FCC 47 CFR PART 24 SUBPART E

TEST REPORT

For

Tri-Band Mobile Phone

Model: 960

Trade Name: Philip

Issued to

Quanta Computer Inc. No.4, Wen Ming 1 St., Kuei Shan Hsiang, Tao Yuan Shien, Taiwan, R.O.C.

Issued by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C. TEL: 886-3-324-0332

TEL: 886-3-324-0332 FAX: 886-3-324-5235

TABLE OF CONTENTS

1. 11	EST RESULT CERTIFICATION	3
2. EU	UT DESCRIPTION	4
3. Tl	EST METHODOLOGY	5
3.1	EUT CONFIGURATION	5
3.2	EUT EXERCISE	
3.3	GENERAL TEST PROCEDURES	5
3.4	DESCRIPTION OF TEST MODES	5
4. IN	NSTRUMENT CALIBRATION	6
5. FA	ACILITIES AND ACCREDITATIONS	7
5.1	FACILITIES	7
5.2	EQUIPMENT	
5.3	LABORATORY ACCREDITATIONS AND LISTING	7
5.4	TABLE OF ACCREDITATIONS AND LISTINGS	8
6. SI	ETUP OF EQUIPMENT UNDER TEST	9
6.1	SETUP CONFIGURATION OF EUT	9
6.2	SUPPORT EQUIPMENT	
7. FO	CC PART 24 REQUIREMENTS	10
7.1	PEAK POWER	10
7.2	ERP & EIRP MEASUREMENT	12
7.3	OCCUPIED BANDWIDTH MEASUREMENT	15
7.4	OUT OF BAND EMISSION AT ANTENNA TERMINALS	
7.5	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	
7.6	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	
7.7	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	41
7 Q	DOWEDLINE CONDUCTED EMISSIONS	//3

Date of Issue: June 09, 2005

1. TEST RESULT CERTIFICATION

Applicant: Quanta Computer Inc.

No. 188, Wen Hwa 2nd Rd., Kuei Shan Hsiang,

Taoyuan Hsien, Taiwan, R.O.C.

Equipment Under Test:

Tri-Band Mobile Phone

Trade Name:

Philip

Model Number:

960

Date of Test:

May $23 \sim 24$, 2005

APPLICABLE STANDARDS					
STANDARD	TEST RESULT				
FCC 47 CFR PART 24 SUBPART E	No non-compliance noted				

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI/TIA/EIA-603-A-2001 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 24 Subpart E.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Harris W. Lai

Executive Vice President

Compliance Certification Services Inc.

Reviewed by:

Gavin Lim

Section Manager

Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	Tri-Band Mobile Phone
Trade Name	Philip
Model Number	960
Model Discrepancy	N/A
Power Supply	Adapter: PHILIPS / P925BW05050EB65 100-240V, 50/60Hz, 0.1A 5V, 0.5A, 2.5W Battery: Quanta Pn1 / 1000mAh
Frequency Range	1850 ~ 1910 MHz
Transmit Power	29.40 dBm
Cellular Phone Protocol	GSM (PCS), GPRS
Type of Emission	246KGXW
Antenna Gain	GSM: 0.54 dBi Bluetooth: 0.0 dBi
Antenna Type	GSM: Embedded Antenna Bluetooth: Embedded Antenna

Remark:

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>HFS-CT9608</u> filing to comply with Part 24 of the FCC 47 CFR Rules.

Page 4 Rev. 00

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4 and FCC CFR 47, 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

Date of Issue: June 09, 2005

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

3.4 DESCRIPTION OF TEST MODES

The EUT (model: 960) had been tested under operating condition.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz, which worst case was in normal link mode only.

EUT staying in continuous transmitting mode was programmed. Channel Low, Mid and High were chosen for full testing.

The field strength of spurious emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The worst emission was found in lie-down position (Y axis) and the worst case was recorded.

Page 5 Rev. 00

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

Date of Issue: June 09, 2005

Page 6 Rev. 00

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at	
No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.	
No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.	
The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 a CISPR Publication 22.	ınd

Date of Issue: June 09, 2005

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

Page 7 Rev. 00

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS CISPR 22, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	NVLAÇ 200600-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FC 93105, 90471
Japan	VCCI	4 3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328-2, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124a ELA 124b ELA 124c
Taiwan	CNLA	EN 300 328-1/2, EN 300 220-1/2/3, EN 300 440-1/2, EN 61000-3-2, EN 61000-3-3, 47 CFR FCC Part 15 Subpart C/D/E, EN 55013, CNS 13439, EN 55014-1, CNS 13783-1, EN 55022, CNS 13438, CISPR 22, AS/NZS 3548, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, IEEE Std 1528, FCC OET Bulletin, 65+Supplement C, EN50360, EN50361, EN50371, RSS102	O 3 6 3 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 SL2-IN-E-0014 SL2-A1-E-0014 SL2-R1-E-0014 SL2-R2-E-0014 SL2-L1-E-0014
Canada	Industry Canada	RSS212, Issue 1	Canada IC 3991-3 IC 3991-4

^{*} No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

Page 8 Rev. 00

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

Date of Issue: June 09, 2005

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
01	Universal Radio Communication tester	R&S	CMU 200	1100.000.8.02	N/A	N/A	Unshielded, 1.8m

Remark:

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

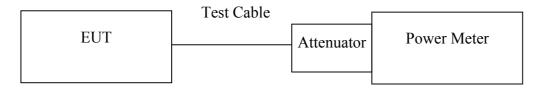
Page 9 Rev. 00

7. FCC PART 24 REQUIREMENTS

7.1 PEAK POWER

LIMIT

According to FCC §2.1046.


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Agilant	E4416A	GB41291611	06/01/2006
Power Sensor	Agilant	E9327A	VS40441097	03/15/2006
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2006

Date of Issue: June 09, 2005

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

Page 10 Rev. 00

TEST RESULTS

No non-compliance noted.

Test Data

Test Mode	Test Mode CH Frequency (MHz) Power Meter Re (dBm)		Power Meter Reading (dBm)	Attenuator (dB)	Average Power (dBm)
	1850.20 512		4.86		28.56
GSM 1900	1880.00	661	5.35		29.05
	1910.00	810	5.35	23.70	29.05
	1850.20	512	4.88		
GPRS 1900 (Class 10)	1880.00	661	5.37		29.07
(C1035 10)	1910.00	810	5.38		29.08

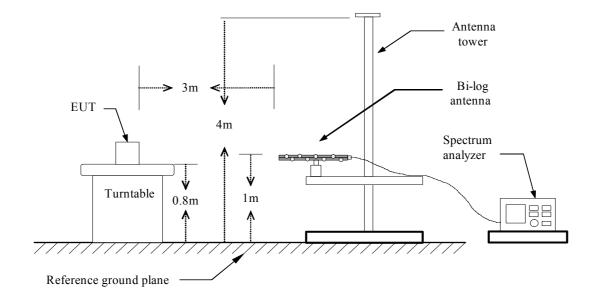
Remark: The value of factor includes both the loss of cable and external attenuator

Page 11 Rev. 00

7.2 ERP & EIRP MEASUREMENT

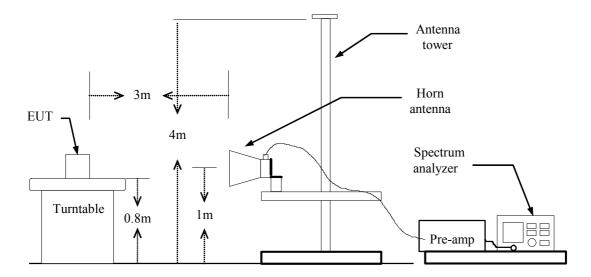
LIMIT

According to FCC §2.1046

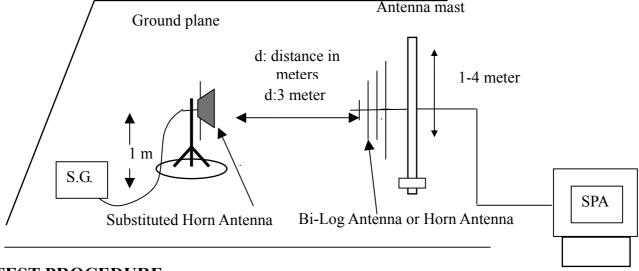

FCC 24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2006
Spectrum Analyzer	R&S	FSP30	100112	08/03/2005
Pre-Amplifier	HP	8447D	2944A09173	03/03/2006
Horn antenna	EMCO	3115	00022250	04/18/2006
Pre-Amplifier	НР	8449B	3008B00965	10/02/2005
Turn Table	EMCO	2081-1.21	9709-1885	N.C.R
Antenna Tower	EMCO	2075-2	9707-2060	N.C.R
Controller	EMCO	2090	9709-1256	N.C.R
Site NSA	C&C	N/A	N/A	09/06/2005
S.G.	НР	83630B	3844A01022	01/14/2006
Substituted Horn	EMCO	3115	00022257	12/12/2005


TEST CONFIGURATION

Below 1 GHz



Page 12 Rev. 00

Above 1 GHz

For Substituted Method Test Set-UP

TEST PROCEDURE

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 3MHz and the average bandwidth was set to 3MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824-849MHz, and EIRP in frequency band 1851.25 –1910MHz were measured using a substitution method. The EUT was replaced by half-wave dipole (824-849MHz) or horn antenna (1851.25-1910MHz) connected to a signal generator. The spectrum analyzer reading was recorded and ERP/EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)

Page 13 Rev. 00

TEST RESULTS

No non-compliance noted.

GSM 1900 Test Data

EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)	Antenna Pol.	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
	512	1850.20	18.66	V	15.21	3.61	9.73	21.34	33.00	-11.66
	312	1850.20	25.48	Н	22.03	3.61	9.73	28.16	33.00	-4.84
Y	661	1880.00	18.36	V	14.92	3.64	9.84	21.12	33.00	-11.88
1	001	1880.00	26.32	Н	22.88	3.64	9.84	29.08	33.00	-3.92
	810	1909.80	18.29	V	14.84	3.66	9.92	21.10	33.00	-11.90
	810	1909.80	26.58	Н	23.14	3.66	9.92	*29.40	33.00	-3.60
	512	1850.20	20.54	V	17.09	3.61	9.73	23.22	33.00	-9.78
		1850.20	20.81	Н	17.36	3.61	9.73	23.49	33.00	-9.51
X	661	1880.00	21.33	V	17.89	3.64	9.84	24.09	33.00	-8.91
^		1880.00	22.66	Н	21.37	3.64	7.69	25.42	33.00	-7.58
	810	1909.80	20.31	V	16.87	3.66	9.92	23.13	33.00	-9.87
		1909.80	22.70	Н	21.41	3.66	7.77	25.52	33.00	-7.48
	512	1850.20	25.97	V	22.52	3.61	9.73	28.65	33.00	-4.35
	312	1850.20	18.24	Н	14.27	3.61	7.58	18.24	33.00	-14.76
Z	661	1880.00	25.82	V	22.38	3.64	9.84	28.58	33.00	-4.42
Z	001	1880.00	18.00	Н	16.71	3.64	7.69	20.76	33.00	-12.24
	810	1909.80	25.90	V	22.46	3.66	9.92	28.72	33.00	-4.28
	810	1909.80	18.80	Н	17.51	3.66	7.77	21.62	33.00	-11.38

GPRS 1900 Test Data (Class 10)

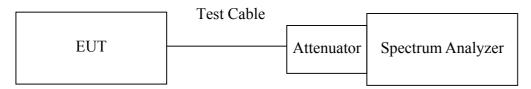
EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)		S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	0
	512	1850.20	18.79	V	15.34	3.61	9.73	21.47	33.00	-11.53
	312	1850.20	25.52	Н	22.07	3.61	9.73	28.20	33.00	-4.80
Y	661	1880.00	18.45	V	15.01	3.64	9.84	21.21	33.00	-11.79
1	661	1880.00	26.30	Н	22.86	3.64	9.84	29.06	33.00	-3.94
	910	1909.80	18.33	V	14.89	3.66	9.92	21.15	33.00	-11.85
	810	1909.80	26.54	Н	23.10	3.66	9.92	29.36	33.00	-3.64
	512	1850.20	20.44	V	16.99	3.61	9.73	23.12	33.00	-9.88
		1850.20	21.85	Н	18.40	3.61	9.73	24.53	33.00	-8.47
X	661	1880.00	22.16	V	18.72	3.64	9.84	24.92	33.00	-8.08
Λ		1880.00	22.62	Н	21.33	3.64	7.69	25.38	33.00	-7.62
	810	1909.80	21.79	V	18.35	3.66	9.92	24.61	33.00	-8.39
		1909.80	22.57	Н	21.28	3.66	7.77	25.39	33.00	-7.61
	512	1850.20	25.38	V	21.93	3.61	9.73	28.06	33.00	-4.94
	312	1850.20	18.65	Н	14.68	3.61	7.58	18.65	33.00	-14.35
Z	661	1880.00	25.89	V	22.45	3.64	9.84	28.65	33.00	-4.35
L	001	1880.00	18.77	Н	17.48	3.64	7.69	21.53	33.00	-11.47
	810	1909.80	26.03	V	22.59	3.66	9.92	28.85	33.00	-4.15
	010	1909.80	18.39	Н	17.10	3.66	7.77	21.21	33.00	-11.79

Page 14 Rev. 00

7.3 OCCUPIED BANDWIDTH MEASUREMENT

LIMIT

According to §FCC 2.1049.


MEASUREMENT EQUIPMENT USED

Name of Equipment Manufacturer		Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2006	

Date of Issue: June 09, 2005

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

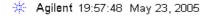
Remark: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW is set to 3 times the RBW, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

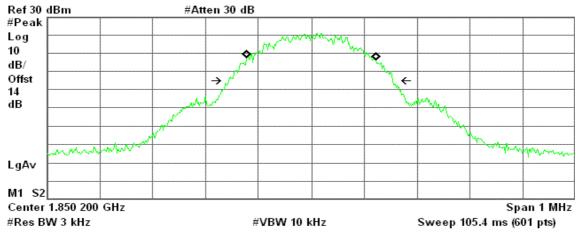
TEST RESULTS

No non-compliance noted


Test Data

Test Mode	СН	Frequency (MHz)	Bandwidth (kHz)
	512	1850.20	246.2853
GSM 1900	661	1880.00	245.2790
	810	1909.80	245.3413
	512	1850.20	245.6795
GPRS 1900 (Class 10)	661	1880.00	243.1693
(Cluss 10)	810	1909.80	246.4712

Page 15 Rev. 00

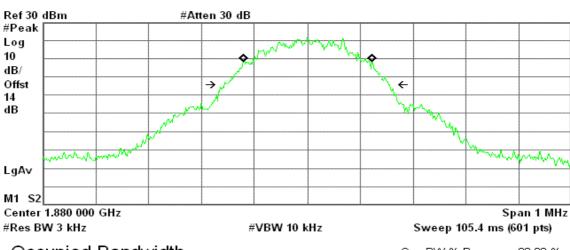

Test Plot

GSM 1900 (CH Low)

Т

Date of Issue: June 09, 2005

Occupied Bandwidth 246.2853 kHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 404.199 Hz x dB Bandwidth 311.173 kHz

GSM 1900 (CH Mid)

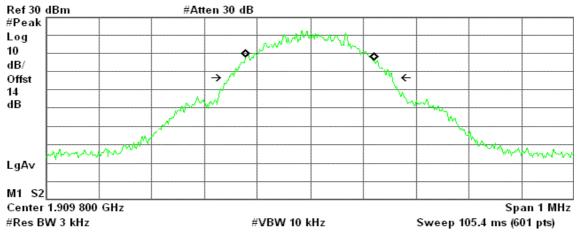
Agilent 19:56:57 May 23, 2005

Т

Occupied Bandwidth 245.2790 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 910.500 Hz x dB Bandwidth 314.699 kHz


Page 16 Rev. 00

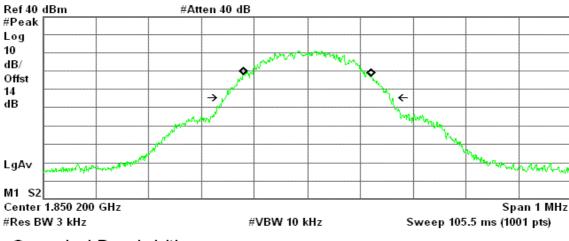
GSM 1900 (CH High)

Agilent 19:56:20 May 23, 2005

Т

Date of Issue: June 09, 2005

Occupied Bandwidth 245.3413 kHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -406.326 Hz x dB Bandwidth 310.860 kHz

GPRS 1900 (CH Low)

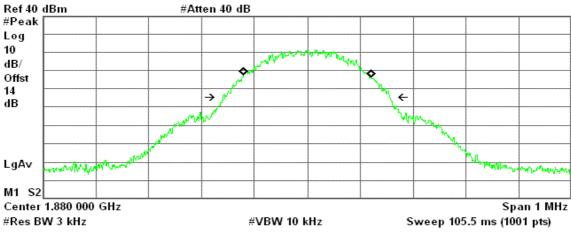
🔆 Agilent 21:05:30 May 23, 2005

Т

Occupied Bandwidth 245.6795 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error -130.400 Hz x dB Bandwidth 312.684 kHz


Page 17 Rev. 00

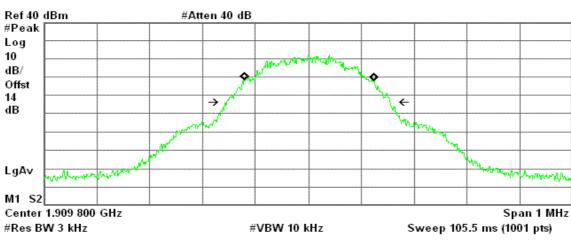
GPRS 1900 (CH Mid)

* Agilent 21:04:36 May 23, 2005

Т

Date of Issue: June 09, 2005

Occupied Bandwidth 243.1693 kHz


Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 15.009 Hz x dB Bandwidth 318.525 kHz

GPRS 1900 (CH High)

Agilent 21:03:59 May 23, 2005

Т

Occupied Bandwidth 246.4712 kHz

Occ BW % Pwr 99.00 % x dB -26.00 dB

Transmit Freq Error 991.590 Hz x dB Bandwidth 312.143 kHz

Page 18 Rev. 00

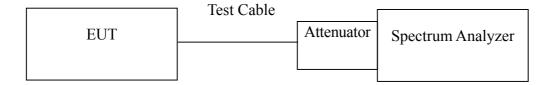
7.4 OUT OF BAND EMISSION AT ANTENNA TERMINALS

LIMIT

According to FCC §2.1051, FCC §2.2917(f), FCC §24.238(a).

Out of Band Emissions: The mean power of emission must be attenuated below the mean power of the non-modulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at lease 43 + 10 log P dB.

Date of Issue: June 09, 2005


Band Edge Requirements: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at lease 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the Out of band Emission

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2006

TEST CONFIGURATION

Out of band emission at antenna terminals:

TEST PROCEDURE

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10 th harmonic. Limit = -13dBm

Band Edge Requirements (1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

Page 19 Rev. 00

TEST RESULTS

No non-compliance noted.

Test Data

Test Mode	СН	Location	Description			
	512	Figure 7-1	Conducted spurious emissions, 330MHz - 2.5GHz			
	312	Figure 7-2	Conducted spurious emissions, 2.5GHz - 20GHz			
GSM 1900	661	Figure 7-3	Conducted spurious emissions, 330MHz - 2.5GHz			
GSWI 1900	001	Figure 7-4	Conducted spurious emissions, 2.5GHz - 20GHz			
	810	Figure 7-5	Conducted spurious emissions, 330MHz - 2.5GHz			
		Figure 7-6	Conducted spurious emissions, 2.5GHz - 20GHz			
	512	Figure 7-7	Conducted spurious emissions, 30MHz - 2.5GHz			
	312	Figure 7-8	Conducted spurious emissions, 2.5GHz - 20GHz			
GPRS 1900	661	Figure 7-9	Conducted spurious emissions, 30MHz - 2.5GHz			
(Class 10)	001	Figure 7-10	Conducted spurious emissions, 2.5GHz - 20GHz			
	810	Figure 7-11	Conducted spurious emissions, 30MHz - 2.5GHz			
	810	Figure 7-12	Conducted spurious emissions, 2.5GHz - 20GHz			

Test Mode	СН	Location	Description
GSM 1900	512	Figure 8-1	Band Edge emissions
GSM 1900	810	Figure 8-2	Band Edge emissions
GPRS 1900	512	Figure 8-3	Band Edge emissions
(Class 10)	810	Figure 8-4	Band Edge emissions

Page 20 Rev. 00

Test Plot

GSM 1900

Figure 7-1: Out of Band emission at antenna terminals-GSM CH Low

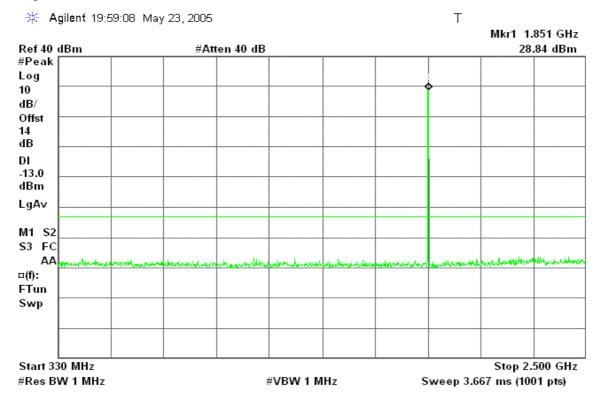


Figure 7-2: Out of Band emission at antenna terminals – GSM CH Low

Page 21 Rev. 00

Date of Issue: June 09, 2005

Figure 7-3: Out of Band emission at antenna terminals – GSM CH Mid

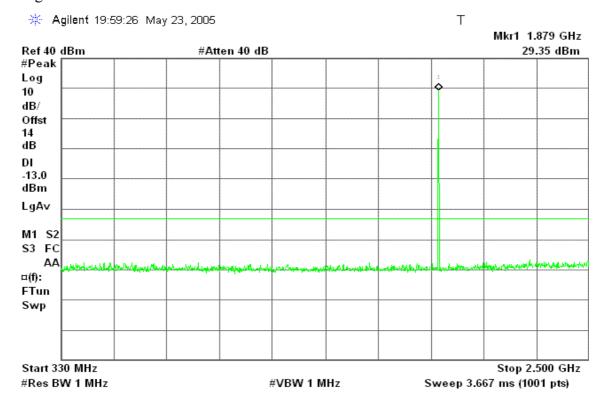
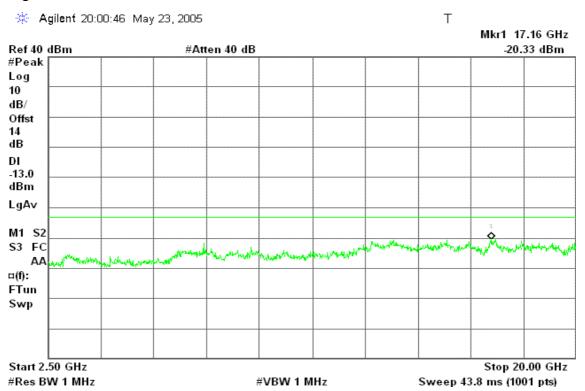



Figure 7-4: Out of Band emission at antenna terminals – GSM CH Mid

Page 22 Rev. 00

Report No.: 50512005-RP2 FCC ID: HFS-CT9608 Date of Issue: June 09, 2005

Figure 7-5: Out of Band emission at antenna terminals – GSM CH High

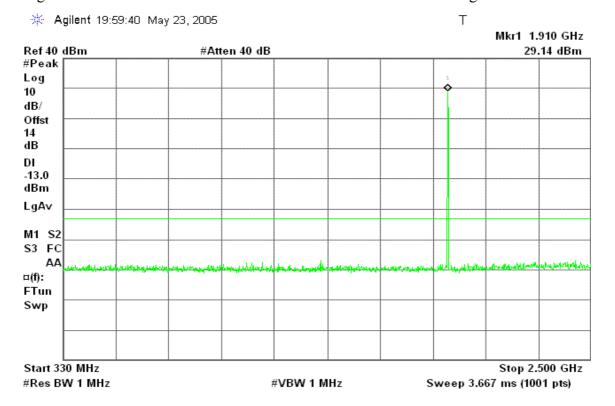
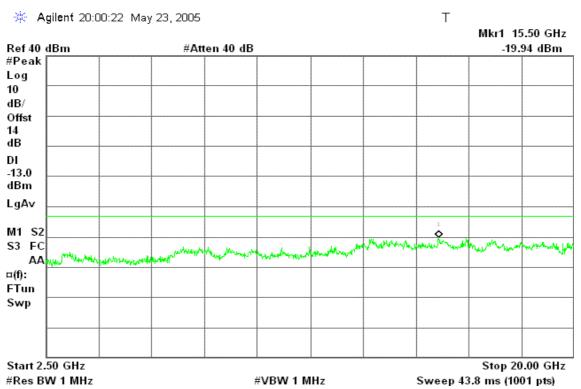



Figure 7-6: Out of Band emission at antenna terminals – GSM CH High

Page 23 Rev. 00

GPRS 1900

Figure 7-7: Out of Band emission at antenna terminals-GPRS CH Low

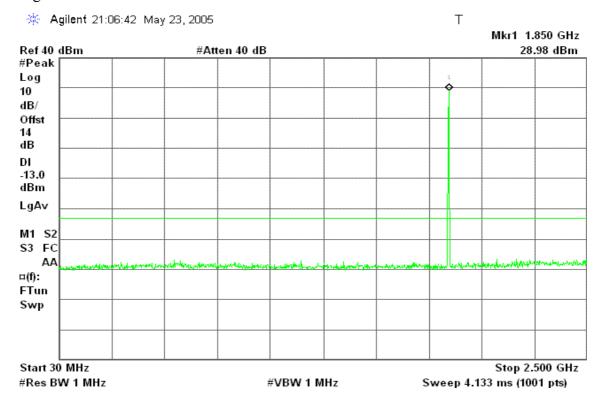
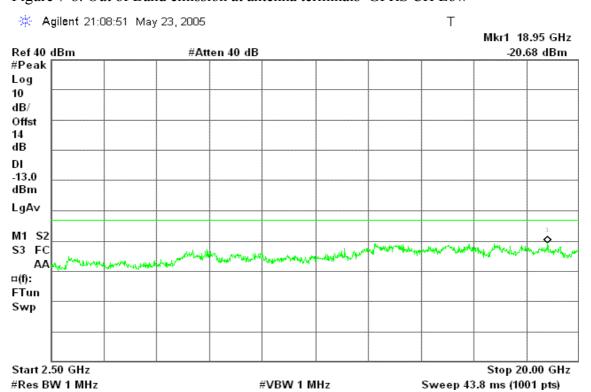



Figure 7-8: Out of Band emission at antenna terminals-GPRS CH Low

Page 24 Rev. 00

Figure 7.0: Out of Dand emission at antenna terminals. CDDS CU Mid

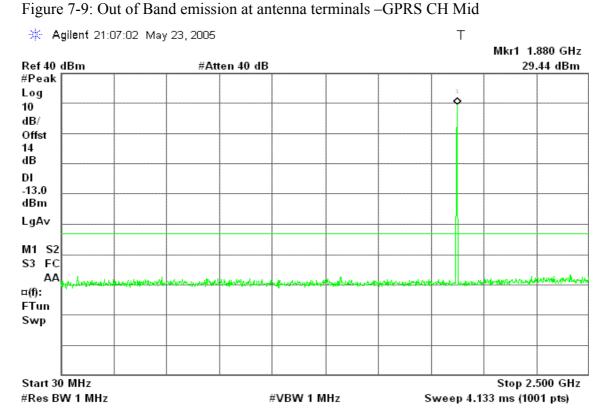
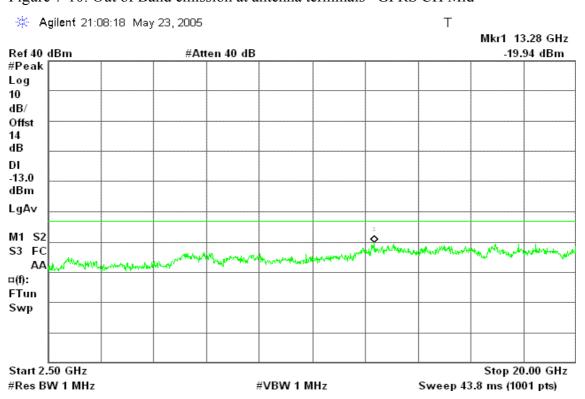



Figure 7-10: Out of Band emission at antenna terminals -GPRS CH Mid

Page 25 Rev. 00

E. 711 O CREATE TO CREATE THE CREATE CONTROL OF THE CREATE CONTROL

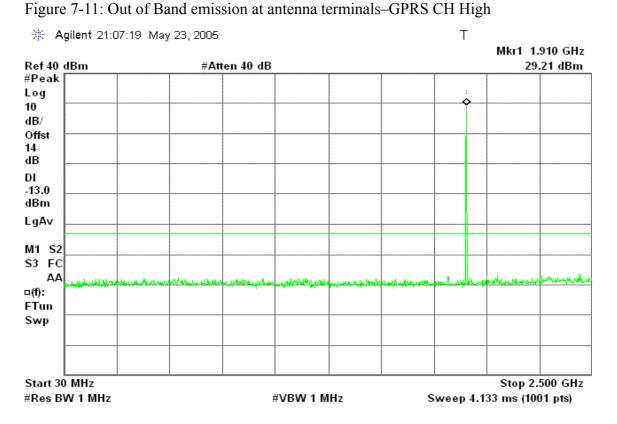
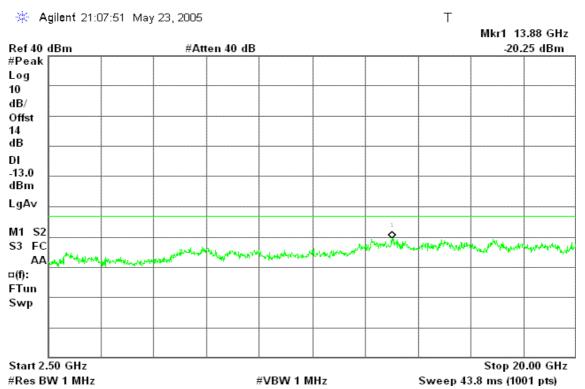



Figure 7-12: Out of Band emission at antenna terminals-GPRS CH High

Page 26 Rev. 00

GSM 1900

Figure 8-1: Band Edge emissions-GSM CH Low

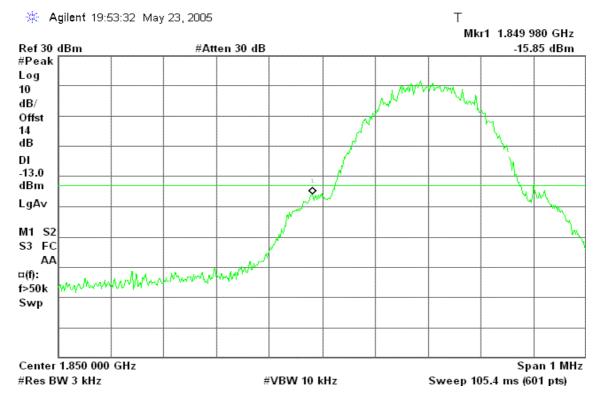
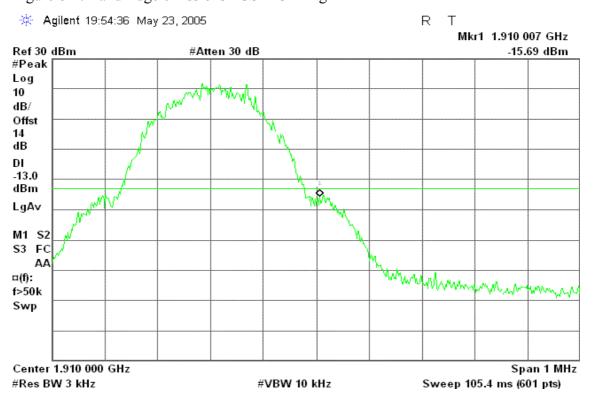



Figure 8-2: Band Edge emissions- GSM CH High

Page 27 Rev. 00

GPRS 1900

Figure 8-3: Band Edge emissions-GPRS CH Low

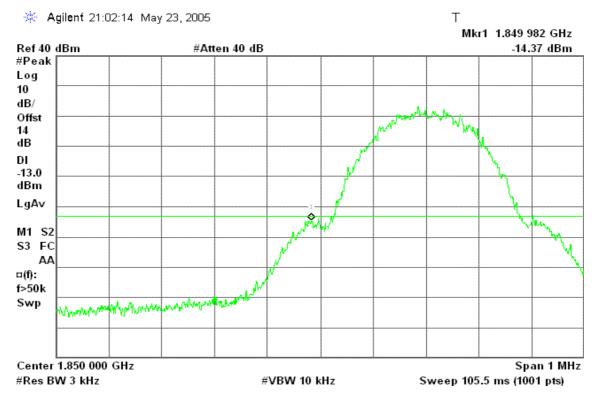
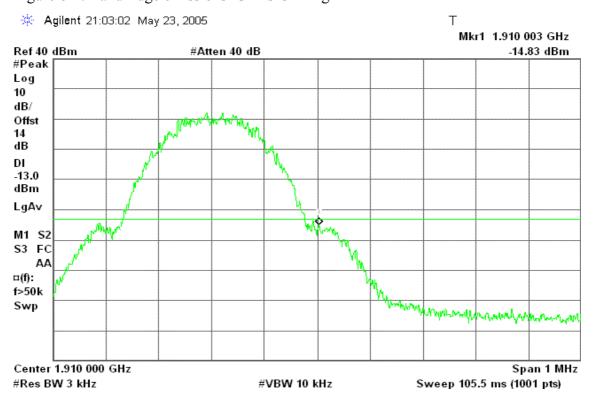



Figure 8-4: Band Edge emissions-GPRS CH High

Page 28 Rev. 00

7.5 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

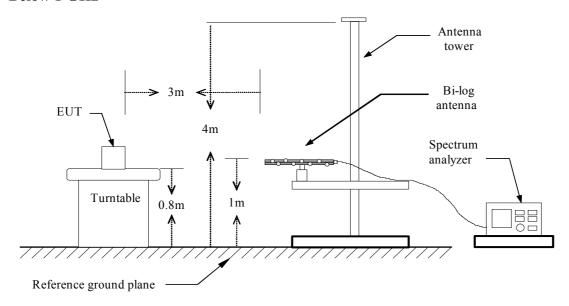
Date of Issue: June 09, 2005

LIMIT

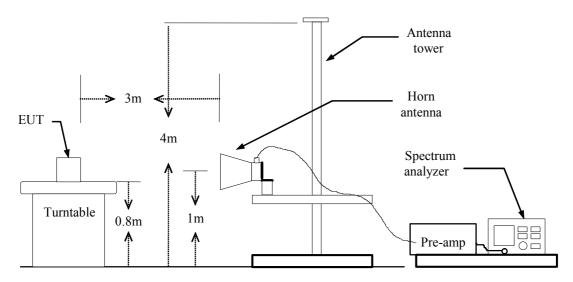
According to FCC §2.1053

MEASUREMENT EQUIPMENT USED

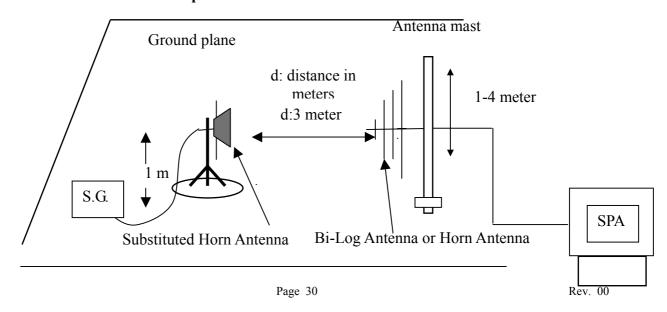
	Open	Area Test Site	# 3	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESVS20	838804/004	01/08/2006
Spectrum Analyzer	R&S	FSP30	100112	09/23/2005
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2006
Pre-Amplifier	MITEC	AFS42-00102650	924206	N.C.R.
Pre-Amplifier	MITEC	AMF-6F-260400	945377	N.C.R.
Bilog Antenna	SCHWAZBECK	VULB9163	145	07/05/2005
Horn Antenna	EMCO	3115	00022250	04/18/2006
Horn Antenna	EMCO	3116	2487	12/08/2005
Turn Table	EMCO	2081-1.21	9709-1885	N.C.R
Antenna Tower	EMCO	2075-2	9707-2060	N.C.R
Controller	EMCO	2090	9709-1256	N.C.R
RF Switch	ANRITSU	MP59B	M53867	N.C.R
Site NSA	C&C	N/A	N/A	09/06/2005


Remark: Each piece of equipment is scheduled for calibration once a year.

Page 29 Rev. 00


Date of Issue: June 09, 2005

Test Configuration


Below 1 GHz

Above 1 GHz

Substituted Method Test Set-up

TEST PROCEDURE

The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Date of Issue: June 09, 2005

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain (dBd) - Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)

TEST RESULTS

Refer to the attached tabular data sheets.

Page 31 Rev. 00

Radiated Spurious Emission Measurement Result

Below 1GHz

Operation Mode: Normal Link **Test Date:** May 24, 2005

Date of Issue: June 09, 2005

Temperature: 25°C **Tested by:** Kevin Huang

Humidity: 58 % RH **Polarity:** Ver. / Hor.

Freq. (MHz)	Ant.Pol. H/V	Detector Mode (PK/QP)	Reading (dBuV)	Factor (dB)	Actual FS (dBuV/m)	Limit 3m (dBuV/m)	Safe Margin (dB)
56.20	V	Peak	13.4	13.2	26.6	40.0	-13.4
166.60	V	Peak	12.4	10.4	22.8	43.5	-20.7
225.30	V	Peak	11.6	13.8	25.4	46.0	-20.6
356.60	V	Peak	11.1	16.1	27.2	46.0	-18.8
765.30	V	Peak	7.8	25.9	33.7	46.0	-12.3
915.60	V	Peak	4.5	23.6	28.1	46.0	-17.9
130.50	Н	Peak	13.5	9.7	23.2	43.5	-20.3
168.50	Н	Peak	13.1	10.5	23.6	43.5	-19.9
230.50	Н	Peak	12.0	14.1	26.1	46.0	-19.9
355.12	Н	Peak	11.5	16.1	27.6	46.0	-18.4
766.22	Н	Peak	8.2	25.8	34.0	46.0	-12.0
920.30	Н	Peak	4.9	23.8	28.7	46.0	-17.3

Remark:

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using Peak detector mode.
- 3. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4. The IF bandwidth of SPA between 30MHz to 1GHz was 100kHz.

Page 32 Rev. 00

Above 1GHz

Operation Mode: GSM 1900 / TX / CH 512 Test Date: May 23, 2005

Date of Issue: June 09, 2005

Temperature: 25°C **Tested by:** Kevin Huang

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3702.00	-45.74	V	-46.92	4.68	10.45	-41.15	-13.00	-28.15
5550.00	-43.45	V	-41.21	5.81	10.94	-36.08	-13.00	-23.08
7405.00	-41.28	V	-29.35	6.59	9.39	-26.54	-13.00	-13.54
N/A								
3702.00	-45.26	Н	-46.44	4.68	10.45	-40.67	-13.00	-27.67
5550.00	-40.37	Н	-38.13	5.81	10.94	-33.00	-13.00	-20.00
7405.00	-42.07	Н	-30.14	6.59	9.39	-27.33	-13.00	-14.33
N/A								
								_

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 33 Rev. 00

Operation Mode: GSM 1900 / TX / CH 661 Test Date: May 23, 2005

Date of Issue: June 09, 2005

Temperature: 25°C **Tested by:** Kevin Huang

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3758.00	-49.62	V	-50.68	4.66	10.45	-44.90	-13.00	-31.90
5641.00	-46.56	V	-44.07	5.89	10.92	-39.04	-13.00	-26.04
N/A								
3758.00	-44.43	Н	-45.49	4.66	10.45	-39.71	-13.00	-26.71
5641.00	-42.20	Н	-39.71	5.89	10.92	-34.68	-13.00	-21.68
7524.00	-40.19	Н	-27.65	6.46	9.34	-24.77	-13.00	-11.77
N/A								

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 34 Rev. 00

Operation Mode: GSM 1900 / TX / CH 810 Test Date: May 23, 2005

Date of Issue: June 09, 2005

Temperature: 25°C **Tested by:** Kevin Huang

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3821.00	-45.89	V	-46.78	4.65	10.45	-40.98	-13.00	-27.98
5732.00	-45.02	V	-42.28	5.97	10.90	-37.34	-13.00	-24.34
N/A								
3821.00	-42.47	Н	-43.36	4.65	10.45	-37.56	-13.00	-24.56
5732.00	-41.25	Н	-38.51	5.97	10.90	-33.57	-13.00	-20.57
7643.00	-40.76	Н	-27.96	6.78	9.29	-25.44	-13.00	-12.44
N/A								

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 35 Rev. 00

Operation Mode: GPRS 1900 / TX / CH 512 Test Date: May 23, 2005

Temperature: 25°C **Tested by:** Kevin Huang

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3700.00	-47.68	V	-48.86	4.68	10.45	-43.09	-13.00	-30.09
5548.00	-45.63	V	-43.42	5.80	10.94	-38.28	-13.00	-25.28
7403.00	-42.00	V	-30.07	6.59	9.39	-27.26	-13.00	-14.26
N/A								
3700.00	-46.55	Н	-47.73	4.68	10.45	-41.96	-13.00	-28.96
5548.00	-42.52	Н	-40.31	5.80	10.94	-35.17	-13.00	-22.17
7403.00	-41.49	Н	-29.56	6.59	9.39	-26.75	-13.00	-13.75
N/A								

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 36 Rev. 00

Operation Mode: GPRS 1900 / TX / CH 661 Test Date: May 23, 2005

Date of Issue: June 09, 2005

Temperature: 25°C **Tested by:** Kevin Huang

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3763.00	-47.93	V	-48.97	4.66	10.45	-43.18	-13.00	-30.18
5639.00	-44.81	V	-42.35	5.88	10.92	-37.30	-13.00	-24.30
N/A								
3763.00	-44.45	Н	-45.49	4.66	10.45	-39.70	-13.00	-26.70
5639.00	-42.06	Н	-39.60	5.88	10.92	-34.55	-13.00	-21.55
7522.00	-39.99	Н	-27.45	6.46	9.34	-24.57	-13.00	-11.57
N/A								

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 37 Rev. 00

Operation Mode: GPRS 1900 / TX / CH 810 Test Date: May 23, 2005

Date of Issue: June 09, 2005

Temperature: 25°C **Tested by:** Kevin Huang

Humidity: 55 % RH **Polarity:** Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3821.00	-47.75	V	-48.64	4.65	10.45	-42.84	-13.00	-29.84
5732.00	-47.22	V	-44.48	5.97	10.90	-39.54	-13.00	-26.54
N/A								
3821.00	-42.74	Н	-43.63	4.65	10.45	-37.83	-13.00	-24.83
5732.00	-41.61	Н	-38.87	5.97	10.90	-33.93	-13.00	-20.93
7643.00	-41.77	Н	-28.97	6.78	9.29	-26.45	-13.00	-13.45
N/A								

Remark:

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.
 - b. AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Page 38 Rev. 00

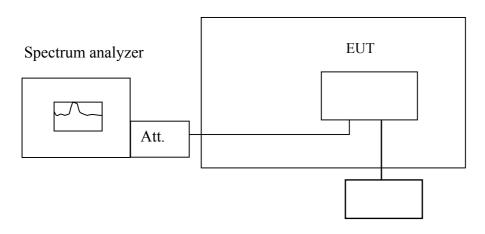
7.6 FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT

Date of Issue: June 09, 2005

LIMIT

According to FCC §2.1055, FCC §24.235.

Frequency Tolerance: 2.5 ppm


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model Serial Number		Calibration Due	
DC Power Source	Agilent	E3640A MY40001774		01/12/2006	
Temperature Chamber	K.son	THS-M1	242	03/20/2006	
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2006	

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Temperature Chamber

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector

Page 39 Rev. 00

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30°C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

Date of Issue: June 09, 2005

TEST RESULTS

No non-compliance noted.

Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C							
Limit: $\pm 2.5 \text{ ppm} = 4700 \text{ Hz}$							
Power Supply Vdc	Environment Frequency Delta Temperature (°C) (Hz) (Hz)		Limit (Hz)				
	50	1879999973	-42				
	40	1879999990	-25				
3.6	30	1880000023	8				
	20	1880000015	0				
	10	1879999983	-33	4700			
	0	1879999994	-22				
	-10 -20		15				
			-1				
	-30	1880000013	-2				

Page 40 Rev. 00

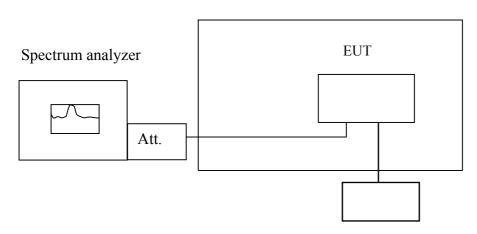
7.7 FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235,

Frequency Tolerance: 2.5 ppm.

MEASUREMENT EQUIPMENT USED


Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
DC Power Source	Agilent	E3640A	MY40001774	01/12/2006	
Temperature Chamber	K.son	THS-M1	242	05/26/2006	
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2006	

Date of Issue: June 09, 2005

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Temperature Chamber

Variable Power Supply

Remark: Measurement setup for testing on Antenna connector.

Page 41 Rev. 00

TEST PROCEDURE

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Date of Issue: June 09, 2005

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

No non-compliance noted.

Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C							
Limit: $\pm 2.5 \text{ ppm} = 4700 \text{ Hz}$							
Power Supply Vdc	Environment Temperature (°C)	Frequency (Hz)	Delta (Hz)	Limit (Hz)			
4.2		1880000011	-4				
3.6	20	1880000015	0	4700			
3.3(END POINT)		1879999991	-25				

Page 42 Rev. 00

7.8 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Date of Issue: June 09, 2005

Frequency Range (MHz)	Limits (dBμV)			
rrequency Range (MIIIZ)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI TEST RECEIVER 9kHz-30MHz	ROHDE & SCHWARZ	ESHS30	828144/003	09/24/2005
TWO-LINE V-NETWORK 9kHz-30MHz	SCHAFFNER	NNB41	03/10013	06/11/2005
LISN 10kHz-100MHz	EMCO	3825/2	9106-1809	02/17/2006

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete...

Page 43 Rev. 00

TEST RESULTS

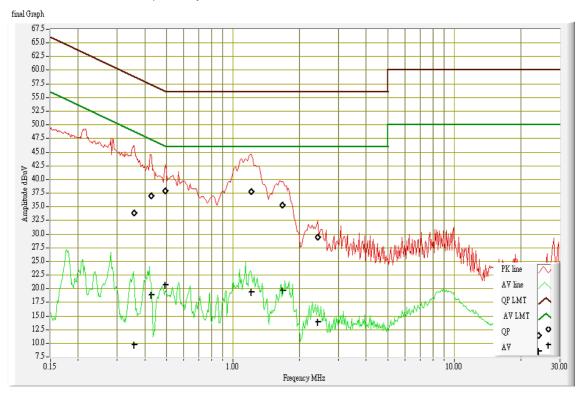
The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Date of Issue: June 09, 2005

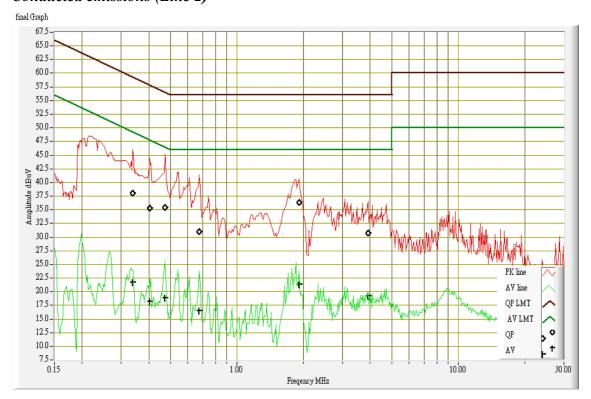
Operation Mode: Normal Link Test Date: May 24, 2005
Temperature: 25°C Tested by: Kevin Huang

Humidity: 55% RH

Freq. (MHz)	QP Reading	AV Reading	Corr. factor	QP Result	AV Result	QP Limit	AV Limit	QP Margin	AV Margin	Note
0.358	33.90	9.71	0.10	34.00	9.81	58.78	48.78	-24.78	-38.97	L1
0.426	37.04	18.83	0.10	37.14	18.93	57.33	47.33	-20.19	-28.40	L1
0.496	37.94	20.67	0.10	38.04	20.77	56.07	46.07	-18.03	-25.30	L1
1.210	37.80	19.33	0.10	37.90	19.43	56.00	46.00	-18.10	-26.57	L1
1.677	35.22	19.63	0.10	35.32	19.73	56.00	46.00	-20.68	-26.27	L1
2.420	29.42	13.95	0.10	29.52	14.05	56.00	46.00	-26.48	-31.95	L1
0.338	37.98	21.70	0.10	38.08	21.80	59.25	49.25	-21.17	-27.45	L2
0.403	35.34	18.23	0.10	35.44	18.33	57.79	47.79	-22.35	-29.46	L2
0.473	35.44	18.89	0.10	35.54	18.99	56.46	46.46	-20.92	-27.47	L2
0.676	30.98	16.48	0.10	31.08	16.58	56.00	46.00	-24.92	-29.42	L2
1.905	36.30	21.33	0.10	36.40	21.43	56.00	46.00	-19.60	-24.57	L2
3.903	30.66	19.20	0.10	30.76	19.30	56.00	46.00	-25.24	-26.70	L2


Remark:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. "---" denotes the emission level was or more than 2dB below the Average limit
- 4. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9kHz;
- 5. $L1 = Line \ One \ (Live \ Line) \ / \ L2 = Line \ Two \ (Neutral \ Line)$


Page 44 Rev. 00

Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

Page 45 Rev. 00