

FCC 47 CFR PART 24 SUBPART E

TEST REPORT

For

Quanta Compter Inc.

GSM Mobile Phone With GPRS

Model: Philips 568

Trade Name: Philips

Prepared for

Quanta Computer Inc. No. 188, Wen Hwa 2nd Rd., Kuei Shan Hsiang, Taoyuan Hsien, Taiwan, R.O.C.

Prepared by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C. TEL: 886-3-324-0332 FAX: 886-3-324-5235

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1.	TES	Г RESULT CERTIFICATION	3
2.	EUT	DESCRIPTION	. 4
3.	TES	Г METHODOLOGY	. 5
	3.1	EUT CONFIGURATION	. 5
	3.2	EUT EXERCISE	. 5
	3.3	GENERAL TEST PROCEDURES	. 5
	3.4	MODIFICATION	. 5
	3.5	DESCRIPTION OF TEST MODES	
4.	INST	RUMENT CALIBRATION	. 6
5.	FAC	ILITIES AND ACCREDITATIONS	.7
	5.1	FACILITIES	. 7
	5.2	EQUIPMENT	
	5.3	LABORATORY ACCREDITATIONS AND LISTING	. 7
	5.4	TABLE OF ACCREDITATIONS AND LISTINGS	. 8
6.	SET	UP OF EQUIPMENT UNDER TEST	9
	6.1	SETUP CONFIGURATION OF EUT	. 9
	6.2	SUPPORT EQUIPMENT	
7.	FCC	PART 24 REQUIREMENTS	10
	7.1	PEAK POWER	10
	7.2	ERP & EIRP MEASUREMENT	
	7.3	OCCUPIED BANDWIDTH MEASUREMENT	
	7.4	OUT OF BAND EMISSION AT ANTENNA TERMINALS	20
	7.5	FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT	30
	7.6	FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT	39
	7.7	FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT	
	7.8	POWERLINE CONDUCTED EMISSIONS	

1. TEST RESULT CERTIFICATION

Applicant:	Quanta Computer Inc. No. 188, Wen Hwa 2nd Rd., Kuei Shan Hsiang, Taoyuan Hsien, Taiwan, R.O.C.
Equipment Under Test:	GSM Mobile Phone With GPRS
Trade Name:	Philips
Model Number:	Philips 568
Date of Test:	September 10, 2004

APPLICABLE S	STANDARDS
STANDARD	TEST RESULT
FCC PART 24 SUBPART E	No non-compliance noted

We hereby certify that:

The above equipment was tested by Compliance Certification Services Inc. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in TIA/EIA-603-1-1998 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rule FCC PART 24 Subpart E.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Harris W. Lai Executive Vice President Compliance Certification Services Inc.

Reviewed by:

Devin Chang U Section Manager Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	GSM Mobile Phone With GPRS			
Trade Name	Philips			
Model Number	Philips 568			
Model Discrepancy	N/A			
Power Supply	Model Number: P925BW05054ABRS I/P: AC 100-240, 50/60Hz, 0.1A, O/P: DC 4.6-5.5V, 0.54A, 2.5W Max			
Frequency Range	TX: 1850 MHz – 1910 MHz RX: 1930 MHz – 1989.8 MHz			
Transmit Power	28.13 dBm (Max)			
Cellular Phone Protocol	GSM (PCS), GPRS			
Type of Emission	247KGXW			
Antenna Gain	0.8 dBi			
Antenna Type	Embedded Antenna			

Note: This submittal(s) (test report) is intended for FCC ID: <u>HFS-CT5688</u> filing to comply with Part 24 of the FCC 47 CFR Rules.

3. TEST METHODOLOGY

Both conducted and radiated testing were performed according to the procedures document on chapter 13 of ANSI C63.4 and FCC CFR 47, 2.1046, 2.1047, 2.1049, 2.1051, 2.1053, 2.1055 and 2.1057.

3.1 EUT CONFIGURATION

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

3.2 EUT EXERCISE

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

3.3 GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4.Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using CISPR Quasi-peak and average detector modes.

Radiated Emissions

The EUT is placed on a turn table, which is 0.8 m above ground plane. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes according to the requirements in Section 13.1.4.1 of ANSI C63.4.

3.4 MODIFICATION

N/A

3.5 DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

EUT staying in continuous transmitting mode is programmed. Channel Low, Mid and High for each type and band with rated data rate are chosen for full testing.

The field strength of spurious radiation emission was measured in the following position: EUT stand-up position (Z axis), lie-down position (X, Y axis). The following data show only with the worst case setup.

The worst case of Z axis without cradle was reported.

4. INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

5. FACILITIES AND ACCREDITATIONS

5.1 FACILITIES

All measurement facilities used to collect the measurement data are located at

No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, Taiwan, R.O.C.

```
No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
```

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2 EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3 LABORATORY ACCREDITATIONS AND LISTING

The test facilities used to perform radiated and conducted emissions tests are accredited by National Voluntary Laboratory Accreditation Program for the specific scope of accreditation under Lab Code: 200600-0 to perform Electromagnetic Interference tests according to FCC PART 15 AND CISPR 22 requirements. No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government. In addition, the test facilities are listed with Federal Communications Commission (Registration no: 93105 and 90471).

5.4 TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency	Scope of Accreditation	Logo
USA	NVLAP*	EN 55011, EN 55014-1, AS/NZS 1044, CNS 13783-1, EN 55022, CNS 13438, EN 61000-3-2, EN 61000-3-3, ANSI C63.4, FCC OST/MP-5, AS/NZS CISPR 22, IEC 61000-4-2, IEC 61000-4-3, IEC 61000-4-4, IEC 61000-4-5, IEC 61000-4-6, IEC 61000-4-8, IEC 61000-4-11	NVLAD 200600-0
USA	FCC	3/10 meter Open Area Test Sites to perform FCC Part 15/18 measurements	FCC 93105, 90471
Japan	VCCI	4 3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328-2, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124b ELA 124c
Taiwan	CNLA	EN 300 328-1/2, EN 300 220-1/2/3, EN 300 440-1/2, EN 61000-3-2, EN 61000-3-3, 47 CFR FCC Part 15 Subpart C/D/E, EN 55013, CNS 13439, EN 55014-1, CNS 13783-1, EN 55022, CNS 13438, CISPR 22, AS/NZS 3548, EN 61000-4-2/3/4/5/6/8/11, ENV 50204, IEEE Std 1528, FCC OET Bulletin, 65+Supplement C, EN50360, EN50361, EN50371, RSS102	O 3 6 3 ILAC MRA
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 SL2-IN-E-0014 SL2-A1-E-0014 SL2-R1-E-0014 SL2-R2-E-0014 SL2-L1-E-0014
Canada	Industry Canada	RSS212, Issue 1	Canadä IC 3991-3 IC 3991-4

* No part of this report may be used to claim or imply product endorsement by NVLAP or any agency of the US Government.

6. SETUP OF EQUIPMENT UNDER TEST

6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

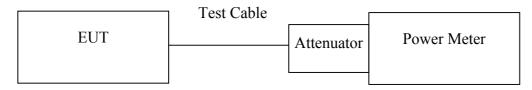
No.	Device Type	Brand	Model	FCC ID	Series No.	Data Cable	Power Cord
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

7. FCC PART 24 REQUIREMENTS

7.1 PEAK POWER

LIMIT


According to FCC §2.1046.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Power Meter	Agilant	E4416A	GB41291611	06/01/2005
Power Sensor	Agilant	E9327A	VS40441097	03/15/2005
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2005

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The transmitter output was connected to a calibrated attenuator, the other end of which was connected to a power meter. Transmitter output was read off the power meter in dBm. The power output at the transmitter antenna port was determined by adding the value of the attenuator to the power meter reading.

TEST RESULTS

No non-compliance noted.

<u>Test Data</u>

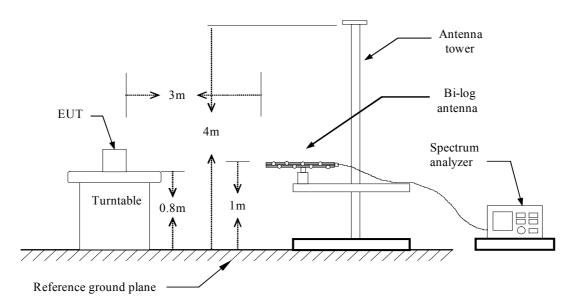
Test Mode	СН	Frequency (MHz)	Power Meter Reading (dBm)	Attenuator (dB)	Average Power (dBm)
	512	1850.20	17.83		27.83
GSM 1900	661	1880.00	18.12		28.12
	810	1910.00	17.84	10	27.84
	512	1850.20	17.83	10	27.83
GPRS 1900 (Class 10)	661	1880.00	18.13		28.13
(810	1910.00	17.85		27.85

Note: The value of factor includes both the loss of cable and external attenuator

7.2 ERP & EIRP MEASUREMENT

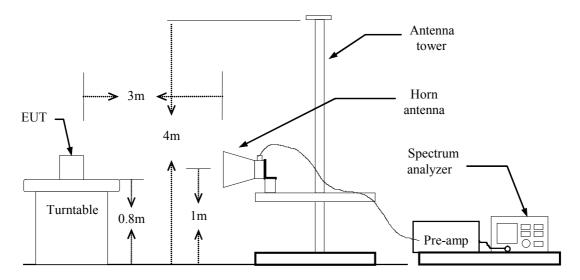
LIMIT

According to FCC §2.1046

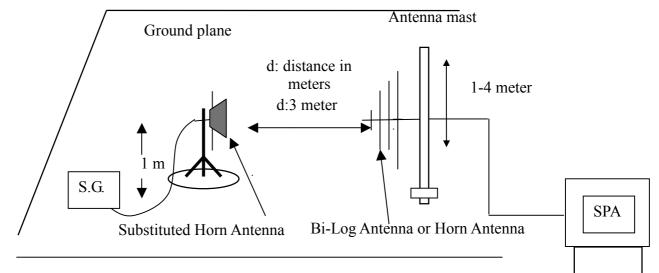

FCC 24.232(b): The equivalent Isotropic Radiated Power (EIRP) must not exceed 2 Watts.

Name of Equipment Manufacturer Model Serial Number **Calibration Due** E4446A MY43360131 01/10/2005 Spectrum Analyzer Agilent Spectrum Analyzer R&S FSP30 100112 08/03/2005 HP 8447D Pre-Amplifier 2944A09173 03/03/2005 Horn antenna EMCO 3115 00022250 02/26/2005 HP Pre-Amplifier 8449B 3008B00965 10/02/2004 Turn Table EMCO 2081-1.21 9709-1885 N.C.R Antenna Tower EMCO 2075-2 9707-2060 N.C.R Controller EMCO 2090 9709-1256 N.C.R Site NSA N/A 09/06/2005 C&C N/A S.G. HP 83630B 3844A01022 01/14/2005 Substituted Horn 3115 EMCO 00022256 02/26/2005

MEASUREMENT EQUIPMENT USED


TEST CONFIGURATION

Below 1 GHz



Above 1 GHz

For Substituted Method Test Set-UP

TEST PROCEDURE

The EUT was placed on an non-conductive turntable using a non-conductive support. The radiated emission at the fundamental frequency was measured at 3 m with a test antenna and EMI spectrum analyzer.

During the measurement of the EUT, the resolution bandwidth was set to 3MHz and the average bandwidth was set to 3MHz. The highest emission was recorded with the rotation of the turntable and the lowering of the test antenna. The reading was recorded and the field strength (E in dBuV/m) was calculated.

ERP in frequency band 824-849MHz, and EIRP in frequency band 1851.25–1910MHz were measured using a substitution method. The EUT was replaced by half-wave dipole (824-849MHz) or horn antenna (1851.25-1910MHz) connected to a signal generator. The spectrum analyzer reading was recorded and ERP/EIRP was calculated as follows:

ERP = S.G. output (dBm) + Antenna Gain (dBd) – Cable (dB) EIRP = S.G. output (dBm) + Antenna Gain (dBi) – Cable (dB)

TEST RESULTS

No non-compliance noted.

GSM 1900 Test Data

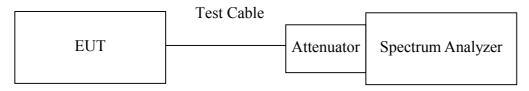
EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)		S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
	512	1850.20	121.33	V	17.94	4.49	8.45	21.90	33.00	-11.10
	512	1850.20	128.83	Н	25.94	4.49	8.45	29.90	33.00	-3.10
X	661	1880.00	119.50	V	16.28	4.53	8.48	20.23	33.00	-12.77
Λ	001	1880.00	128.33	Н	25.61	4.53	8.48	29.56	33.00	-3.44
	810	1909.80	119.67	V	16.57	4.55	8.50	20.51	33.00	-12.49
	810	1909.80	128.33	Н	25.73	4.55	8.50	29.67	33.00	-3.33
	512	1850.20	126.50	V	23.11	4.49	8.45	27.07	33.00	-5.93
		1850.20	128.17	Н	25.28	4.49	8.45	29.24	33.00	-3.76
Y	661	1880.00	125.50	V	22.28	4.53	8.48	26.23	33.00	-6.77
ľ		1880.00	128.50	Н	25.78	4.53	8.48	29.73	33.00	-3.27
	810	1909.80	125.00	V	21.90	4.55	8.50	25.84	33.00	-7.16
		1909.80	127.83	Н	25.23	4.55	8.50	29.17	33.00	-3.83
	510	1850.20	128.67	V	25.28	4.49	8.45	29.24	33.00	-3.76
	512	1850.20	123.50	Н	20.61	4.49	8.45	24.57	33.00	-8.43
Z	661	1880.00	127.33	V	24.11	4.53	8.48	28.06	33.00	-4.94
	001	1880.00	122.33	Н	19.61	4.53	8.48	23.56	33.00	-9.44
	810	1909.80	128.00	V	24.90	4.55	8.50	28.84	33.00	-4.16
	810	1909.80	119.83	Н	17.23	4.55	8.50	21.17	33.00	-11.83

GPRS 1900 Test Data (Class 10)

EUT Pol.	Channel	Frequency (MHz)	Reading level (dBuV)		S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
	512	1850.20	120.33	V	16.94	4.49	8.45	20.90	33.00	-12.10
	512	1850.20	128.50	Н	25.61	4.49	8.45	29.57	33.00	-3.43
X	661	1880.00	119.50	V	16.28	4.53	8.48	20.23	33.00	-12.77
Λ	001	1880.00	128.33	Н	25.61	4.53	8.48	29.56	33.00	-3.44
	810	1909.80	119.17	V	16.07	4.55	8.50	20.01	33.00	-12.99
	810	1909.80	128.33	Н	25.73	4.55	8.50	29.67	33.00	-3.33
	512	1850.20	124.67	V	21.28	4.49	8.45	25.24	33.00	-7.76
		1850.20	128.00	Н	25.11	4.49	8.45	29.07	33.00	-3.93
Y	661	1880.00	123.67	V	20.45	4.53	8.48	24.40	33.00	-8.60
I		1880.00	127.83	Н	25.11	4.53	8.48	29.06	33.00	-3.94
	810	1909.80	123.67	V	20.57	4.55	8.50	24.51	33.00	-8.49
		1909.80	127.83	Н	25.23	4.55	8.50	29.17	33.00	-3.83
	512	1850.20	128.50	V	25.11	4.49	8.45	29.07	33.00	-3.93
	312	1850.20	123.67	Н	20.78	4.49	8.45	24.74	33.00	-8.26
Z	661	1880.00	127.50	V	24.28	4.53	8.48	28.23	33.00	-4.77
	001	1880.00	122.17	Н	19.45	4.53	8.48	23.40	33.00	-9.60
	810	1909.80	128.00	V	24.90	4.55	8.50	28.84	33.00	-4.16
	010	1909.80	119.83	Н	17.23	4.55	8.50	21.17	33.00	-11.83

7.3 OCCUPIED BANDWIDTH MEASUREMENT

LIMIT


According to §FCC 2.1049.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2005
Spectrum Analyzer	R&S	FSP30	100112	08/03/2005

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

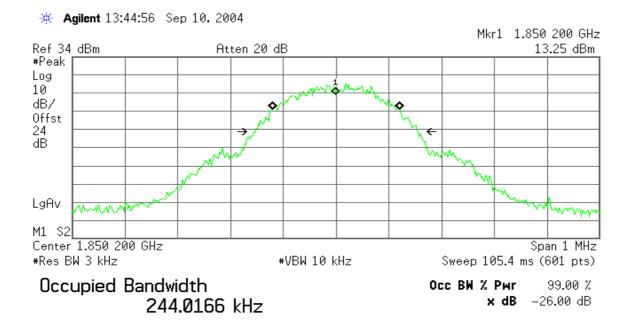
Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

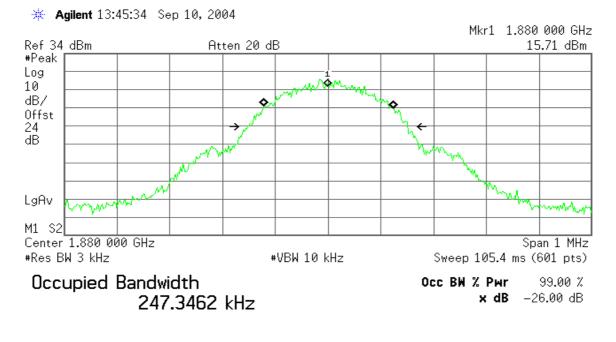
The EUT's output RF connector was connected with a short cable to the spectrum analyzer, RBW was set to about 1% of emission BW, VBW is set to 3 times the RBW, -26dBc display line was placed on the screen (or 99% bandwidth), the occupied bandwidth is the delta frequency between the two points where the display line intersects the signal trace.

TEST RESULTS

No non-compliance noted

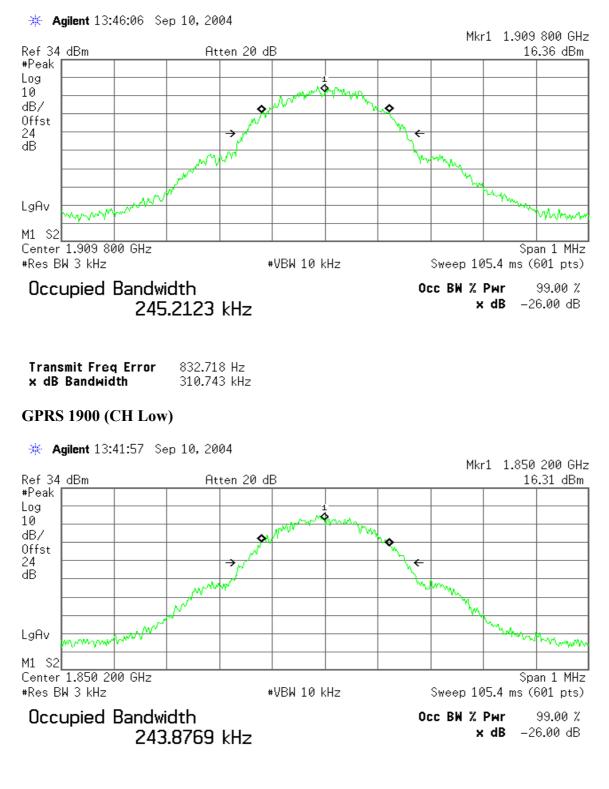

<u>Test Data</u>

Test Mode	СН	Frequency (MHz)	Bandwidth (kHz)
	512	1850.200	244.0166
GSM 1900	661	1880.000	247.3462
	810	1909.800	245.2123
GDD G 1000	512	1850.200	243.8769
GPRS 1900 (Class 10)	661	1880.000	242.4236
	810	1909.800	247.2160

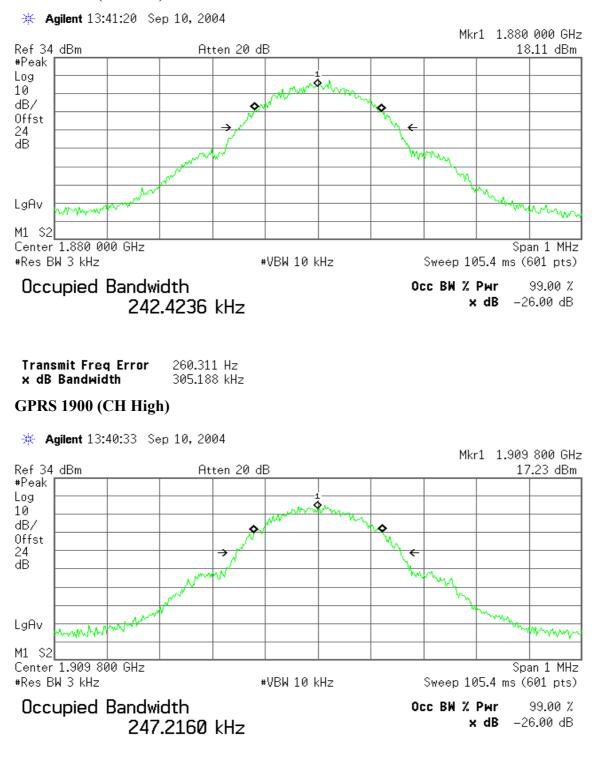

Test Plot

GSM 1900 (CH Low)

Transmit Freq Error	–281.093 Hz
x dB Bandwidth	310.592 kHz


GSM 1900 (CH Mid)

Transmit Freq Error	1.019 kHz
x dB Bandwidth	306.632 kHz


GSM 1900 (CH High)

Transmit Freq Error	528.946 Hz
x dB Bandwidth	308.973 kHz

GPRS 1900 (CH Mid)

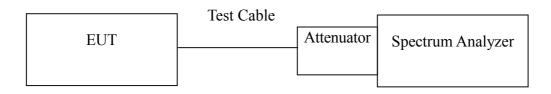
Transmit Freq Error	424.626 Hz
x dB Bandwidth	314.850 kHz

7.4 OUT OF BAND EMISSION AT ANTENNA TERMINALS

LIMIT

According to FCC §2.1051, FCC §2.2917(f), FCC §24.238(a).

<u>**Out of Band Emissions:**</u> The mean power of emission must be attenuated below the mean power of the non-modulated carrier (P) on any frequency twice or more than twice the fundamental frequency by at lease $43 + 10 \log P dB$.


Band Edge Requirements: In the 1MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at lease 1% of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the Out of band Emission

MEASUREMENT EQUIPMENT USED

Name of Equipment	of Equipment Manufacturer		Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2005	
Spectrum Analyzer	R&S	FSP30	100112	08/03/2005	

TEST CONFIGURATION

Out of band emission at antenna terminals:

TEST PROCEDURE

The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 1MHz, sufficient scans were taken to show the out of band Emissions if any up to 10th harmonic.

For the out of band: Set the RBW, VBW = 1MHz, Start=30MHz, Stop= 10 th harmonic. Limit = -13dBm

Band Edge Requirements (1850MHz and 1910MHz): In the 1 MHz bands immediately outside and adjacent to the frequency block, a resolution bandwidth of at least 1 percent of the emission bandwidth of the fundamental emission of the transmitter may be employed to measure the out of band Emissions. Limit, -13dBm.

TEST RESULTS

No non-compliance noted.

<u>Test Data</u>

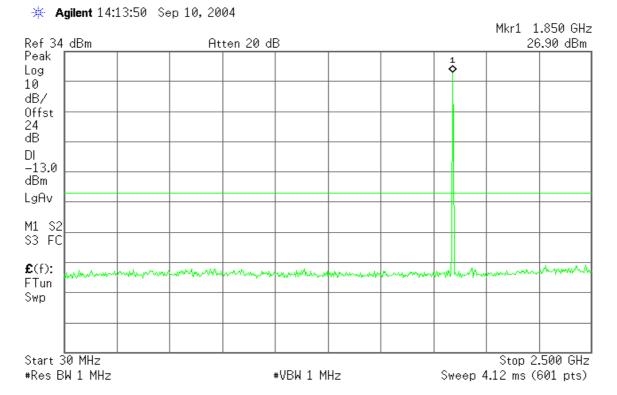
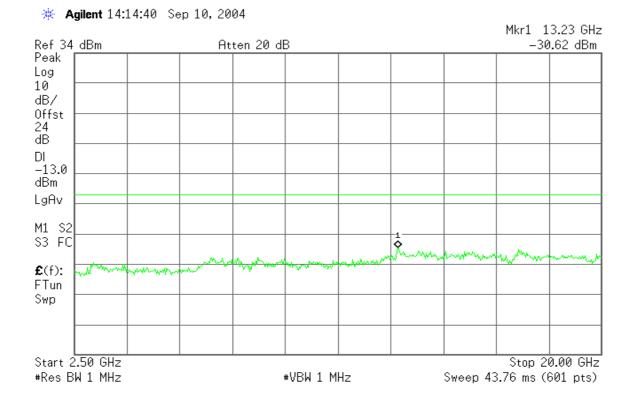
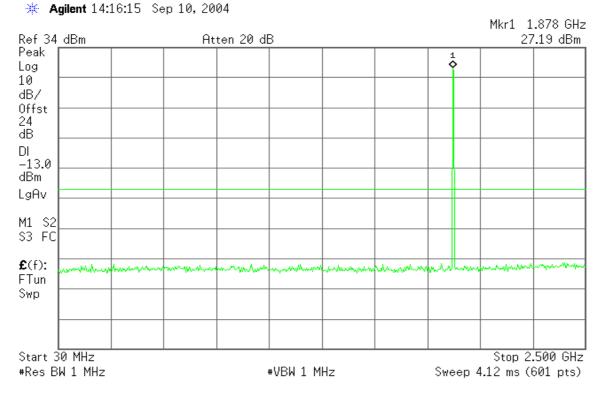
Mode	СН	Location	Description				
	512	Figure 7-1	Conducted spurious emissions, 30MHz - 2.5GHz				
	512	Figure 7-2	Conducted spurious emissions, 2.5GHz - 20GHz				
GSM 1900	661	Figure 7-3	Conducted spurious emissions, 30MHz - 2.5GHz				
USM 1900	001	Figure 7-4	Conducted spurious emissions, 2.5GHz - 20GHz				
	810	Figure 7-5	Conducted spurious emissions, 30MHz - 2.5GHz				
	010	Figure 7-6	Conducted spurious emissions, 2.5GHz - 20GHz				
	512	Figure 7-7	Conducted spurious emissions, 30MHz - 2.5GHz				
	512	Figure 7-8	Conducted spurious emissions, 2.5GHz - 20GHz				
GPRS 1900	661	Figure 7-9	Conducted spurious emissions, 30MHz - 2.5GHz				
(Class 10)	001	Figure 7-10	Conducted spurious emissions, 2.5GHz - 20GHz				
	810	Figure 7-11	Conducted spurious emissions, 30MHz - 2.5GHz				
	010	Figure 7-12	Conducted spurious emissions, 2.5GHz - 20GHz				

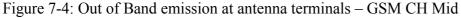
Mode	СН	Location Description			
GSM 1900	512	Figure 8-1	Band Edge emissions		
810		Figure 8-2	Band Edge emissions		
GPRS 1900	GPRS 1900 512 Figure 8-3		Band Edge emissions		
(Class 10)	810	Figure 8-4	Band Edge emissions		

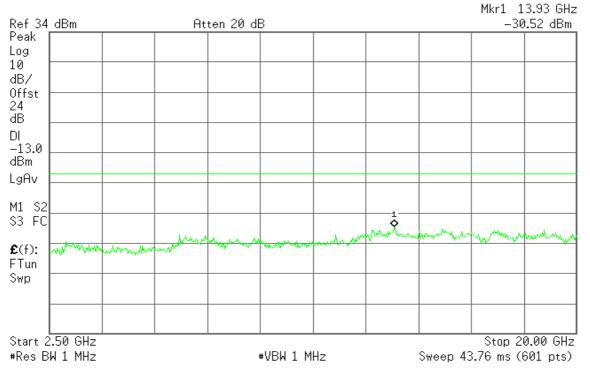
Test Plot

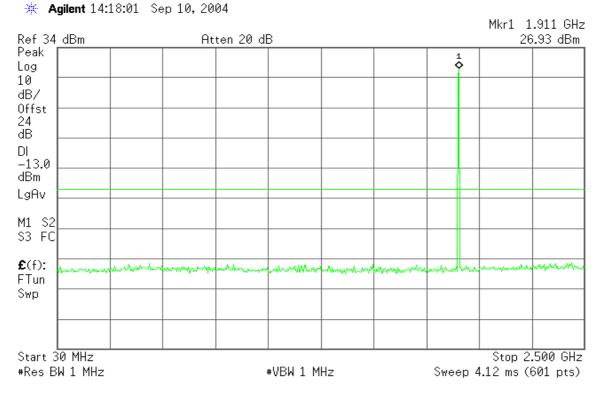
GSM 1900

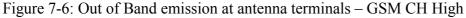
Figure 7-1: Out of Band emission at antenna terminals- GSM CH Low


Figure 7-2: Out of Band emission at antenna terminals - GSM CH Low




Figure 7-3: Out of Band emission at antenna terminals – GSM CH Mid



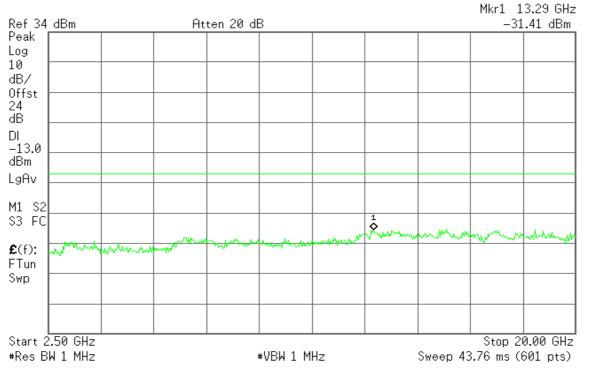

🔆 Agilent 14:16:48 Sep 10, 2004

Figure 7-5: Out of Band emission at antenna terminals – GSM CH High

🔆 Agilent 14:18:36 Sep 10, 2004

GPRS 1900

Figure 7-7: Out of Band emission at antenna terminals-GPRS CH Low

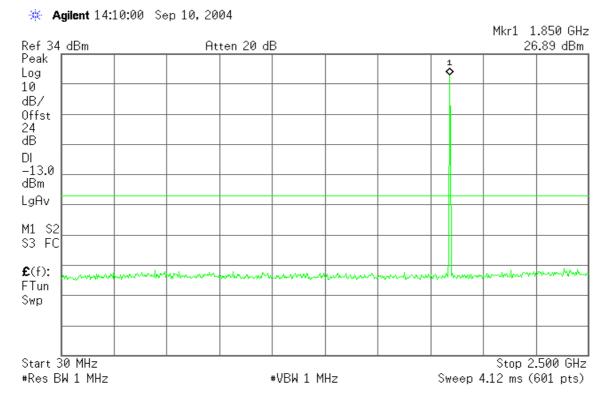
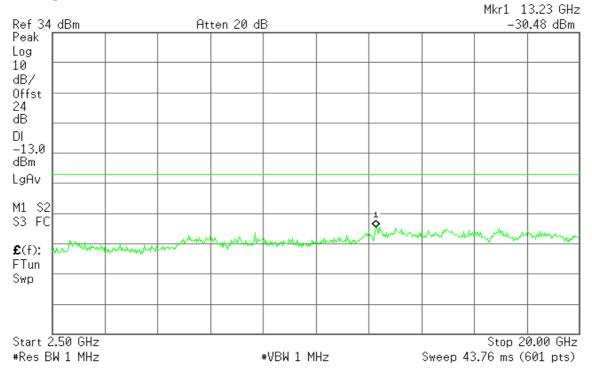
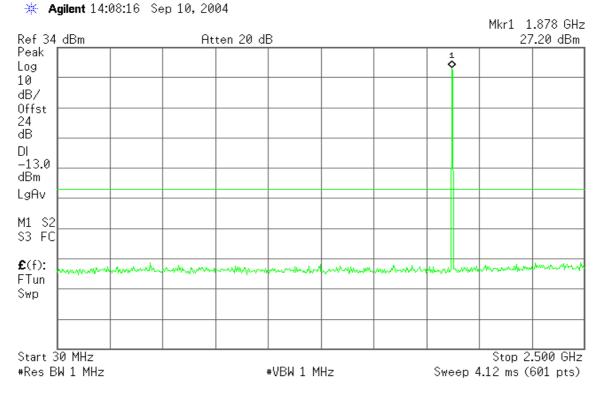
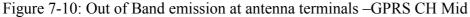
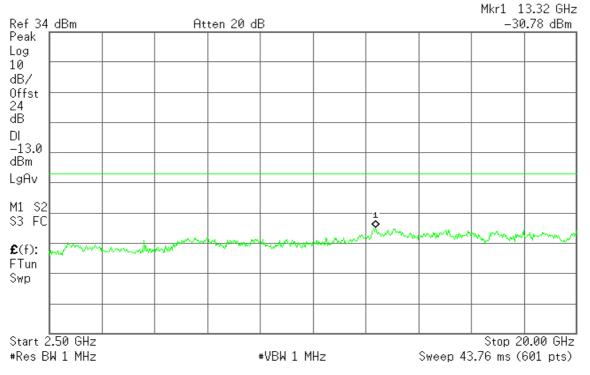
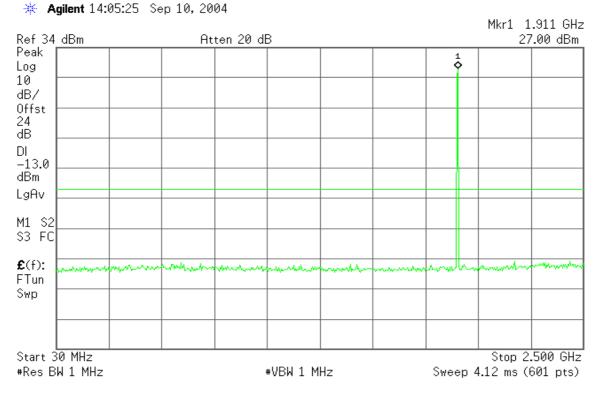
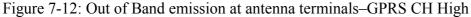




Figure 7-8: Out of Band emission at antenna terminals-GPRS CH Low




🔆 Agilent 14:10:52 Sep 10, 2004


Figure 7-9: Out of Band emission at antenna terminals –GPRS CH Mid



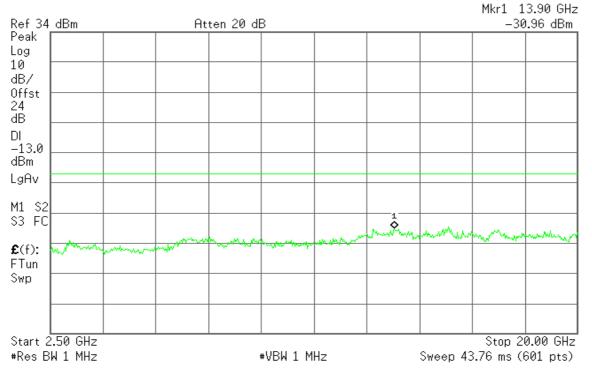

🔆 Agilent 14:08:47 Sep 10, 2004

Figure 7-11: Out of Band emission at antenna terminals–GPRS CH High

🔆 Agilent 14:06:08 Sep 10, 2004

<u>GSM 1900</u>

Figure 8-1: Band Edge emissions- GSM CH Low

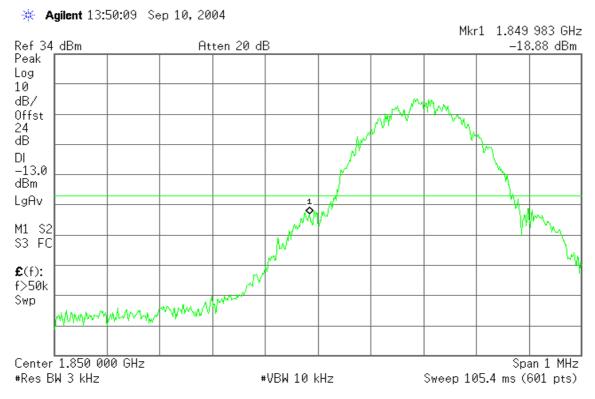
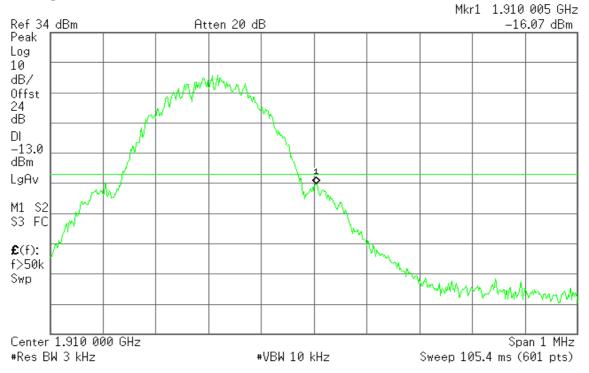



Figure 8-2: Band Edge emissions- GSM CH High

🔆 Agilent 13:49:25 Sep 10, 2004

GPRS 1900

Figure 8-3: Band Edge emissions- GPRS CH Low

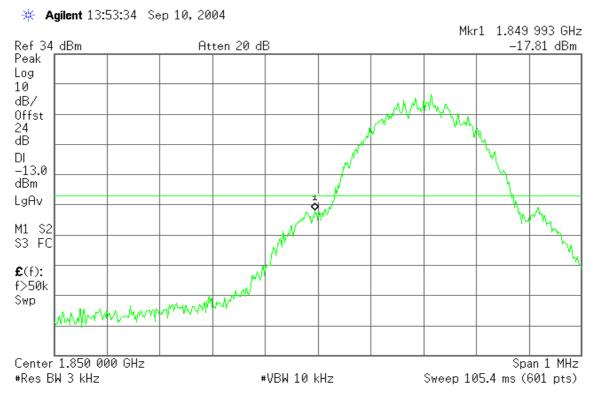


Figure 8-4: Band Edge emissions-GPRS CH High

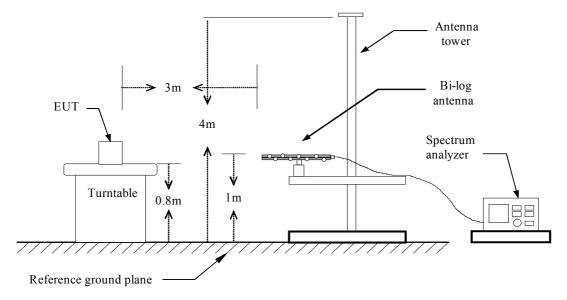
🔆 Agilent 13:54:09 Sep 10, 2004

7.5 FIELD STRENGTH OF SPURIOUS RADIATION MEASUREMENT

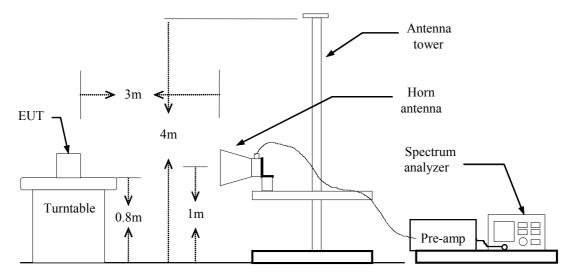
LIMIT

According to FCC §2.1053

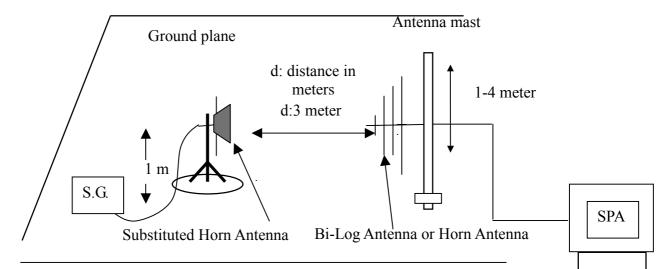
MEASUREMENT EQUIPMENT USED


	Open Area Test Site # 3								
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due					
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2005					
Spectrum Analyzer	R&S	FSP30	100112	08/03/2005					
Pre-Amplifier	HP	8447D	2944A09173	03/03/2005					
Bi-log Antenna	SCHWAZBECK	VULB9163	145	07/05/2005					
Horn antenna	n antenna EMCO 3115 00022250		00022250	02/26/2005					
Pre-Amplifier	HP	8449B 3008B00965		10/02/2004					
Reject Filter	Micro-Tronics	HPM13194 003		04/27/2005					
Turn Table	EMCO	2081-1.21 9709-1885		N.C.R					
Antenna Tower	EMCO	2075-2	9707-2060	N.C.R					
Controller	EMCO	2090	9709-1256	N.C.R					
Site NSA	C&C	N/A	N/A	09/06/2005					
S.G.	HP	83630B	3844A01022	01/14/2005					
Substituted Dipole	SCHWAZBECK	VHAP/UHAP	998 +999/ 981+982	06/12/2005					
Substituted Horn	EMCO	3115	00022256	02/26/2005					

Remark: Each piece of equipment is scheduled for calibration once a year.



Test Configuration


Below 1 GHz

Above 1 GHz

Substituted Method Test Set-up

TEST PROCEDURE

The EUT was placed on a non-conductive, the measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

The frequency range up to tenth harmonic was investigated for each of three fundamental frequency (low, middle and high channels). Once spurious emission were identified, the power of the emission was determined using the substitution method.

The spurious emissions attenuation was calculated as the difference between radiated power at the fundamental frequency and the spurious emissions frequency.

ERP = S.G. output (dBm) + Antenna Gain (dBd) – Cable (dB)

EIRP = S.G. output (dBm) + Antenna Gain (dBi) - Cable (dB)

TEST RESULTS

Refer to the attached tabular data sheets.

Radiated Spurious Emission Measurement Result

Below 1GHz

No emissions to be recorded. (Since no specific emission noted beyond the background noise floor)

Above 1GHz

Operation Mode	e: GSM 1900 / TX / CH 512	Test Date:	September 10, 2004
Temperature:	25°C	Tested by:	Max Yao
Humidity:	55 % RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3700.61	49.17	V	-46.83	6.21	9.36	-43.68	-13.00	-30.68
5550.79	52.33	V	-38.17	8.11	10.35	-35.93	-13.00	-22.93
7401.06	46.83	V	-39.57	9.46	10.48	-38.55	-13.00	-25.55
9250.49	47.00	V	-35.85	10.42	11.40	-34.87	-13.00	-21.87
3699.98	46.83	Н	-48.39	6.19	9.36	-45.22	-13.00	-32.22
5550.66	49.67	Н	-40.66	8.11	10.35	-38.42	-13.00	-25.42
7400.79	48.33	Н	-37.57	9.46	10.48	-36.55	-13.00	-23.55
9250.75	48.83	Н	-34.02	10.42	11.40	-33.04	-13.00	-20.04

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Operation Mode: GSM 1900 / TX / CH 661

Temperature: 25°C

Humidity: 55 % RH

Test Date:September 10, 2004Tested by:Max YaoPolarity:Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3759.81	49.83	V	-45.92	6.30	9.35	-42.87	-13.00	-29.87
5640.23	50.00	V	-40.37	8.17	10.44	-38.10	-13.00	-25.10
7519.88	45.83	V	-39.65	9.62	10.41	-38.86	-13.00	-25.86
9399.34	46.33	V	-36.34	10.45	11.51	-35.28	-13.00	-22.28
3760.10	47.33	Н	-47.54	6.32	9.35	-44.51	-13.00	-31.51
5639.94	49.67	Н	-40.54	8.17	10.43	-38.28	-13.00	-25.28
7520.27	47.17	Н	-38.29	9.63	10.42	-37.50	-13.00	-24.50
9399.91	47.00	Н	-35.67	10.45	11.51	-34.61	-13.00	-21.61
11281.23	46.00	Н	-32.87	11.70	12.13	-32.44	-13.00	-19.44

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Operation Mode: GSM 1900 / TX / CH 810

Temperature: 25°C

Humidity: 55 % RH

Test Date:September 10, 2004Tested by:Max YaoPolarity:Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3819.56	48.33	V	-47.12	6.41	9.34	-44.19	-13.00	-31.19
5729.49	50.00	V	-40.25	8.23	10.52	-37.95	-13.00	-24.95
7639.53	46.17	V	-39.09	9.66	10.53	-38.21	-13.00	-25.21
9548.90	46.33	V	-36.33	10.52	11.62	-35.24	-13.00	-22.24
3819.71	48.83	Н	-45.79	6.41	9.34	-42.86	-13.00	-29.86
5729.32	49.50	Н	-40.58	8.23	10.52	-38.28	-13.00	-25.28
7639.19	46.50	Н	-38.76	9.66	10.53	-37.88	-13.00	-24.88
9550.14	46.67	Н	-35.81	10.54	11.62	-34.72	-13.00	-21.72

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Operation Mode: GPRS 1900 / TX / CH 512

Temperature: 25°C

Humidity: 55 % RH

Test Date:September 10, 2004Tested by:Max YaoPolarity:Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3700.43	48.67	V	-47.33	6.21	9.36	-44.18	-13.00	-31.18
5550.37	52.67	V	-37.83	8.11	10.35	-35.59	-13.00	-22.59
7400.99	47.17	V	-39.23	9.46	10.48	-38.21	-13.00	-25.21
9250.50	47.17	V	-35.68	10.42	11.40	-34.70	-13.00	-21.70
3700.16	47.00	Н	-48.17	6.21	9.36	-45.02	-13.00	-32.02
5550.58	49.67	Н	-40.66	8.11	10.35	-38.42	-13.00	-25.42
7400.83	49.33	Н	-36.57	9.46	10.48	-35.55	-13.00	-22.55
9250.78	48.33	Н	-34.52	10.42	11.40	-33.54	-13.00	-20.54
11100.78	46.67	Н	-32.75	11.36	12.24	-31.88	-13.00	-18.88

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Operation Mode: GPRS 1900 / TX / CH 661

Temperature: 25°C

Humidity: 55 % RH

Test Date:September 10, 2004Tested by:Max YaoPolarity:Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3760.09	49.83	V	-45.87	6.32	9.35	-42.84	-13.00	-29.84
5460.04	50.00	V	-40.85	8.05	10.30	-38.61	-13.00	-25.61
7520.42	46.83	V	-38.63	9.63	10.42	-37.84	-13.00	-24.84
9399.88	47.00	V	-35.67	10.45	11.51	-34.61	-13.00	-21.61
11278.43	45.17	V	-33.73	11.68	12.14	-33.27	-13.00	-20.27
3759.96	47.00	Н	-47.92	6.30	9.35	-44.87	-13.00	-31.87
5639.94	50.00	Н	-40.21	8.17	10.43	-37.95	-13.00	-24.95
7519.74	47.33	Н	-38.15	9.62	10.41	-37.36	-13.00	-24.36
9400.35	46.67	Н	-35.99	10.45	11.52	-34.92	-13.00	-21.92

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

Operation Mode: GPRS 1900 / TX / CH 810

Temperature: 25°C

Humidity: 55 % RH

Test Date:September 10, 2004Tested by:Max YaoPolarity:Ver. / Hor.

Frequency (MHz)	Reading level (dBuV)	Antenna Polarization	S.G. (dBm)	Cable loss (dB)	Ant.Gain (dBi)	Emission level (dBm)	Limit (dBm)	Margin (dB)
3819.47	49.00	V	-46.45	6.41	9.34	-43.52	-13.00	-30.52
5729.18	49.50	V	-40.75	8.23	10.52	-38.45	-13.00	-25.45
7640.43	46.17	V	-39.07	9.66	10.54	-38.19	-13.00	-25.19
9547.28	46.67	V	-35.99	10.52	11.62	-34.90	-13.00	-21.90
3819.39	48.50	Н	-46.12	6.41	9.34	-43.19	-13.00	-30.19
5729.20	49.67	Н	-40.41	8.23	10.52	-38.11	-13.00	-25.11
7639.07	47.17	Н	-38.09	9.66	10.53	-37.21	-13.00	-24.21
9550.00	46.33	Н	-36.15	10.54	11.62	-35.06	-13.00	-22.06
11457.69	46.00	Н	-32.35	12.01	12.03	-32.33	-13.00	-19.33

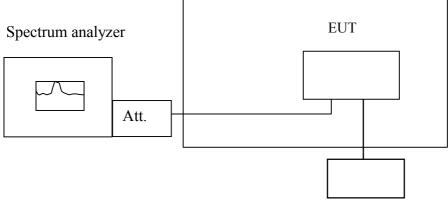
- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Measurements above show only up to 6 maximum emissions noted, or would be lesser if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 3. Radiated emissions measured in frequency above 1000MHz were made with an instrument using Peak detector mode and average detector mode of the emission shown in Actual FS column.
- 4. Spectrum setting:
 - *a. Peak Setting 1GHz to 10th harmonics of fundamental, RBW = 1MHz, VBW = 1MHz, Sweep time = Auto.*
 - *b.* AV Setting 1GH z to 10th harmonics of fundamental, RBW = 1MHz, VBW = 10Hz, Sweep time = Auto.

7.6 FREQUENCY STABILITY V.S. TEMPERATURE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235.

Frequency Tolerance: 2.5 ppm


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
DC Power Source	Agilent	E3640A	MY40001774	01/12/2005
Temperature Chamber	K.son	THS-M1	242	03/20/2005
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2005

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Temperature Chamber

Variable Power Supply

Note: Measurement setup for testing on Antenna connector

TEST PROCEDURE

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to -30° C. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C increased per stage until the highest temperature of +50°C reached.

TEST RESULTS

Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C									
	Limit: ± 2.5 ppm = 4700 Hz								
Power Supply	Environment	Frequency	Delta	Limit					
Vdc	Temperature (°C)	(MHz)	(Hz)	(Hz)					
	50	1879999993	-41						
	40	1879999980	-54						
	30	1879999964	-70						
	20	1880000034	0						
3.7	10	1879999960	-74	4700					
	0	1879999971	-63						
	-10	1879999989	-45						
	-20	1879999984	-50						
	-30	1880000019	-15						

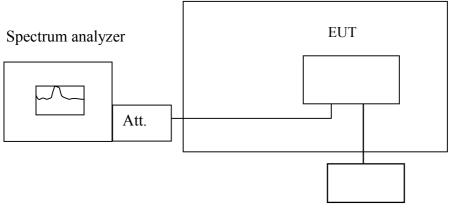
No non-compliance noted.

7.7 FREQUENCY STABILITY V.S. VOLTAGE MEASUREMENT

LIMIT

According to FCC §2.1055, FCC §24.235,

Frequency Tolerance: 2.5 ppm.


MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
DC Power Source	Agilent	E3640A	MY40001774	01/12/2005
Temperature Chamber	K.son	THS-M1	242	05/26/2005
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/10/2005

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

Temperature Chamber

Variable Power Supply

Note: Measurement setup for testing on Antenna connector.

TEST PROCEDURE

Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (\pm 15%) and endpoint, record the maximum frequency change.

TEST RESULTS

No non-compliance noted.

Reference Frequency: GSM Mid Channel 1880 MHz @ 20°C							
	Limit: ± 2.5 ppm = 4700 Hz						
Power Supply Vdc	Environment Temperature (°C)	Frequency (MHz)	Delta (Hz)	Limit (Hz)			
4.3		1880000031	-3				
3.7	20	1880000034	0	4700			
3.2 (End Point)		1880000046	12				

7.8 POWERLINE CONDUCTED EMISSIONS

LIMIT

For an intentional radiator which is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed 250 microvolts (The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz). The limits at specific frequency range is listed as follows:

Frequency Range (MHz)	Limits (dBµV)			
Trequency Range (19112)	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

Compliance with this provision shall be based on the measurement of the radio frequency voltage between each power line (LINE and NEUTRAL) and ground at the power terminals.

MEASUREMENT EQUIPMENT USED

Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESCS30	847793/012	12/20/2005
LISN	R&S	ESH2-Z5	843285/010	12/15/2005
LISN	ЕМСО	3825/2	9003-1628	07/25/2005

Remark: Each piece of equipment is scheduled for calibration once a year.

Test Configuration

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

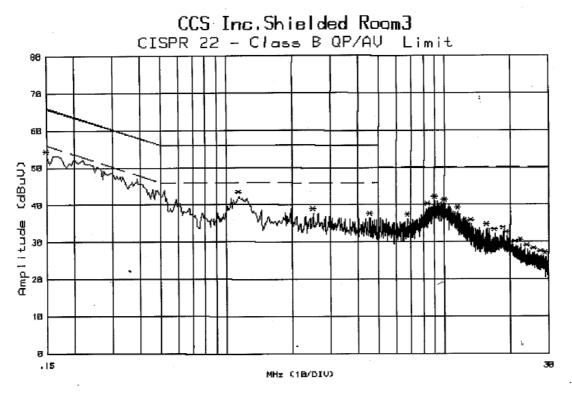
TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete..

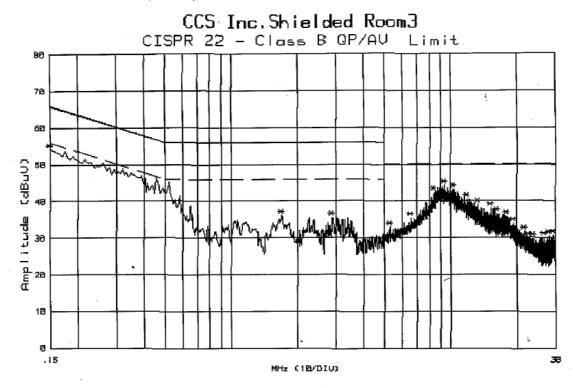
TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

Operation Mode:	TX + RX mode	Test Date:	September 10, 2004
Temperature:	25°C	Humidity:	62% RH
Power Souce:	AC 110V/50Hz	Tested by:	Max Yao


Freq. (MHz)	Q.P. Raw (dBuV)	AVG Raw (dBuV)	Q.P. Limit (dBuV)	AVG Limit (dBuV)	Q.P. Margin (dB)	AVG Margin (dB)	Note
0.150	53.20		66.00	56.00	-12.80		L1
1.141	42.20		56.00	46.00	-13.80		L1
2.520	37.80		56.00	46.00	-18.20		L1
4.580	36.50		56.00	46.00	-19.50		L1
9.092	41.00		60.00	50.00	-19.00		L1
10.120	40.20		60.00	50.00	-19.80		L1
0.152	46.30		65.89	55.89	-19.59		L2
1.700	36.00		56.00	46.00	-20.00		L2
8.420	42.30		60.00	50.00	-17.70		L2
9.390	44.20		60.00	50.00	-15.80		L2
10.350	43.10		60.00	50.00	-16.90		L2
11.860	40.50		60.00	50.00	-19.50		L2

- 1. The measuring frequencies range between 0.15 MHz and 30 MHz.
- 2. The emissions measured in the frequency range between 0.15 MHz and 30MHz were made with an instrument using Quasi-peak detector and Average detector.
- *3. "---" denotes the emission level was or more than 2dB below the Average limit, and no re-check was made.*
- 4. The IF bandwidth of SPA between 0.15MHz and 30MHz was 10KHz. The IF bandwidth of Test Receiver between 0.15MHz and 30MHz was 9KHz.
- 5. *L1* = *Line One (Live Line)* / *L2* = *Line Two (Neutral Line)*



Test Data Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

