

Specific Absorption Rate (SAR) Test Report

for

Quanta Computer Inc.

on the

GSM Tri-band mobile phone with GPRS, Bluetooth, Wi-Fi, GPS

Report No. : FA6O0406-01-2-2-01

Trade Name : Pharos

Model Name : GPS Phone 600 FCC ID : HFS-GPS600

Date of Testing : Oct. 30, and Dec. 19, 2006

Date of Report : Dec. 21, 2006 Date of Review : Dec. 21, 2006

- The test results refer exclusively to the presented test model / sample only.
- Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.
- Report Version: Rev. 01

SPORTON International Inc.

6F, No.106, Sec. 1, Hsin Tai Wu Rd., Hsi Chih, Taipei Hsien, Taiwan, R.O.C.

Table of Contents

		ent of Compliance	
2. A	dmini	stration Data	
	2.1	Testing Laboratory	2
	2.2	Detail of Applicant	2
	2.3	Detail of Manufacturer	2
	2.4	Application Detail	2
3. S	cope.		(
	3.1	Description of Device Under Test (DUT)	;
	3.2	Product Photo	4
	3.3	Applied Standards:	!
	3.4	Device Category and SAR Limits	
	3.5	Test Conditions	
		3.5.1 Ambient Condition:	
		3.5.2 Test Configuration:	
4. S	pecific	c Absorption Rate (SAR)	
	4.1	Introduction	
	4.2	SAR Definition	7
5. S	AR Me	easurement Setupeasurement Setup	8
	5.1	DASY4 E-Field Probe System	
		5.1.1 ET3DV6 E-Field Probe Specification	. 10
		5.1.2 ET3DV6 E-Field Probe Calibration	. 10
	5.2	DATA Acquisition Electronics (DAE)	1
	5.3	Robot	. 12
	5.4	Measurement Server	. 12
	5.5	SAM Twin Phantom	. 12
	5.6	Data Storage and Evaluation	. 14
		5.6.1 Data Storage	. 14
		5.6.2 Data Evaluation	. 14
	5.7	Test Equipment List	. 17
6. Ti	issue	Simulating Liquids	. 18
		ainty Assessment	
8. S	AR Me	easurement Evaluationeasurement Evaluation	
	8.1	Purpose of System Performance check	22
	8.2	System Setup	. 22
	8.3	Validation Results	. 24
9. D	escrip	otion for DUT Testing Position	. 2
10.	Meas	surement Procedures	
	10.1	Spatial Peak SAR Evaluation	
		Scan Procedures	
		SAR Averaged Methods	
11.		Test Results	
		Keypad Up with 1.5cm Gap	
		Keypad Down with 1.5cm Gap	
		Keypad Down with Holster Touch	
12	Dofor	rongos	21

Appendix A – System Performance Check Data Appendix B – SAR Measurement Data Appendix C – Calibration Data

1. Statement of Compliance

The Specific Absorption Rate (SAR) maximum result found during testing for the **Quanta Computer Inc. GSM Tri-band mobile phone with GPRS, Bluetooth, Wi-Fi, GPS Pharos GPS Phone 600 is 0.136 W/Kg on the WLAN 2.4GHz body SAR** with expanded uncertainty 20.6%. The co-location of WLAN and Bluetooth were also checked. It is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1999 and had been tested in accordance with the measurement methods and procedures specified in OET Bulletin 65 Supplement C (Edition 01-01).

Approved by

Dr. Daniel Lee EMC/SAR Director

Test Report No : FA6O0406-01-2-2-01

2. Administration Data

2.1 Testing Laboratory

Company Name : Sporton International Inc. **Department :** Antenna Design/SAR

Address: No.52, Hwa-Ya 1st RD., Hwa Ya Technology Park, Kwei-Shan Hsiang, TaoYuan

Hsien, Taiwan, R.O.C.

Telephone Number: 886-3-327-3456 **Fax Number:** 886-3-327-0973

2.2 Detail of Applicant

Company Name: Quanta Computer Inc.

Address: No. 211, Wen Hwa 2nd Road, Kuei Shan Hsiang, Tao Yuan Shien, Taiwan

Telephone Number: 886-3-327-2345 ext. 15957

Fax Number: 886-3-397-2418

Contact Person : Eric.huang@quantatw.com

2.3 <u>Detail of Manufacturer</u>

Company Name: Quanta Computer Inc.

Address: No. 211, Wen Hwa 2nd Road, Kuei Shan Hsiang, Tao Yuan Shien, Taiwan

2.4 Application Detail

Date of reception of application: Oct. 04, 2006 Start of test: Oct. 30, 2006 End of test: Dec. 19, 2006

3. Scope

3.1 Description of Device Under Test (DUT)

3.1 Description of Device Under 16	St (DUI)
DUT Type:	GSM Tri-band mobile phone with GPRS, Bluetooth, Wi-Fi, GPS
Trade Name :	Pharos
Model Name :	GPS Phone 600
FCC ID:	HFS-GPS600
Tx Frequency :	GSM850 : 824 ~ 849 MHz PCS1900 : 1850 ~ 1910 MHz Bluetooth : 2400 ~ 2483.5 MHz WLAN : 2400 ~ 2483.5 MHz
Rx Frequency :	GSM850 : 869 ~ 894 MHz PCS1900 : 1930 ~ 1990 MHz Bluetooth : 2400 ~ 2483.5 MHz WLAN : 2400 ~ 2483.5 MHz
Number of Channels :	Bluetooth: 79 WLAN: 11
Carrier Frequency of Each Channel :	Bluetooth : 2402+n*1 MHz; n=0~78 WLAN : 2412+(n-1)*5 MHz; n=1~11
Type of Modulation :	GSM/GPRS : GMSK EDGE : 8PSK Bluetooth : GFSK WLAN : DSSS / OFDM
Maximum Output Power to Antenna :	GSM850: 32.03 dBm; GSM850(GPRS): 31.94 dBm; GSM850(EDGE): 26.4 dBm DCS1900: 28.8 dBm; PCS1900(GPRS): 28.69 dBm; PCS1900(EDGE): 25.0 dBm Bluetooth: 0.78 dBm 802.11b: 18.88 dBm / 802.11g: 21.56 dBm
Antenna Type :	Fixed Internal
Antenna Connector :	N/A
Antenna Gain :	Bluetooth : -2 dBi WLAN : 1 dBi
HW Version :	D2H
SW Version :	R30_032_0220
DUT Stage :	Production Unit
Application Type :	Certification
Accessory:	Battery : Foxlink, 45426 Earphone : Merry, EMC147-018-01

3.2 Product Photo

3.3 Applied Standards:

The Specific Absorption Rate (SAR) testing specification, method and procedure for this GSM Tri-band mobile phone with GPRS, Bluetooth, Wi-Fi, GPS is in accordance with the following standards:

47 CFR Part 2 (2.1093), IEEE C95.1-1999, IEEE C95.3-2002, IEEE P1528 -2003, and OET Bulletin 65 Supplement C (Edition 01-01)

3.4 Device Category and SAR Limits

This device belongs to portable device category because its radiating structure is allowed to be used within 20 centimeters of the body of the user.

Limit for General Population/Uncontrolled exposure should be applied for this device, it is 1.6 W/kg as averaged over any 1 gram of tissue.

3.5 <u>Test Conditions</u>

3.5.1 <u>Ambient Condition:</u>

Item	MSL_2450	MSL_2450 with holster			
Ambient Temperature (°C)	20 ~ 24				
Tissue simulating liquid temperature (°C)	22.7	21.1			
Humidity (%)	< 60%				

3.5.2 Test Configuration:

The data rates for SAR testing are 11Mbps for 802.11b and 6Mbps for 802.11g. Engineering testing software installed on the EUT can provide continuous transmitting RF signal. This RF signal utilized in SAR measurement has almost 100% duty cycle and its crest factor is 1. The measurements were performed on the lowest, middle, and highest channel, i.e. channel 1, channel 6, and channel 11 for each testing position. However, measurements were performed only on the middle channel if the SAR is below 3 dB of limit.

4. Specific Absorption Rate (SAR)

4.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The FCC recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

4.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density.

). The equation description is as below:

$$\mathbf{SAR} = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

SAR measurement can be either related to the temperature elevation in tissue by

$$\mathbf{SAR} = C \frac{\delta T}{\delta t}$$

, where C is the specific head capacity, δT is the temperature rise and δt the exposure duration,

or related to the electrical field in the tissue by

$$\mathbf{SAR} = \frac{\sigma |E|^2}{\rho}$$

, where $\,$ is the conductivity of the tissue, $\,$ is the mass density of the tissue and E is the rms electrical field strength.

However for evaluating SAR of low power transmitter, electrical field measurement is typically applied.

5. SAR Measurement Setup

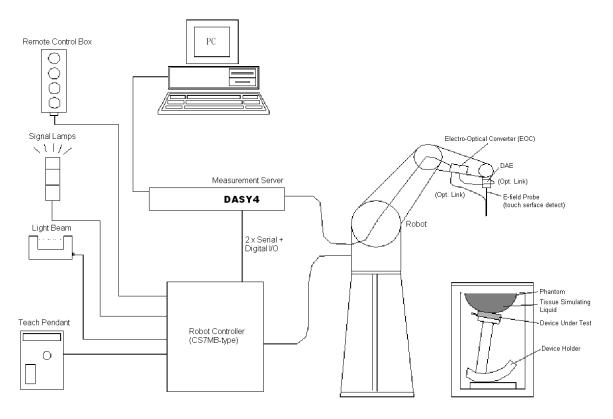


Fig. 5.1 DASY4 system

The DASY4 system for performance compliance tests is illustrated above graphically. This system consists of the following items:

- A standard high precision 6-axis robot with controller, a teach pendant and software
- A data acquisition electronic (DAE) attached to the robot arm extension
- A dosimetric probe equipped with an optical surface detector system
- The electro-optical converter (ECO) performs the conversion between optical and electrical signals
- A measurement server performs the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- A probe alignment unit which improves the accuracy of the probe positioning
- A computer operating Windows XP
- DASY4 software
- Remove control with teach pendant and additional circuitry for robot safety such as warming lamps, etc.
- The SAM twin phantom
- > A device holder
- > Tissue simulating liquid
- Dipole for evaluating the proper functioning of the system

Some of the components are described in details in the following sub-sections.

5.1 DASY4 E-Field Probe System

The SAR measurement is conducted with the dosimetric probe ET3DV6 (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

5.1.1 ET3DV6 E-Field Probe Specification

Construction Symmetrical design with triangular core

Built-in optical fiber for surface detection

system

Built-in shielding against static charges PEEK enclosure material (resistant to

organic solvents)

Calibration Simulating tissue at frequencies of

900MHz, 1.8GHz and 2.45GHz for brain

and muscle (accuracy ±8%)

Frequency 10 MHz to > 3 GHz

Directivity ± 0.2 dB in brain tissue (rotation around

probe axis)

 \pm 0.4 dB in brain tissue (rotation perpendicular to probe axis)

Dynamic Range $5 \mu \text{ W/g to} > 100 \text{mW/g}$; Linearity: $\pm 0.2 \text{dB}$ **Surface Detection** $\pm 0.2 \text{ mm}$ repeatability in air and clear

liquids on reflecting surface

Dimensions Overall length: 330mm

Tip length: 16mm Body diameter: 12mm

Tip diameter: 6.8mm

Distance from probe tip to dipole centers:

2.7mm

Application General dosimetry up to 3GHz

Compliance tests for mobile phones and

Wireless LAN

Fast automatic scanning in arbitrary

phantoms

Fig. 5.2 Probe setup on robot

5.1.2 ET3DV6 E-Field Probe Calibration

Each probe needs to be calibrated according to a dosimetric assessment procedure with accuracy better than \pm 10%. The spherical isotropy shall be evaluated and within \pm 0.25dB. The sensitivity parameters (NormX, NormY, and NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested. The calibration data are as below:

Sensitivity	X axis : 1.73 μV		Y axis : 1.67 μV		Z axis : 1.70 μV
Diode compression point	X axis : 95 mV		Y axis : 101 mV		Z axis: 93 mV
Conversion factor	Frequency (MHz)	X axis		Y axis	Z axis
(Body)	2350~2550	4.11		4.11	4.11
Boundary effect	Frequency (MHz)	Alpha		Depth	
(Body)	2350~2550	0.60		1.70	

NOTE:

1. The probe parameters have been calibrated by the SPEAG.

5.2 DATA Acquisition Electronics (DAE)

The data acquisition electronics (DAE4) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The mechanical probe mounting device includes two different sensor systems for frontal and sideways probe contacts. They are used for mechanical surface detection and probe collision detection.

The input impedance of the DAE4 is 200M Ohm; the inputs are symmetrical and floating. Common mode rejection is above 80dB.

5.3 Robot

The DASY4 system uses the high precision robots RX90BL type out of the newer series from Stäubli SA (France). For the 6-axis controller DASYS system, the CS7MB robot controller version from Stäubli is used. The RX robot series have many features that are important for our application:

- ➤ High precision (repeatability 0.02 mm)
- High reliability (industrial design)
- > Jerk-free straight movements
- Low ELF interference (the closed metallic construction shields against motor control fields)
- ► 6-axis controller

5.4 Measurement Server

The DASY4 measurement server is based on a PC/104 CPU board with 166 MHz CPU 32 MB chipset and 64 MB RAM.

Communication with the DAE4 electronic box the 16-bit AD-converter system for optical detection and digital I/O interface.

The measurement server performs all the real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operations.

5.5 SAM Twin Phantom

The SAM twin phantom is a fiberglass shell phantom with 2mm shell thickness (except the ear region where shell thickness increases to 6mm). It has three measurement areas:

- Left head
- > Right head
- > Flat phantom

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections.

A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters.

On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

The phantom can be used with the following tissue simulating liquids:

- *Water-sugar based liquid
- *Glycol based liquids

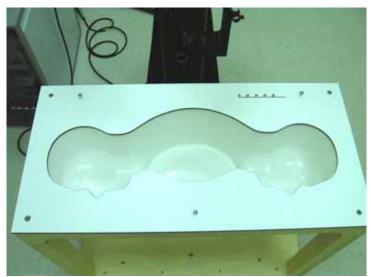


Fig. 5.3 Top view of twin phantom

Fig. 5.4 Bottom view of twin phantom

5.6 Data Storage and Evaluation

5.6.1 Data Storage

The DASY4 software stores the assessed data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all the necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension .DA4. The postprocessing software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of erroneous parameter settings. For example, if a measurement has been performed with an incorrect crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be reevaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type (e.g., [V/m], [A/m], [mW/g]). Some of these units are not available in certain situations or give meaningless results, e.g., a SAR-output in a loseless media, will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

5.6.2 <u>Data Evaluation</u>

The DASY4 postprocessing software (SEMCAD) automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: - Sensitivity Norm_i, a_{i0} a_{i1} , a_{i2}

- Conversion factor ConvF_i - Diode compression point dcp_i

Device parameters: - Frequency f

- Crest factor cf

Media parameters: - Conductivity

- Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY components. In the direct measuring mode of the multimeter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics. If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel

can be given as:

$$Vi = U_i + U_i^2 \cdot \frac{cf}{dcp_i}$$

with

 V_i = compensated signal of channel i (i = x, y, z)

 U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 $dcp_i = diode \ compression \ point \ (DASY \ parameter)$

From the compensated input signals, the primary field data for each channel can be evaluated:

E-field probes : $E_i = \sqrt{\frac{V_i}{Norm_i ConvF}}$

H-field probes: $H_i = \sqrt{V_i} \frac{a_{i0+} a_{i1} f + a_{i2} f^2}{f}$

with

 V_i = compensated signal of channel i (i = x, y, z)

 $Norm_i$ = sensor sensitivity of channel i (i = x, y, z)

μ V/(V/m)2 for E-field Probes

ConvF = sensitivity enhancement in solution

 a_{ii} = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = \sqrt{E_X^2 + E_Y^2 + E_Z^2}$$

The primary field data are used to calculate the derived field units.

$$SAR = E_{tot}^2 \cdot \frac{\sigma}{\rho \cdot 1000}$$

with

SAR = local specific absorption rate in mW/g

Etot = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

with

* Note that the density is set to 1, to account for actual head tissue density rather than the density of the tissue simulating liquid.

The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = \frac{E_{tot}^2}{3770}$$
 or $P_{pwe} = H_{tot}^2 \cdot 37.7$

 P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total electric field strength in V/m

 H_{tot} = total magnetic field strength in A/m

5.7 Test Equipment List

Ma	Name of Earliness	T o/M o d ol	Carial Namehan	Calib	ration
Manufacture	Name of Equipment	Type/Model	Serial Number	Last Cal.	Due Date
SPEAG	Dosimetric E-Filed Probe	ET3DV6	1788	Sep. 19, 2006	Sep. 19, 2007
SPEAG	835MHz System Validation Kit	D835V2	499	Mar. 15, 2006	Mar. 15, 2008
SPEAG	900MHz System Validation Kit	D900V2	190	Jul. 19, 2005	Jul. 19, 2007
SPEAG	1800MHz System Validation Kit	D1800V2	2d076	Jul. 20, 2005	Jul. 20, 2007
SPEAG	1900MHz System Validation Kit	D1900V2	5d041	Mar. 21, 2006	Mar. 21, 2008
SPEAG	2450MHz System Validation Kit	D2450V2	736	Jul. 12, 2005	Jul. 12, 2007
SPEAG	Data Acquisition Electronics	DAE3	577	Nov. 21, 2006	Nov. 21, 2007
SPEAG	Device Holder	N/A	N/A	NCR	NCR
SPEAG	Phantom	QD 000 P40 C	TP-1150	NCR	NCR
SPEAG	Robot	Staubli RX90BL	F03/5W15A1/A/01	NCR	NCR
SPEAG	Software	DASY4 V4.7 Build 44	N/A	NCR	NCR
SPEAG	Software	SEMCAD V1.8 Build 171	N/A	NCR	NCR
SPEAG	Measurement Server	SE UMS 001 BA	1021	NCR	NCR
Agilent	ENA series Network Analyzer	E5071B	MY42403579	Mar. 16, 2006	Mar. 16, 2007
Agilent	Dielectric Probe Kit	85070D	US01440205	NCR	NCR
Agilent	Dual Directional Coupler	778D	50422	NCR	NCR
Agilent	Power Amplifier	8449B	3008A01917	NCR	NCR
R&S	Radio Communication Tester	CMU200	105513	Jul. 25, 2006	Jul. 24, 2007
Agilent	Power Meter	E4416A	GB41292344	Jan. 23, 2006	Jan. 23, 2008
Agilent	Power Sensor	E9327A	US40441548	Feb. 6, 2006	Feb. 6, 2007
Agilent	Signal Generator	E8247C	MY43320596	Mar. 1, 2006	Mar. 1, 2008

Table 5.1 Test Equipment List

6. <u>Tissue Simulating Liquids</u>

For the measurement of the field distribution inside the SAM phantom with DASY4, the phantom must be filled with around 25 liters of homogeneous body tissue simulating liquid. The liquid height from the bottom of the phantom body is 15.2 centimeters, which is shown in Fig. 6.1.

The following ingredients for tissue simulating liquid are used:

- \triangleright Water: deionized water (pure H₂0), resistivity 16M as basis for the liquid
- > Sugar: refined sugar in crystals, as available in food shops to reduce relative permittyvity
- > Salt: pure NaCl to increase conductivity
- ➤ **Cellulose**: Hydroxyethyl-cellulose, medium viscosity (75-125 mPa.s, 2% in water, 20°C), CAS#54290-to increase viscosity and to keep sugar in solution.
- ➤ **Preservative**: Preventol D-7 Bayer AG, D-51368 Leverkusen, CAS#55965-84-9- to prevent the spread of bacteria and molds.
- ➤ **DGMBE**: Deithlenglycol-monobuthyl ether (DGMBE), Fluka Chemie GmbH, CAS#112-34-5 to reduce relative permittivity.

Table 6.1 gives the recipes for one liter of tissue simulating liquid for frequency band 2450 MHz.

Ingredient	MSL-2450
Water	698.3 ml
DGMBE	301.7 ml
Total amount	1 liter (1.0 kg)
Dielectric Parameters at 22°	f = 2450MHz
	$r = 52.7 \pm 5\%$
	$= 1.95\pm5\% \text{ S/m}$

Table 6.1

The dielectric parameters of the liquids were verified prior to the SAR evaluation using an Agilent 85070D Dielectric Probe Kit and an Agilent Network Analyzer.

Table 6.2 shows the measuring results for muscle simulating liquid.

Bands	Frequency(MHz)	Permittivity (r)	Conductivity ()	Measurement date
	2412	53.0	1.91	
2450 MHz	2437	53.0	1.95	Oct. 30, 2006
	2462	52.9	1.97	
2450 MII	2412	54.1	1.91	
2450 MHz with holster	2437	54.1	1.95	Dec. 19, 2006
with hoister	2462	54	1.98	

Table 6.2

The measuring data are consistent with $r = 52.7 \pm 5\%$ and $r = 1.95 \pm 5\%$.

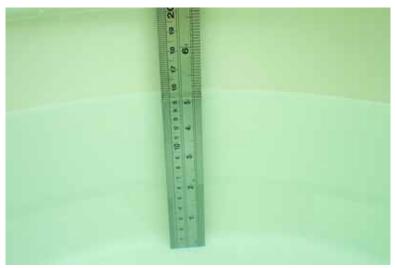


Fig. 6.1

7. <u>Uncertainty Assessment</u>

The component of uncertainly may generally be categorized according to the methods used to evaluate them. The evaluation of uncertainly by the statistical analysis of a series of observations is termed a Type A evaluation of uncertainty. The evaluation of uncertainty by means other than the statistical analysis of a series of observation is termed a Type B evaluation of uncertainty. Each component of uncertainty, however evaluated, is represented by an estimated standard deviation, termed standard uncertainty, which is determined by the positive square root of the estimated variance.

A Type A evaluation of standard uncertainty may be based on any valid statistical method for treating data. This includes calculating the standard deviation of the mean of a series of independent observations; using the method of least squares to fit a curve to the data in order to estimate the parameter of the curve and their standard deviations; or carrying out an analysis of variance in order to identify and quantify random effects in certain kinds of measurement.

A type B evaluation of standard uncertainty is typically based on scientific judgment using all of the relevant information available. These may include previous measurement data, experience and knowledge of the behavior and properties of relevant materials and instruments, manufacture's specification, data provided in calibration reports and uncertainties assigned to reference data taken from handbooks. Broadly speaking, the uncertainty is either obtained from an outdoor source or obtained from an assumed distribution, such as the normal distribution, rectangular or triangular distributions indicated in Table 7.1

Uncertainty Distributions	Normal	Rectangular	Triangular	U-shape
Multiplying factor ^(a)	1/k (b)	1/ 3	1/ 6	1/ 2

⁽a) standard uncertainty is determined as the product of the multiplying factor and the estimated range of variations in the measured quantity

Table 7.1

The combined standard uncertainty of the measurement result represents the estimated standard deviation of the result. It is obtained by combining the individual standard uncertainties of both Type A and Type B evaluation using the usual "root-sum-squares" (RSS) methods of combining standard deviations by taking the positive square root of the estimated variances.

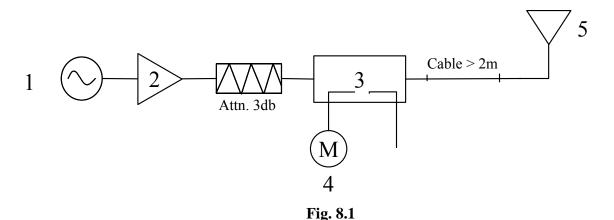
Expanded uncertainty is a measure of uncertainty that defines an interval about the measurement result within which the measured value is confidently believed to lie. It is obtained by multiplying the combined standard uncertainty by a coverage factor. Typically, the coverage factor ranges from 2 to 3. Using a coverage factor allows the true value of a measured quantity to be specified with a defined probability within the specified uncertainty range. For purpose of this document, a coverage factor two is used, which corresponds to confidence interval of about 95 %. The DASY4 uncertainty Budget is showed in Table 7.2.

⁽b) is the coverage factor

Error Description	Uncertainty Value ± %	Probability Distribution	Divisor	Ci 1g	Standard Unc. (1-g)	vi or Veff
Measurement System			<u>I</u>			
Probe Calibration	± 4.8	Normal	1	1	±4.8	
Axial Isotropy	± 4.7	Rectangular	$\sqrt{3}$	0.7	±1.9	
Hemispherical Isotropy	± 9.6	Rectangular	$\sqrt{3}$	0.7	±3.9	
Boundary Effect	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	
Linearity	± 4.7	Rectangular	$\sqrt{3}$	1	±2.7	
System Detection Limit	± 1.0	Rectangular	$\sqrt{3}$	1	±0.6	
Readout Electronics	± 1.0	Normal	1	1	±1.0	
Response Time	± 0.8	Rectangular	$\sqrt{3}$	1	± 0.5	
Integration time	± 2.6	Rectangular	$\sqrt{3}$	1	± 1.5	
RF Ambient Conditions	± 3.0	Rectangular	$\sqrt{3}$	1	±1.7	
Probe Positioner Mech. Tolerance	± 0.4	Rectangular	$\sqrt{3}$	1	±0.2	
Probe Positioning with respect to Phantom Shell	± 2.9	Rectangular	√3	1	±1.7	
Extrapolation and Interpolation Algorithms for Max. SAR Evaluation	± 1.0	Rectangular	√3	1	±0.6	
Test sample Related						
Test sample Positioning	±2.9	Normal	1	1	±2.9	145
Device Holder Uncertainty	±3.6	Normal	1	1	±3.6	5
Output Power Variation-SAR drift measurement	±5.0	Rectangular	√3	1	±2.9	
Phantom and Setup						
Phantom uncertainty(Including shar and thickness tolerances)	±4.0	Rectangular	√3	1	±2.3	
Liquid Conductivity Target tolerance	±5.0	Rectangular	√3	0.64	±1.8	
Liquid Conductivity measurement uncertainty	±2.5	Normal	1	0.64	±1.6	
Liquid Permittivity Target tolerance	±5.0	Rectangular	√3	0.6	±1.7	
Liquid Permittivity measurement uncertainty	±2.5	Normal	1	0.6	±1.5	
Combined standard uncertainty					±10.3	330
Coverage Factor for 95 %		K=2				
Expanded uncertainty (Coverage factor = 2)			Normal (k=2) 27		±20.6	

Table 7.2 Uncertainty Budget of DASY

8. SAR Measurement Evaluation


Each DASY system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the DASY software, enable the user to conduct the system performance check and system validation. System validation kit includes a dipole, tripod holder to fix it underneath the flat phantom and a corresponding distance holder.

8.1 Purpose of System Performance check

The system performance check verifies that the system operates within its specifications. System and operator errors can be detected and corrected. It is recommended that the system performance check be performed prior to any usage of the system in order to guarantee reproducible results. The system performance check uses normal SAR measurements in a simplified setup with a well characterized source. This setup was selected to give a high sensitivity to all parameters that might fail or vary over time. The system check does not intend to replace the calibration of the components, but indicates situations where the system uncertainty is exceeded due to drift or failure.

8.2 System Setup

In the simplified setup for system evaluation, the DUT is replaced by a calibrated dipole and the power source is replaced by a continuous wave which comes from a signal generator at frequency 2450 MHz. The calibrated dipole must be placed beneath the flat phantom section of the SAM twin phantom with the correct distance holder. The distance holder should touch the phantom surface with a light pressure at the reference marking and be oriented parallel to the long side of the phantom. The equipment setup is shown below:

- 1. Signal Generator
- 2. Amplifier
- 3. Directional Coupler
- 4. Power Meter
- 5. 2450 MHz Dipole

The output power on dipole port must be calibrated to 100 mW (20 dBm) before dipole is connected.

Fig 8.2 Dipole Setup

8.3 <u>Validation Results</u>

Comparing to the original SAR value provided by Speag, the validation data should within its specification of 10 %. Table 8.1 shows the target SAR and measured SAR after normalized to 1W input power.

		Target (W/kg)	Measurement data (W/kg)	Variation	Measurement date	
ISM band	SAR (1g)	52.8	58.0	9.8 %	Oct. 30, 2006	
(2450 MHz)	SAR (10g)	24.5	26.5	8.2 %	Oct. 30, 2000	
ISM band	SAR (1g)	52.8	50.3	-4.7 %	Dag 10 2006	
(2450 MHz) With holster	SAR (10g)	24.5	23.5	-4.1 %	Dec. 19, 2006	

Table 8.1

The table above indicates the system performance check can meet the variation criterion.

9. Description for DUT Testing Position

This DUT was tested in 3 different positions. The first one is "Keypad Up with 1.5cm Gap", second one is "Keypad Down with 1.5cm Gap", and the third one is "Keypad Down with Holster Touch".

Fig. 9.1 Keypad Up with 1.5cm Gap

Fig. 9.2 Keypad Down with 1.5cm Gap

Fig. 9.3 Keypad Down with Holster Touch

10.Measurement Procedures

The measurement procedures are as follows:

- Using engineering software to transmit RF power continuously (continuous Tx) in the middle channel
- ► Placing the DUT in the positions described in the last section
- > Setting scan area, grid size and other setting on the DASY4 software
- > Taking data for the low channel
- Repeat the previous steps for the low and high channels.

According to the IEEE P1528 draft standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- > Power reference measurement
- > Area scan
- Zoom scan
- Power reference measurement

10.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the IEEE1528-2003 standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY4 software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

Base on the Draft: SCC-34, SC-2, WG-2-Computational Dosimetry, P1528/D1.2 (Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques), a new algorithm has been implemented. The spatial-peak SAR can be computed over any required mass.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the postprocessing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- extraction of the measured data (grid and values) from the Zoom Scan
- calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- generation of a high-resolution mesh within the measured volume
- interpolation of all measured values form the measurement grid to the high-resolution grid
- extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- calculation of the averaged SAR within masses of 1g and 10g

10.2 Scan Procedures

First **Area Scan** is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an **Area Scan** is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, **Zoom Scan** is required. The **Zoom Scan** measures 5x5x7 points with step size 8, 8 and 5 mm. The **Zoom Scan** is performed around the highest E-field value to determine the averaged SAR-distribution over 1 g.

10.3 SAR Averaged Methods

In DASY4, the interpolation and extrapolation are both based on the modified Quadratic Shepard's method. The interpolation scheme combines a least-square fitted function method and a weighted average method which are the two basic types of computational interpolation and approximation.

Extrapolation routines are used to obtain SAR values between the lowest measurement points and the inner phantom surface. The extrapolation distance is determined by the surface detection distance and the probe sensor offset. The uncertainty increases with the extrapolation distance. To keep the uncertainty within 1% for the 1 g and 10 g cubes, the extrapolation distance should not be larger than 5 mm.

11. SAR Test Results

11.1 Keypad Up with 1.5cm Gap

11.1 HCyp	teres e p il terre a							
Bands	Chan.	Freq. (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	1	2412(Low)	CCK	18.74	-	-	ı	Ī
802.11b	6	2437(Mid)	CCK	18.88	0.007	0.046	1.6	Pass
	11	2462(High)	CCK	18.75	-	-	ı	ı
	1	2412(Low)	OFDM	21.56	_	-	-	-
802.11g	6	2437(Mid)	OFDM	21.41	-	-	-	-
	11	2462(High)	OFDM	21.05	-	-	-	-

11.2 Keypad Down with 1.5cm Gap

Bands	Chan.	Freq. (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
	1	2412(Low)	CCK	18.74	-0.158	0.089	1.6	Pass
802.11b	6	2437(Mid)	CCK	18.88	-0.124	0.121	1.6	Pass
	11	2462(High)	CCK	18.75	-0.078	0.136	1.6	Pass
802.11b with BT On	11	2462(High)	CCK	18.75	-0.127	0.133	1.6	Pass
	1	2412(Low)	OFDM	21.56	-	-	-	-
802.11g	6	2437(Mid)	OFDM	21.41	-0.185	0.06	1.6	Pass
	11	2462(High)	OFDM	21.05	-	-	-	-

11.3 Keypad Down with Holster Touch

Bands	Chan.	Freq. (MHz)	Modulation	Conducted Power	Power Drift (dB)	Measured 1g SAR	Limits (W/Kg)	Results
	1	2412(Low)	CCK	(dBm) 18.74	-0.128	(W/kg) 0.084	1.6	Pass
802.11b	1	\ /						
	6	2437(Mid)	CCK	18.88	-0.109	0.096	1.6	Pass
	11	2462(High)	CCK	18.75	-0.185	0.112	1.6	Pass
802.11b with BT On	11	2462(High)	CCK	18.75	-0.044	0.106	1.6	Pass
802.11g	1	2412(Low)	OFDM	21.56	-	-	-	-
	6	2437(Mid)	OFDM	21.41	-0.128	0.05	1.6	Pass
	11	2462(High)	OFDM	21.05	_	-	-	-

Remark:

- 1. Software ensures that GSM and WLAN can not transmit simultaneously.
- 2. Only the worst case for body SAR was re-tested with the holster for verification.

Test Engineer: John Tsai and Gordon Lin

12. References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. P1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", April 21,2003.
- [3] Supplement C (Edition 01-01) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3-2002, "IEEE Recommended Practice for the Meaurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 2002
- [5] IEEE Std. C95.1-1999, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 10/30/2006 1:50:54 PM

System Check_Body_2450MHz_20061030

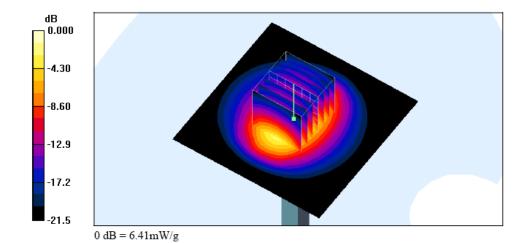
DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:736

Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.96$ mho/m; $\varepsilon_r = 53$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 22.7 °C

DASY4 Configuration:


- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005

Maximum value of SAR (measured) = 6.41 mW/g

- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 6.72 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.8 V/m; Power Drift = -0.038 dB Peak SAR (extrapolated) = 13.9 W/kg SAR(1 g) = 5.8 mW/g; SAR(10 g) = 2.65 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 12/19/2006 5:38:44 PM

System Check_Body_2450MHz_20061219

DUT: Dipole 2450 MHz

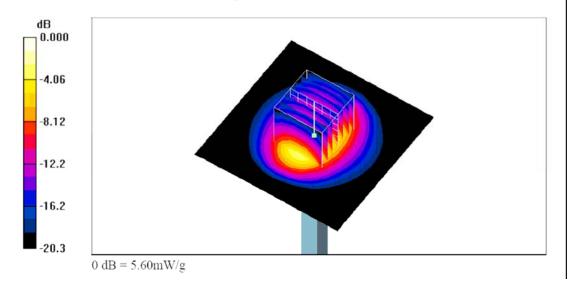
Communication System: CW; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2450 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 54$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.9°C; Liquid Temperature: 21.1°C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171


Pin=100mW/Area Scan (91x91x1): Measurement grid: dx=10mm, dy=10mm Maximum value of SAR (interpolated) = 5.86 mW/g

Pin=100mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 55.3 V/m; Power Drift = -0.014 dB

Peak SAR (extrapolated) = 11.7 W/kg

SAR(1 g) = 5.03 mW/g; SAR(10 g) = 2.35 mW/gMaximum value of SAR (measured) = 5.60 mW/g

Appendix B - SAR Measurement Data

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 10/30/2006 8:39:28 PM

Body 802.11b Ch6 Keypad Up with 1.5cm Gap 20061030

DUT: 6O0406

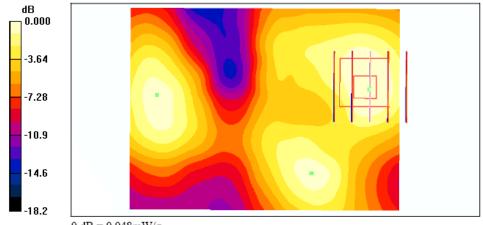
Communication System: 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.95$ mho/m; $\varepsilon_r = 53$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 22.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161


Ch6/Area Scan (61x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.049 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.13 V/m; Power Drift = 0.007 dB

Peak SAR (extrapolated) = 0.084 W/kg

SAR(1 g) = 0.046 mW/g; SAR(10 g) = 0.027 mW/gMaximum value of SAR (measured) = 0.048 mW/g

0~dB=0.048mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 10/30/2006 9:28:23 PM

Body 802.11b Ch11 Keypad Down with 1.5cm Gap 20061030

DUT: 6O0406

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 52.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

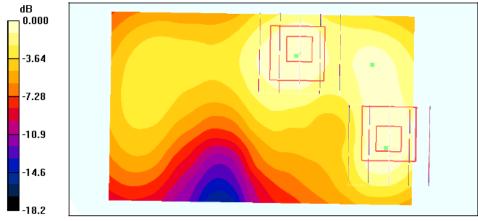
Ch11/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.144 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.66 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 0.273 W/kg

SAR(1 g) = 0.136 mW/g; SAR(10 g) = 0.078 mW/gMaximum value of SAR (measured) = 0.143 mW/g


The state of state (measures) of the many

Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.66 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 0.280 W/kg

SAR(1 g) = 0.130 mW/g; SAR(10 g) = 0.073 mW/gMaximum value of SAR (measured) = 0.136 mW/g

0 dB = 0.136 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 10/30/2006 9:49:14 PM

Body 802.11b Ch11 Keypad Down with 1.5cm Gap 20061030 Bluetooth On

DUT: 6O0406

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.97$ mho/m; $\varepsilon_r = 52.9$; $\rho = 1000$ kg/m³

Ambient Temperature: 22.9 °C; Liquid Temperature: 22.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch11/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.143 mW/g

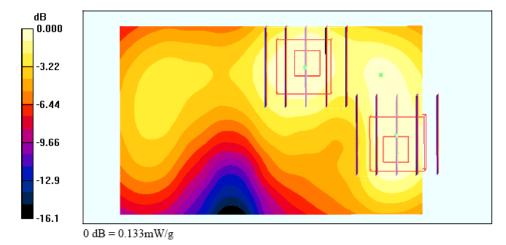
Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.63 V/m; Power Drift = -0.127 dB

Peak SAR (extrapolated) = 0.269 W/kg

SAR(1 g) = 0.133 mW/g; SAR(10 g) = 0.076 mW/g

Maximum value of SAR (measured) = 0.142 mW/g


Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.63 V/m; Power Drift = -0.127 dB

Peak SAR (extrapolated) = 0.275 W/kg

SAR(1 g) = 0.127 mW/g; SAR(10 g) = 0.071 mW/g

Maximum value of SAR (measured) = 0.133 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 10/30/2006 8:07:52 PM

Body 802.11g Ch6 Keypad Down with 1.5cm Gap 20061030

DUT: 6O0406

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 53$; $\rho = 1000$ kg/m³

Ambient Temperature : 23.2 °C; Liquid Temperature : 22.7 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch6/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.066 mW/g

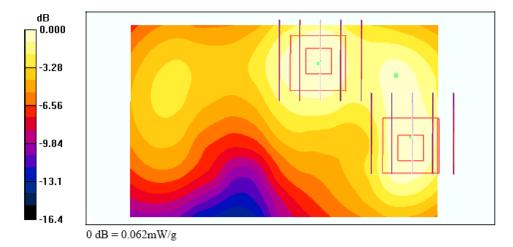
Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.27 V/m; Power Drift = -0.185 dB

Peak SAR (extrapolated) = 0.116 W/kg

SAR(1 g) = 0.060 mW/g; SAR(10 g) = 0.035 mW/g

Maximum value of SAR (measured) = 0.064 mW/g


Ch6/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.27 V/m; Power Drift = -0.185 dB

Peak SAR (extrapolated) = 0.121 W/kg

SAR(1 g) = 0.058 mW/g; SAR(10 g) = 0.033 mW/g

Maximum value of SAR (measured) = 0.062 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 10/30/2006 9:28:23 PM

Body 802.11b Ch11 Keypad Down with 1.5cm Gap 20061030 2D

DUT: 6O0406

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.97 \text{ mho/m}$; $\epsilon_r = 52.9$; $\rho = 1000 \text{ kg/m}^3$

Ambient Temperature: 23.4 °C; Liquid Temperature: 22.7 °C

DASY4 Configuration:

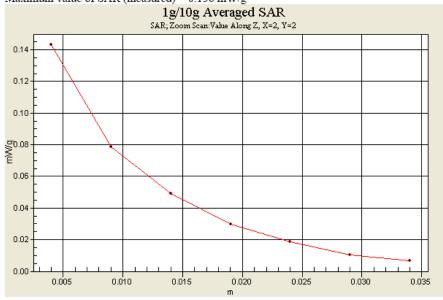
- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/11/2005
- Phantom: SAM-B; Type: QD 000 P40 C; Serial: TP-1383
- Measurement SW: DASY4, V4.6 Build 23; Postprocessing SW: SEMCAD, V1.8 Build 161

Ch11/Area Scan (51x81x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 0.144 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.66 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 0.273 W/kg


SAR(1 g) = 0.136 mW/g; SAR(10 g) = 0.078 mW/gMaximum value of SAR (measured) = 0.143 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.66 V/m; Power Drift = -0.078 dB

Peak SAR (extrapolated) = 0.280 W/kg

SAR(1 g) = 0.130 mW/g; SAR(10 g) = 0.073 mW/gMaximum value of SAR (measured) = 0.136 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 12/20/2006 12:49:54 AM

Body 802.11b Ch11 Keypad Down with Holster Touch 20061219

DUT: 6O0406-01

Communication System: 802.11b; Frequency: 2462 MHz:Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_{\nu} = 54$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.8°C; Liquid Temperature: 21.1°C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.129 mW/g

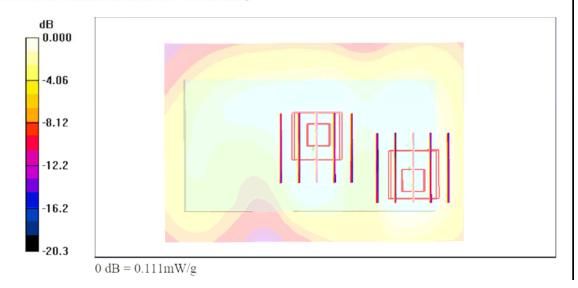
Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.91 V/m; Power Drift = -0.185 dB

Peak SAR (extrapolated) = 0.227 W/kg

SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.064 mW/g

Maximum value of SAR (measured) = 0.117 mW/g


Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.91 V/m; Power Drift = -0.185 dB

Peak SAR (extrapolated) = 0.228 W/kg

SAR(1 g) = 0.105 mW/g; SAR(10 g) = 0.058 mW/g

Maximum value of SAR (measured) = 0.111 mW/g

Date/Time: 12/20/2006 1:10:47 AM Test Laboratory: Sporton International Inc. SAR Testing Lab

Body_802.11b Ch11_Keypad Down with Holster Touch_20061219_Bluetooth

DUT: 6O0406-01

Communication System: 802.11b; Frequency: 2462 MHz:Duty Cycle: 1:1

Medium: MSL_2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_e = 54$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.8°C; Liquid Temperature: 21.1°C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.114 mW/g

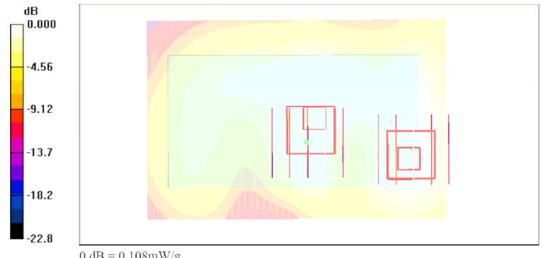
Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.48 V/m; Power Drift = -0.044 dB

Peak SAR (extrapolated) = 0.238 W/kg

SAR(1 g) = 0.106 mW/g; SAR(10 g) = 0.057 mW/g

Maximum value of SAR (measured) = 0.108 mW/g


Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.48 V/m; Power Drift = -0.044 dB

Peak SAR (extrapolated) = 0.209 W/kg

SAR(1 g) = 0.101 mW/g; SAR(10 g) = 0.057 mW/g

Maximum value of SAR (measured) = 0.108 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 12/20/2006 12:04:56 AM

Body_802.11g Ch6_Keypad Down with Holster Touch_20061219

DUT: 6O0406-01

Communication System: 802.11g; Frequency: 2437 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2437 MHz; $\sigma = 1.95$ mho/m; $\epsilon_r = 54.1$; $\rho = 1000$ kg/m³

Ambient Temperature : 21.9 °C; Liquid Temperature : 21.1 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
 Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

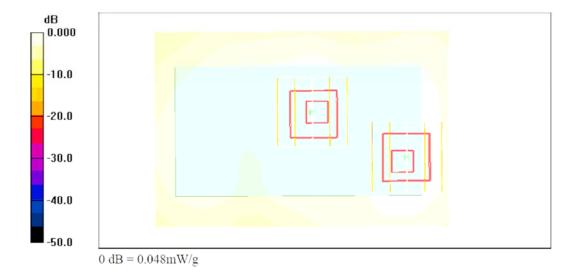
Ch6/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.054 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.03 V/m; Power Drift = -0.128 dB

Peak SAR (extrapolated) = 0.104 W/kg


SAR(1 g) = 0.050 mW/g; SAR(10 g) = 0.028 mW/gMaximum value of SAR (measured) = 0.052 mW/g

Ch6/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 5.03 V/m; Power Drift = -0.128 dB

Peak SAR (extrapolated) = 0.108 W/kg

SAR(1 g) = 0.047 mW/g; SAR(10 g) = 0.026 mW/gMaximum value of SAR (measured) = 0.048 mW/g

Test Laboratory: Sporton International Inc. SAR Testing Lab Date/Time: 12/20/2006 12:49:54 AM

Body_802.11b Ch11_Keypad Down with Holster Touch_20061219_2D

DUT: 6O0406-01

Communication System: 802.11b; Frequency: 2462 MHz; Duty Cycle: 1:1

Medium: MSL 2450 Medium parameters used: f = 2462 MHz; $\sigma = 1.98$ mho/m; $\varepsilon_c = 54$; $\rho = 1000$ kg/m³

Ambient Temperature: 21.8 °C; Liquid Temperature: 21.1 °C

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(4.11, 4.11, 4.11); Calibrated: 9/19/2006
- Sensor-Surface: 4mm (Mechanical And Optical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2006
- Phantom: SAM-A; Type: QD 000 P40 C; Serial: TP-1303
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

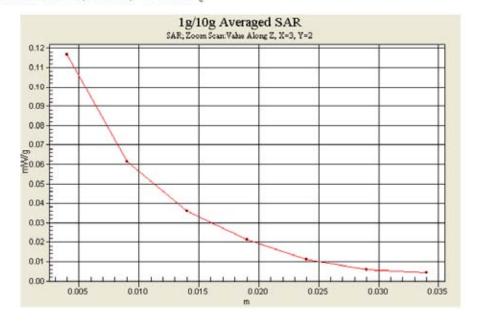
Ch11/Area Scan (61x91x1): Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 0.129 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.91 V/m; Power Drift = -0.185 dB

Peak SAR (extrapolated) = 0.227 W/kg


SAR(1 g) = 0.112 mW/g; SAR(10 g) = 0.064 mW/gMaximum value of SAR (measured) = 0.117 mW/g

Ch11/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.91 V/m; Power Drift = -0.185 dB

Peak SAR (extrapolated) = 0.228 W/kg

SAR(1 g) = 0.105 mW/g; SAR(10 g) = 0.058 mW/gMaximum value of SAR (measured) = 0.111 mW/g

Appendix C – Calibration Data

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

SYNISS

Client

Sporton (Auden)

Certificate No: D2450V2-736 Jul05

Schweizerischer Kalibrierdienst

Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

CALIBRATION C	ERTIFICATE		
Object	D2450V2 - SN: 7	36	
Calibration procedure(s)	QA CAL-05.v6 Calibration proce	dure for dipole validation kits	
Calibration date	July 12, 2005		
Condition of the calibrated item	In Tolerance		
All calibrations have been conduct Calibration Equipment used (M& Primary Standards Power moter EPM E442		y facility: environment temperature (22 ± 3)°C an Call Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412)	Scheduled Celibration Oct-05
Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ES3DV2	US37292783 SN: 5085 (20g) SN: 5047.2 (10r) SN 3025 SN 601	12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No. 251-00402) 28-Oct-04 (SPEAG, No. ES3-3025_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05)	Oct-05 Aug-05 Aug-05 Oct-05
DAE4	1-014-003		Jan-06
DAE4 Secondary Standards	ID#	Check Date (in house)	Jan-06 Scheduled Check
Secondary Standards Power sensor HP 8481A RF generator R&S SML-03	ID # MY41092317 100698	Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Dec-03)	Scheduled Check In house check: Oct-05 In house check: Dec-05
Secondary Standards Power sensor HP 8481A RF generator R&S SML-03 Network Analyzer HP 8753E	ID # MY41092317 100698 US37390585 S4206	Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-04)	Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nav-05 Signature
Secondary Standards Power sensor HP 8481A RF generator R&S SML-03	ID # MY41092317 100698 US37390585 S4206 Name	Check Date (in house) 18-Oct-02 (SPEAG, in house check Oct-03) 27-Mar-02 (SPEAG, in house check Dec-03) 18-Oct-01 (SPEAG, in house check Nov-04) Function	Scheduled Check In house check: Oct-05 In house check: Dec-05 In house check: Nov-05 Signature

Certificate No: D2450V2-736_Jul05

Page 1 of 9

Calibration Laboratory of Schmid & Partner Engineering AG

Zeughausstrasse 43, 8004 Zurich, Switzerland

C

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A

sensitivity in TSL / NORM x,y,z not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions*, Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D2450V2-735_Jul05

Page 2 of 9

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.6
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom V5.0	
Distance Dipole Center - TSL	10 mm	with Spacer
Area Scan resolution	dx, dy = 15 mm	
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	2450 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	.22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.5 ± 6 %	1.73 mho/m ± 6 %
Head TSL temperature during test	(22.0 ± 0.2) °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	250 mW input power	13.1 mW / g
SAR normalized	normalized to 1W	52.4 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	52.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ² (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.13 mW / g
SAR normalized	normalized to 1W	24.5 mW / g
SAR for nominal Head TSL parameters 1	normalized to 1W	24.7 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-736_Jul05 Page 3 of 9

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Body TSL parameters
The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.2 ± 0.2) °C	52.5 ± 6 %	2.02 mho/m ± 8 %
Body TSL temperature during test	(22.2 ± 0.2) °C		-

SAR result with Body TSL

SAR averaged over 1 cm3 (1 g) of Body TSL	condition	
SAR measured	250 mW input power	13.5 mW/g
SAR normalized	normalized to 1W	54.0 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	52.8 mW / g ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.26 mW / g
SAR normalized	normalized to 1W	25.0 mW / g
SAR for nominal Body TSL parameters 2	normalized to 1W	24.5 mW / g ± 16.5 % (k=2)

Certificate No: D2450V2-736_Jul05

² Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.6 Ω + 3.7 JΩ	
Return Loss	-26.0 dB	

Antenna Parameters with Body TSL

Impedance, transformed to feed point	49.9 Ω + 5.3 jΩ
Return Loss	- 25.5 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.157 ns
Electrical Belay (one direction)	1.127.112

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	August 26, 2003

Certificate No: D2450V2-736_Jul05 Page 5 of 9

DASY4 Validation Report for Head TSL

Date/Time: 12.07.2005 12:53:00

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: HSL U10 BB

Medium parameters used: f = 2450 MHz; $\sigma = 1.73$ mho/m; $\varepsilon_c = 38.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

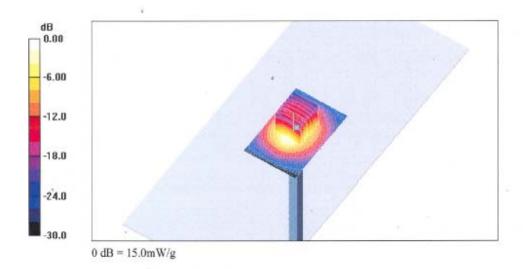
- Probe: ES3DV2 SN3025; ConvF(4.4, 4.4, 4.4); Calibrated: 29.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 22.07.2004
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.5 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 149

Pin = 250 mW; d = 10 mm 2/Area Scan (41x61x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 16.6 mW/g

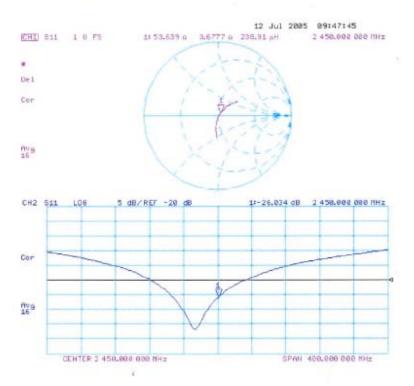
Pin = 250 mW; d = 10 mm 2/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 91.6 V/m; Power Drift = 0.077 dB

Peak SAR (extrapolated) = 27.0 W/kg

SAR(1 g) = 13.1 mW/g; SAR(10 g) = 6.13 mW/g


Maximum value of SAR (measured) = 15.0 mW/g

Certificate No: D2450V2-736_Jul05

Impedance Measurement Plot for Head TSL

Certificate No: D2450V2-736_Jul05 Page 7 of 9

DASY4 Validation Report for Body TSL

Date/Time: 11.07.2005 17:33:35

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN736

Communication System: CW-2450; Frequency: 2450 MHz; Duty Cycle: 1:1

Medium: MSL 2450

Medium parameters used: f = 2450 MHz; $\sigma = 2.02$ mho/m; $\varepsilon_r = 52.5$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

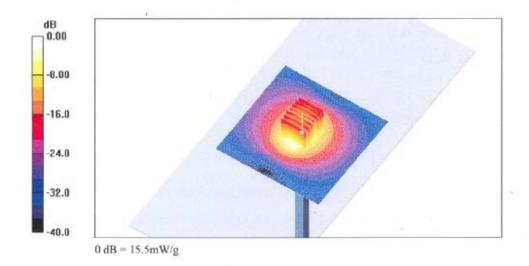
- Probe: ES3DV2 SN3025; ConvF(4.13, 4.13, 4.13); Calibrated: 29.10.2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601: Calibrated: 22.07.2004
- Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA
- Measurement SW: DASY4, V4.6 Build 4; Postprocessing SW: SEMCAD, V1.8 Build 149

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 15.8 mW/g

Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0:

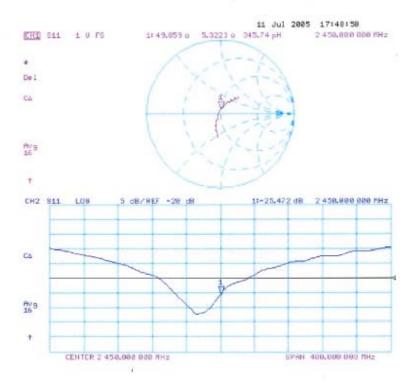

Measurement grid: dx-5mm, dy-5mm, dz-5mm

Reference Value = 85.9 V/m; Power Drift = 0.160 dB

Peak SAR (extrapolated) = 27.6 W/kg

SAR(1 g) = 13.5 mW/g; SAR(10 g) = 6.26 mW/g

Maximum value of SAR (measured) = 15.5 mW/g



Certificate No: D2450V2-736_Jul05

Page 8 of 9

Impedance Measurement Plot for Body TSL

Certificate No: D2450V2-736_Jul05

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

S Schweizerischer Kalibrierdienst
C Service sulsse d'étalonnage
S Servizio svizzero di taratura
S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client Sporton (Auden)

Certificate No: ET3-1788_Sep06

Accreditation No.: SCS 108

Object	ET3DV6 - SN:1	788	Report Address of the
Calibration procedure(s)	QA CAL-01.v5 Calibration proc	edure for dosimetric E-field probes	
Calibration date:	September 19,	2006	
Condition of the calibrated item	In Tolerance		
All calibrations have been conduc	sted in the closed laborat	ory facility: environment temperature (22 ± 3)°C and	d humidity < 70%.
Calibration Equipment used (M&)	10	Cal Data (Calibrated by Cadificate No.)	Schadulad Calibration
rimary Standards	ID#	Cal Date (Calibrated by, Certificate No.) 5-Apr-96 (METAS, No. 251-00557)	Scheduled Calibration
Primery Standards Power meter E4419B	10	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 261-00557) 5-Apr-06 (METAS, No. 261-00557)	Scheduled Calibration Apr-07 Apr-07
Primary Standards Power meter E4419B Power sensor E4412A	ID # GB41293874	5-Apr-06 (METAS, No. 251-00557)	Apr-07
Primery Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	ID # GB41293874 MY41495277	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Apr-07 Apr-07
Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # GB41293874 MY41495277 MY41498087	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Apr-07 Apr-07 Apr-07
Calibration Equipment used (M&T Primery Standards Power meter E4419B Power sonsor E4412A Power sonsor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592)	Apr-07 Apr-07 Apr-07 Aug-07
Primery Standards Power meter E44198 Power sonsor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07 Jan-07
Primary Standards Power meter E44198 Power sonsor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b)	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593)	Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Aug-07
Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-07 Jun-07 Scheduled Check
Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference 30 dB Attenuator Reference Probe ES3DV2	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Jan-07 Jun-07 Scheduled Check In house check: Nov-07
Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Brobe ES3DV2 PAE4 Recondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 251-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 217-00593) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 21-Jun-05 (SPEAG, No. DAE4-654_Jun06) Check Date (in house)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-07 Jun-07 Scheduled Check
Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 PAE4 Recondary Standards RF generator HP 8648C	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00558) 10-Aug-06 (METAS, No. 251-00559) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Jan-07 Jun-07 Scheduled Check In house check: Nov-07
Primary Standards Power meter E44198 Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ES3DV2 PAE4 Recondary Standards	ID # GB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN: S5129 (30b) SN: 3013 SN: 654 ID # US3642U01700 US37390585	5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 217-00593) 10-Aug-06 (METAS, No. 217-00593) 2-Jan-06 (SPEAG, No. ES3-3013_Jan06) 21-Jun-06 (SPEAG, No. DAE4-654_Jun06) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 18-Oct-01 (SPEAG, in house check Nov-05)	Apr-07 Apr-07 Apr-07 Aug-07 Aug-07 Aug-07 Jan-07 Jun-07 Scheduled Check In house check: Nov-07 In house check: Nov 06

Certificate No: ET3-1788_Sep06

Page 1 of 9

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL NORMx,y,z tissue simulating liquid sensitivity in free space

ConF DCP

sensitivity in TSL / NORMx,y,z diode compression point

Polarization φ Polarization 9 ϕ rotation around probe axis 9 rotation around an axis that is in the plane normal to probe axis (at

measurement center), i.e., 9 = 0 is normal to probe axis

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of
 the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.

Certificate No: ET3-1788_Sep06

Page 2 of 9

ET3DV6 SN:1788

September 19, 2006

Probe ET3DV6

SN:1788

Manufactured:

May 28, 2003

Last calibrated:

September 30, 2004

Recalibrated:

September 19, 2006

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: ET3-1788_Sep06

Page 3 of 9

ET3DV6 SN:1788

September 19, 2006

DASY - Parameters of Probe: ET3DV6 SN:1788

Sensitivity in Free Space ^A	Diode Compression ^B
densitivity in rice opace	Diode Compression

NormX	1.73 ± 10.1%	$\mu V/(V/m)^2$	DCP X	95 mV
NormY	1.67 ± 10.1%	$\mu V/(V/m)^2$	DCP Y	101 mV
NormZ	1.70 ± 10.1%	$\mu V/(V/m)^2$	DCP Z	93 mV

Sensitivity in Tissue Simulating Liquid (Conversion Factors)

Please see Page 8.

Boundary Effect

TSL	900 MHz	Typical SAR gradient: 5 % per mm

Sensor Cente	Sensor Center to Phantom Surface Distance		4.7 mm	
SAR _{be} [%]	Without Correction Algorithm	7.9	4.3	
SAR _{be} [%]	With Correction Algorithm	0.1	0.3	

TSL 1810 MHz Typical SAR gradient: 10 % per mm

Sensor Cente	Sensor Center to Phantom Surface Distance		4.7 mm
SAR _{be} [%]	Without Correction Algorithm	11.8	7.0
SAR _{be} [%]	With Correction Algorithm	0.2	0.4

Sensor Offset

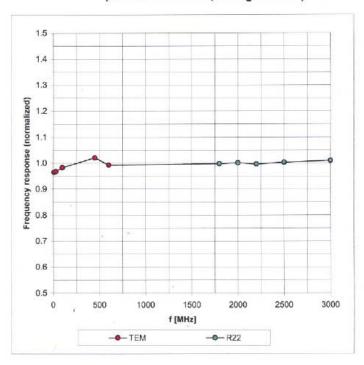
Probe Tip to Sensor Center 2.7 mm

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: ET3-1788_Sep06

Page 4 of 9

 $^{^{\}rm A}$ The uncertainties of NormX,Y,Z do not affect the E $^{\rm Z}$ -field uncertainty inside TSL (see Page 8).

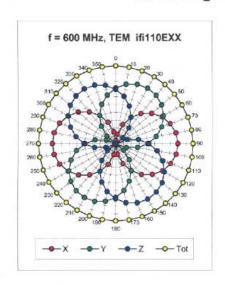

⁸ Numerical linearization parameter: uncertainty not required.

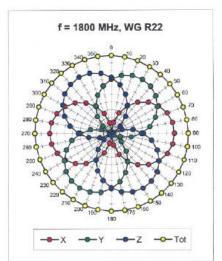
September 19, 2006

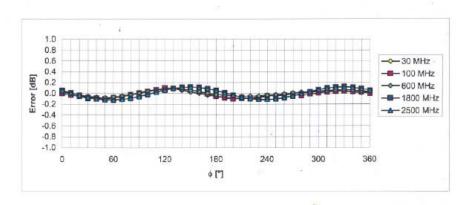
Frequency Response of E-Field

(TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)


Certificate No: ET3-1788_Sep06


Page 5 of 9

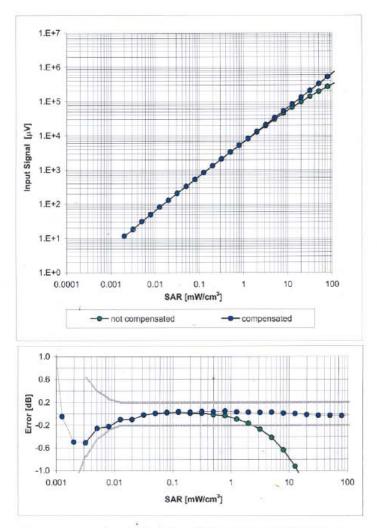


September 19, 2006

Receiving Pattern (ϕ), θ = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: ET3-1788_Sep06

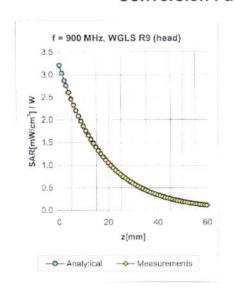

Page 6 of 9

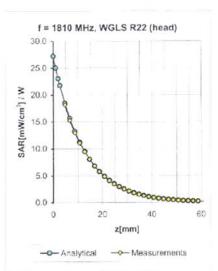
September 19, 2006

Dynamic Range f(SAR_{head})

(Waveguide R22, f = 1800 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)


Certificate No: ET3-1788_Sep06


Page 7 of 9

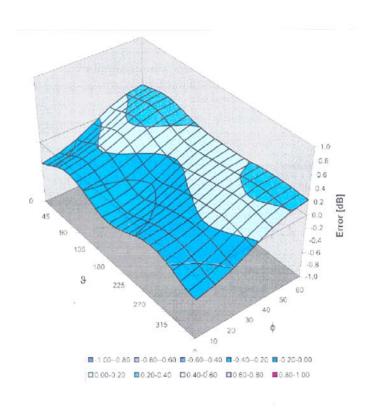
September 19, 2006

Conversion Factor Assessment

f [MHz]	Validity [MHz] ^C	TSL	Permittivity	Conductivity	Alpha	Depth	ConvF Uncertainty
900	± 50 / ± 100	Head	41.5 ± 5%	0.97 ± 5%	0.49	1.94	6.60 ± 11.0% (k=2)
1810	± 50 / ± 100	Head	$40.0\pm5\%$	1.40 ± 5%	0.48	2.74	5.30 ± 11.0% (k=2)
2000	±50/±100	Head	40.0 ± 5%	1.40 ± 5%	0.53	2.75	5.00 ± 11.0% (k=2)
2450	± 50 / ± 100	Head	$39.2\pm5\%$	$1.80 \pm 5\%$	0.68	1.96	4.66 ± 11.8% (k=2)
				4			
900	± 50 / ± 100	Body	55.0 ± 5%	1.05 ± 5%	0.45	2.12	6.33 ± 11.0% (k=2)
1810	±50/±100	Body	53.3 ± 5%	1.52 ± 5%	0.59	2.89	4.67 ± 11.0% (k=2)
2000	± 50 / ± 100	Body	$53.3\pm5\%$	1.52 ± 5%	0.56	2.79	4.50 ± 11.0% (k=2)
2450	± 50 / ± 100	Body	52.7 ± 5%	1.95 ± 5%	0.60	1.70	4.11 ± 11.8% (k=2)

Certificate No: ET3-1788_Sep06

Page 8 of 9


^C The validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2). The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band.

September 19, 2006

Deviation from Isotropy in HSL

Error (φ, θ), f = 900 MHz

Uncertainty of Spherical Isotropy Assessment: ± 2.6% (k=2)

Certificate No: ET3-1788_Sep08

Page 9 of 9

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Sporton (Auden) Client

Certificate No: DAE3-577_Nov06

Accreditation No.: SCS 108

CALIBRATION CERTIFICATE

Object

DAE3 - SD 000 D03 AA - SN: 577

Calibration procedure(s)

QA CAL-06.v12

Calibration procedure for the data acquisition electronics (DAE)

Calibration date:

November 21, 2006

Condition of the calibrated item

In Tolerance

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Fluke Process Calibrator Type 702	SN: 6295803	13-Oct-06 (Elcal AG, No: 5492)	Oct-07
Keithley Multimeter Type 2001	SN: 0810278	03-Oct-06 (Elcal AG, No: 5478)	Oct-07
Secondary Standards	ID#	Check Date (in house)	Scheduled Check

Calibrated by:

Name

Function

Approved by:

Eric Hainfeld

Fin Bomholt

Technician

R&D Director

Issued: November 21, 2006

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE3-577_Nov06

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurlch, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage

C Service suisse d'étalonnage

S Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE

data acquisition electronics

Connector angle

information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-577_Nov06

Page 2 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV , full range = -100...+300 mV Low Range: 1LSB = 61nV , full range = -1......+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	Х	Υ	Z
High Range	404.355 ± 0.1% (k=2)	403.806 ± 0.1% (k=2)	404.276 ± 0.1% (k=2)
Low Range	3.92854 ± 0.7% (k=2)	3.93862 ± 0.7% (k=2)	3.93591 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	268 ° ± 1 °
---	-------------

Certificate No: DAE3-577_Nov06

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	Input (μV)	Reading (μV)	Error (%)
Channel X + Input	200000	199999.5	0.00
Channel X + Input	20000	20005.87	0.03
Channel X - Input	20000	-19998.71	-0.01
Channel Y + Input	200000	200000	0.00
Channel Y + Input	20000	20004.22	0.02
Channel Y - Input	20000	-20003.23	0.02
Channel Z + Input	200000	200000.6	0.00
Channel Z + Input	20000	20005.24	0.03
Channel Z - Input	20000	-20001.80	0.01

Low Range		Input (μV)	Reading (μV)	Error (%)
Channel X	+ Input	2000	1999.9	0.00
Channel X	+ Input	200	200.27	0.13
Channel X	- Input	200	-200.73	0.36
Channel Y	+ Input	2000	2000.1	0.00
Channel Y	+ Input	200	199.22	-0.39
Channel Y	- Input	200	-200.86	0.43
Channel Z	+ Input	2000	1999.9	0.00
Channel Z	+ Input	200	199.28	-0.36
Channel Z	- Input	200	-200.94	0.47

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	14.24	12.49
	- 200	-12.13	-12.92
Channel Y	200	-6.51	-7.06
	- 200	6.05	5.81
Channel Z	200	1.09	0.86
	- 200	-2.86	-2.63

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	2.51	0.09
Channel Y	200	0.43	-	3.37
Channel Z	200	-0.55	0.96	-

Certificate No: DAE3-577_Nov06

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	15970	16306
Channel Y	15851	16305
Channel Z	16208	17068

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Innut 10MO

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (µV)
Channel X	-0.51	-1.55	0.47	0.50
Channel Y	-2.06	-4.32	-0.65	0.60
Channel Z	-1.63	-2.56	-0.15	0.35

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

	Zeroing (MOhm)	Measuring (MOhm)
Channel X	0.2000	199.8
Channel Y	0.2000	200.7
Channel Z	0.2000	199.8

8. Low Battery Alarm Voltage (verified during pre test)

Low Buttery Alarmi Voltage	(verified duffing pre test)	
Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

Certificate No: DAE3-577_Nov06

Page 5 of 5