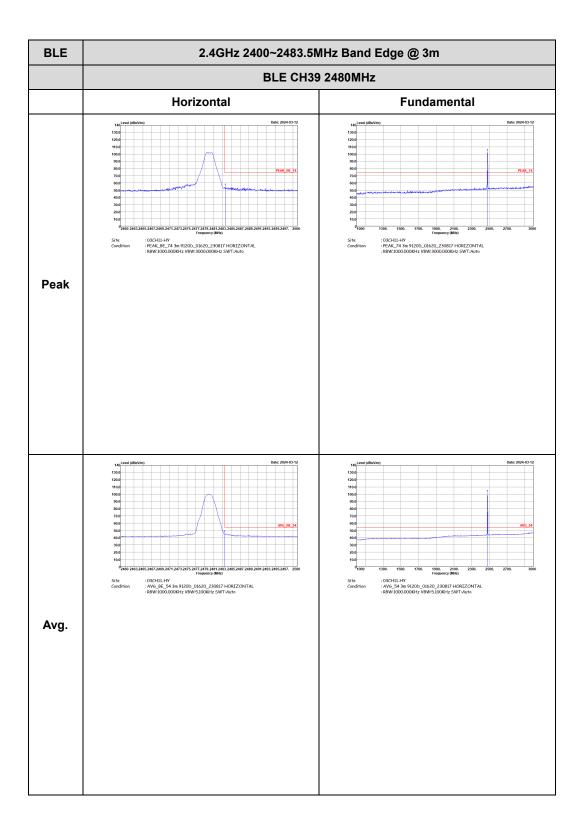

TEL: 886-3-327-0868 Page Number : D12 of D17

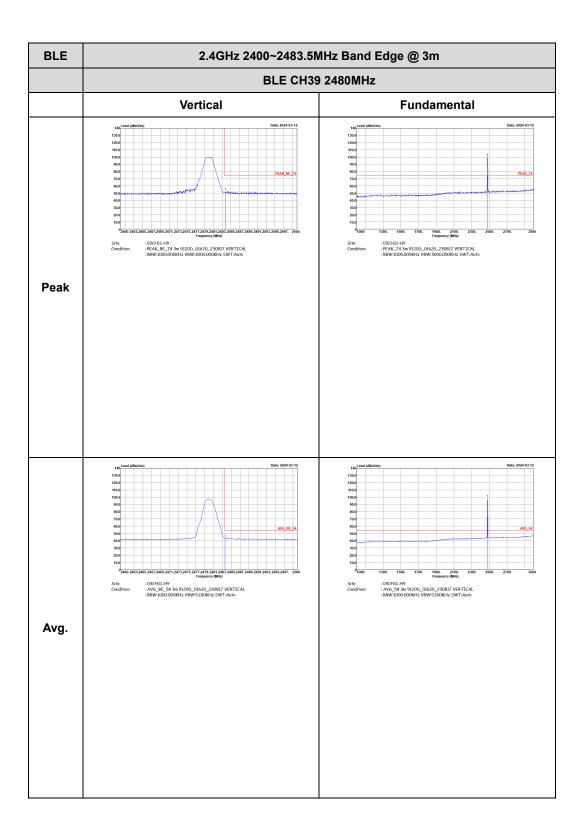
BLE 2.4GHz 2400~2483.5MHz Band Edge @ 3m BLE CH19 2440MHz - R Horizontal **Fundamental** : 03CH11-HY : PEAK_BE_74 3m 9120b_01620_230817 HORIZONTAL : RBW:1000.000KHz VBW:3000.000KHz SWT:Auto Peak Left blank : 03CH11-HY : AVG_BE_54 3m 9120D_01620_230817 HORIZONTAL : RBW:1000.000KHz VBW:5.100KHz SWT:Auto Left blank Avg.

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : D13 of D17

Report No.: FR413008B

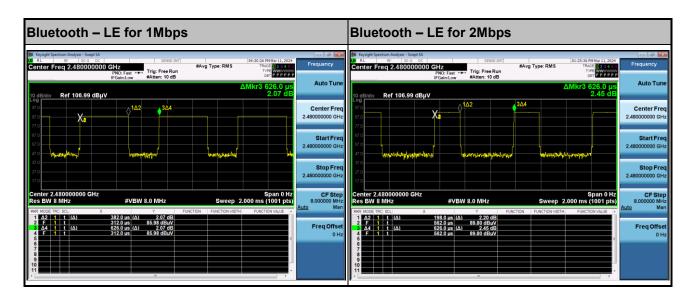

TEL: 886-3-327-0868 Page Number : D14 of D17


TEL: 886-3-327-0868 : D15 of D17 Page Number

Report No.: FR413008B

TEL: 886-3-327-0868 Page Number : D16 of D17

Report No.: FR413008B



TEL: 886-3-327-0868 Page Number : D17 of D17

Appendix E. Duty Cycle Plots

Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
Bluetooth –LE for 1Mbps	61.02	382	2.618	2.7kHz
Bluetooth –LE for 2Mbps	31.63	198	5.051	5.1kHz

Report No.: FR413008B

———THE END———

TEL: 886-3-327-0868 Page Number : E1 of E1 FAX: 886-3-327-0855