

# ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT

| Applicant:               | Quanta Computer Inc.<br>No. 188, Wenhua 2nd Road, Guishan District, Taoyuan City<br>33377, Taiwan |
|--------------------------|---------------------------------------------------------------------------------------------------|
| Product Name:            | Clover Station Solo                                                                               |
| Brand Name:              | clover                                                                                            |
| Model No.:               | C501                                                                                              |
| Model Difference:        | N/A                                                                                               |
| Report Number:           | E2/2021/10021                                                                                     |
| FCC ID                   | HFS-C501                                                                                          |
| FCC Rule Part:           | §15.407, Cat: U-NII                                                                               |
| Issue Date:              | February 24, 2021                                                                                 |
| Date of Test:            | January 12, 2021 - February 8, 2021                                                               |
| Date of EUT<br>Received: | January 12, 2021                                                                                  |
| We hereby certify that   | f:                                                                                                |

### We hereby certify that:

The above equipment was tested by SGS Taiwan Ltd. Central RF Lab The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.10: 2013 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits.

The test results of this report relate only to the tested sample identified in this report.

Approved By:

Jim Chang / Manager



Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a>. Attention is drawn to the limitation of liability, indemniinformation contraction formation of this document is advised that information contraction formation contraction only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

| SGS Taiwan Ltd. N | Wuku District, New Taipei City, Taiwan/新北市五股區新北 | 產業園區五工路 134 號       |
|-------------------|-------------------------------------------------|---------------------|
| 台灣檢驗科技股份有限公司      | f (886-2) 2298-0488                             | WWW.Sgs.com.tw      |
|                   |                                                 | Member of SGS Group |



| Revision History                                     |  |           |                   |           |  |  |  |
|------------------------------------------------------|--|-----------|-------------------|-----------|--|--|--|
| Report NumberRevisionDescriptionIssue DateRevised By |  |           |                   |           |  |  |  |
| E2/2021/10021 Rev.00                                 |  | Original. | February 24, 2021 | Susan Lin |  |  |  |
|                                                      |  |           |                   |           |  |  |  |

### Note:

1 · Disclaimer

Antenna information is provided by the applicant, test results of this report are applicable to the sample EUT received.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd.   No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |                     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|--|--|--|
| 台灣檢驗科技股份有限公司                                                                                                                    | t (886-2) 2299-3279 | f (886-2) 2298-0488 | www.sgs.com.tw      |  |  |  |
|                                                                                                                                 |                     |                     | Member of SGS Group |  |  |  |



# **Contents**

| 1  | GENERAL INFORMATION                        | 4   |
|----|--------------------------------------------|-----|
| 2  | SYSTEM TEST CONFIGURATION                  | 7   |
| 3  | SUMMARY OF TEST RESULT                     | .10 |
| 4  | DESCRIPTION OF TEST MODES                  | .11 |
| 5  | MEASUREMENT UNCERTAINTY                    | .15 |
| 6  | CONDUCTED EMISSION TEST                    | .16 |
| 7  | DUTY CYCLE TEST SIGNAL                     | .20 |
| 8  | EMISSION BANDWIDTH MEASUREMENT             | .24 |
| 9  | MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT | .40 |
| 10 | MAXIMUM POWER SPECTRAL DENSITY             | .47 |
| 11 | UNDESIRABLE RADIATED EMISSION MEASUREMENT  | .63 |
| 12 | TRANSMISSION IN THE ABSENCE OF DATA        | 207 |
| 13 |                                            | 208 |
|    |                                            |     |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### **GENERAL INFORMATION** 1

#### 1.1 **Product Description**

| Product Name:     | Clover Station Solo      |
|-------------------|--------------------------|
| Brand Name:       | clover                   |
| Model No.:        | C501                     |
| Model Difference: | N/A                      |
| Hardware Version: | N/A                      |
| Software Version: | N/A                      |
| EUT Series No.:   | C051UQ04920067           |
| Power Supply:     | 24Vdc from AC/DC Adapter |

#### 1.2 Modulation & Data Rate

| Modulation type:64QAM, 16QAM, QPSK, BPSK for OFDM<br>256QAM for OFDM in 802.11ac only |                                                                                                                                                                                                                         |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Transition Rate:                                                                      | 802.11 a: 6/9/12/18/24/36/48/54 Mbps<br>802.11 n_20MHz: 6.5 – 144.4Mbps<br>802.11 n_40MHz: 13.5 – 300.0Mbps<br>802.11 ac_20MHz: 6.5 –173.4Mbps<br>802.11 ac_40MHz: 13.5 –400.0Mbps<br>802.11 ac_80MHz: 29.3 – 866.6Mbps |

#### 1.3 **Antenna Designation**

| Antenna Type | Supplier | Antwnna<br>Part No. | Freq. (MHz) | Peak Antenna<br>Gain (dBi) | Worst Case<br>Scenario |
|--------------|----------|---------------------|-------------|----------------------------|------------------------|
|              |          |                     | 5150~5250   | 0.41                       |                        |
|              | Quanta   | WIFI-1 antenna      | 5250~5350   | 0.41                       |                        |
|              |          |                     | 5470~5725   | 0.43                       |                        |
| РСВ          |          |                     | 5725~5850   | 0.54                       |                        |
| FCD          |          |                     | 5150~5250   | 3.96                       | $\boxtimes$            |
|              | Quanta   | WIFI-2 antenna      | 5250~5350   | 3.96                       | $\boxtimes$            |
|              |          |                     | 5470~5725   | 3.86                       | $\square$              |
|              |          |                     | 5725~5850   | 3.95                       | $\boxtimes$            |

Note: Investigation has been done to determine the worst case scenario for the above antennas demonstrated with measurements in this report.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### 1.4 FCC

| Wi-Fi<br>802.11 | Frequency<br>Range | Channels | Rated Power (Avg.)<br>(dBm) (Worst case) |       | Modulation<br>Technology |  |
|-----------------|--------------------|----------|------------------------------------------|-------|--------------------------|--|
|                 | 5180~5240          | 4        | 14                                       | .94   |                          |  |
|                 | 5260~5320          | 4        | 14.80                                    |       | OFDM                     |  |
| а               | 5500~5700          | 11       | 14                                       | .79   | OFDIM                    |  |
|                 | 5745~5825          | 5        | 14                                       | .69   |                          |  |
|                 | 5180~5240          | 4        | HT:                                      | 18.51 |                          |  |
| n_HT<br>ac_VHT  | 5260~5320          | 4        | HT:                                      | 18.51 | OFDM                     |  |
| 20M             | 5500~5700          | 11       | HT:                                      | 18.49 | OFDIVI                   |  |
|                 | 5745~5825          | 5        | HT:                                      | 18.36 |                          |  |
|                 | 5190~5230          | 2        | HT:                                      | 17.82 |                          |  |
| n_HT<br>ac_VHT  | 5270~5310          | 2        | HT:                                      | 17.97 | OFDM                     |  |
| 40M             | 5510~5670          | 5        | HT:                                      | 17.64 | OFDIM                    |  |
|                 | 5755~5795          | 2        | HT:                                      | 17.55 |                          |  |
|                 | 5210               | 1        | VHT:                                     | 16.09 |                          |  |
| ac_VHT<br>80M   | 5290               | 1        | VHT:                                     | 14.06 | OFDM                     |  |
|                 | 5530~5610          | 2        | VHT:                                     | 17.00 |                          |  |
|                 | 5775               | 1        | VHT:                                     | 15.62 |                          |  |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### 1.5 **Test Methodology of Applied Standards**

FCC Part 15, Subpart E §15.407 FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01 FCC KDB 662911 D01 Multiple Transmitter Output v02r01 ANSI C63.10:2013

#### 1.6 **Test Facility**

| Laboratory                                            | Test Site Address |                                                                                                   | FCC Designa-<br>tion number |
|-------------------------------------------------------|-------------------|---------------------------------------------------------------------------------------------------|-----------------------------|
| SGS Taiwan Ltd.<br>Central RF Lab.<br>(TAF code 3702) |                   | No.134, Wu Kung Road, New Taipei In-<br>dustrial Park, Wuku District, New Taipei<br>City, Taiwan. | TW0027                      |
|                                                       | $\boxtimes$       | No.2, Keji 1st Rd., Guishan District,<br>Taoyuan City, Taiwan 333                                 | TW0028                      |

#### 1.7 **Special Accessories**

There are no special accessories used while test was conducted.

#### 1.8 **Equipment Modifications**

There was no modification incorporated into the EUT.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



## 2 SYSTEM TEST CONFIGURATION

## 2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

### 2.2 EUT Exercise

An engineering test mode (software/firmware) that applicant provided was utilized to manipulate the EUT into transmit, selection of the test channel, and modulation scheme.

### 2.3 Test Procedure

### 2.3.1 Conducted Emissions

The EUT is a placed on a table which is 0.8 m above ground plane. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz. The CISPR Quasi-Peak and Average detector mode is employed. The two LISNs provide 50uH/50 ohm of coupling impedance for the measuring instrument. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.

### 2.3.2 Conducted Test (RF)

The active antenna port of the unlicensed wireless device is connected to the spectrum analyzer with attenuator to protect the instrumentation. If a second antenna port is available, it is tested at one operating frequency, with other port(s) appropriately terminated, to verify it has similar output characteristics as the fully tested port.

### 2.3.3 Radiated Emissions

The EUT is a placed on a turn table. For emissions testing at or below 1 GHz, the table height shall be 0.8 m above the reference ground plane. For emission measurements above 1 GHz, the table height shall be 1.5 m. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." is still within the 3dB illumination BW of the measurement antenna.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



### 2.4 Measurement Results Explanation Example

### 2.4.1 Radiated Emission Test Sites For Measurements From 9 kHz To 30 MHz

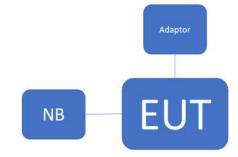
Radiated emission below 30MHz is measured in a 9m\*9m\*6m semi-anechoic chamber, the measurements correspond to those obtained at an open-field test site.

There is a comparison data of both open-field test site and semi-Anechoic chamber, and the result came out very similar.

### 2.4.2 For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuation factor between EUT conducted port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly EUT RF output level.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.


除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### 2.5 **Configuration of Tested System** Fig. 2-1 Radiated Emission Configuration



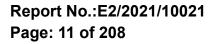
## Fig. 2-2 Conducted (Antenna Port) Emission Configuration



## Fig. 2-3 Conducted (AC powerline) Emission Configuration



| ltem | Equipment             | Mfr/Brand | Model/Type No. | Series No. | Data Cable | Power Cord |
|------|-----------------------|-----------|----------------|------------|------------|------------|
| 1.   | WLAN Test<br>Software | N/A       | N/A            | N/A        | N/A        | N/A        |
| 2.   | Notebook              | Lenovo    | T470           | P0001293   | N/A        | N/A        |


Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### SUMMARY OF TEST RESULT 3

| FCC Rules                        | Description Of Test                               | Result    |
|----------------------------------|---------------------------------------------------|-----------|
| §15.207                          | AC Power Line Conducted<br>Emission               | Compliant |
| §15.407(e)                       | Emission Bandwidth                                | Compliant |
| §15.407(a)                       | Maximum Conducted<br>Output Power                 | Compliant |
| §15.407(a)                       | Power Spectral Density                            | Compliant |
| §15.205<br>§15.209<br>§15.407(b) | Undesirable Radiated Emissions                    | Compliant |
| §15.407(c)                       | Transmission in case of Absence of<br>Information | Compliant |
| §15.203<br>§15.407(a)            | Antenna Requirement                               | Compliant |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。





## 4 DESCRIPTION OF TEST MODES

### 4.1 Operating in U-NII Bands

### Operated band in 5150 MHz ~5250 MHz

CH

38

46

Operated band in 5470 MHz ~5725 MHz:

CH

102

110

118

126

134

40 M

Freq

(MHz)

5510

5550

5590

5630

5670

| 20 M |               |  |  |  |
|------|---------------|--|--|--|
| СН   | Freq<br>(MHz) |  |  |  |
| 36   | 5180          |  |  |  |
| 40   | 5200          |  |  |  |
| 44   | 5220          |  |  |  |
| 48   | 5240          |  |  |  |

20 M

CH

Freq

(MHz)

| 51   | 5150 MHz ~5250 MHz: |  |    |               |  |  |
|------|---------------------|--|----|---------------|--|--|
| 40 M |                     |  | 8  | 0 M           |  |  |
| I    | Freq<br>(MHz)       |  | СН | Freq<br>(MHz) |  |  |
|      | 5190                |  | 42 | 5210          |  |  |
|      | 5230                |  |    |               |  |  |

80 M

CH

106

122

Freq

(MHz)

5530

5610

### Operated band in 5250 MHz ~5350 MHz:

Freq

(MHz)

5270

5310

| 20 M |               | 4  | 0 M      |
|------|---------------|----|----------|
| СН   | Freq<br>(MHz) | СН | Fr<br>(M |
| 52   | 5260          | 54 | 52       |
| 56   | 5280          | 62 | 53       |
| 60   | 5300          |    |          |
| 64   | 5320          |    |          |

| 80 M |                  |  |  |  |  |
|------|------------------|--|--|--|--|
| СН   | CH Freq<br>(MHz) |  |  |  |  |
| 58   | 5290             |  |  |  |  |

### Operated band in 5745 MHz ~5850 MHz:

|   | • • • • • • • • |               |  |  |  |
|---|-----------------|---------------|--|--|--|
|   | 20 M            |               |  |  |  |
|   | СН              | Freq<br>(MHz) |  |  |  |
|   | 149             | 5745          |  |  |  |
|   | 153             | 5765          |  |  |  |
| - | 157             | 5785          |  |  |  |
|   | 161             | 5805          |  |  |  |
|   | 165             | 5825          |  |  |  |

|           |  | 4   | 40 M          |  |  |  |  |  |
|-----------|--|-----|---------------|--|--|--|--|--|
| eq<br>Hz) |  | СН  | Freq<br>(MHz) |  |  |  |  |  |
| 45        |  | 151 | 5755          |  |  |  |  |  |
| 65        |  | 159 | 5795          |  |  |  |  |  |
| 85        |  |     |               |  |  |  |  |  |
| 05        |  |     |               |  |  |  |  |  |

|   | 0000 | / IVII 12.    |  |  |  |  |
|---|------|---------------|--|--|--|--|
|   | 80 M |               |  |  |  |  |
|   | СН   | Freq<br>(MHz) |  |  |  |  |
|   | 155  | 5775          |  |  |  |  |
| ļ |      | ••••          |  |  |  |  |

#### 5500 100 104 5520 5540 108 5560 112 5580 116 5600 120 5620 124 128 5640 5660 132 5680 136 5700 140

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | 0.134, Wu Kung Road, New Taipei Industrial Park, Wi | uku District, New Taipei City, Taiwan/新北市五股區新J | 七產業園區五工路 134 號 |
|-------------------|-----------------------------------------------------|------------------------------------------------|----------------|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                 | f (886-2) 2298-0488                            | www.sgs.com.tw |
|                   |                                                     |                                                |                |



#### The Worst Test Modes and Channel Details 4.2

- 1. The EUT has been tested under operating condition.
- 2. Test program used to control the EUT for staying in continuous transmitting mode is programmed.
- 3. Investigation has been done on all the possible configurations for searching the worst case. The given UE is pre-scanned among below modes.

| Modulation  | Transmission Chain |       |       | ٦     | Single<br>Transmission<br>Spatial | Multiple<br>Transmission<br>Spatial |
|-------------|--------------------|-------|-------|-------|-----------------------------------|-------------------------------------|
| 🛛 802.11 a  | $\boxtimes$ Ch0    | 🛛 Ch1 | 🗆 Ch2 | 🗆 Ch3 | 🗆 1TX                             | 🛛 2TX                               |
| 🛛 802.11 n  | $\boxtimes$ Ch0    | 🛛 Ch1 | 🗆 Ch2 | 🗆 Ch3 |                                   | ⊠ MIMO                              |
| ⊠ 802.11 ac | $\boxtimes$ Ch0    | 🛛 Ch1 | 🗆 Ch2 | 🗆 Ch3 |                                   | ⊠ MIMO                              |
| □ 802.11 ax | $\Box$ Ch0         | 🗆 Ch1 | 🗆 Ch2 | 🗆 Ch3 |                                   |                                     |

- 4. Therefore, below summary is the modes of test configuration that yield the highest reading and generate the highest emission chosen to carry out the relevantly mandatory test items.
- 5. 802.11 a mode only limit single transmit.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### RADIATED EMISSION TEST: 4.2.1

| RADIATED EMISSION TEST (BELOW 1 GHz) |                         |                      |                                             |             |                     |                 |  |
|--------------------------------------|-------------------------|----------------------|---------------------------------------------|-------------|---------------------|-----------------|--|
| MODE                                 | FREQUENCY<br>BAND (MHz) | AVAILABLE<br>CHANNEL | TESTED<br>CHANNEL                           | MODULATION  | DATA RATE<br>(Mbps) | ANTENNA<br>PORT |  |
| 802.11a                              | 5180~5825               | 36 to 165            | 44,60,116,157                               | OFDM        | 6                   | 2TX             |  |
| 802.11ac_VHT80                       | 5210~5775               | 42 to 155            | 42,58,122,155                               | OFDM        | MCS0                | MIMO            |  |
|                                      |                         | RADIATED EI          | VISSION TEST (A                             | BOVE 1 GHz) |                     | -               |  |
| MODE                                 | FREQUENCY<br>BAND (MHz) | AVAILABLE<br>CHANNEL | TESTED<br>CHANNEL                           | MODULATION  | DATA RATE<br>(Mbps) | ANTENNA<br>PORT |  |
| 802.11a                              |                         |                      | 36,44,48,52,60,                             | OFDM        | 6                   | 2TX             |  |
| 802.11n_HT20                         | 5180~5825               | 36 to 165            | 64,100,116,140,<br>144,149,157,165          | OFDM        | MCS8                | MIMO            |  |
| 802.11n_HT40                         | 5190~5795               | 38 to 159            | 38,46,54,62,102,<br>110,134,142,<br>151,159 | OFDM        | MCS8                | MIMO            |  |
| 802.11ac_VHT80                       | 5210~5775               | 42 to 155            | 42,58,122,155                               | OFDM        | MCS0                | MIMO            |  |

### Note:

The field strength of radiation emission was measured as EUT stand-up position (H mode) and lie down position (E1, E2 mode) for channel Low, Mid and High, the worst case H position was reported.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### ANTENNA PORT CONDUCTED MEASUREMENT: 4.2.2

| CONDUCTED TEST |            |            |            |            |           |         |
|----------------|------------|------------|------------|------------|-----------|---------|
| MODE           | FREQUENCY  | AVAILABLE  | TESTED     | MODULATION | DATA RATE | ANTENNA |
| WIODE          | BAND (MHz) | CHANNEL    | CHANNEL    | MODULATION | (Mbps)    | PORT    |
|                | 5180~5240  | 36 to 48   | 36 to 48   |            |           |         |
| 802.11a        | 5260~5320  | 52 to 64   | 52 to 64   | OFDM       | 6         | 2TX     |
| 002.118        | 5500~5720  | 100 to 144 | 100 to 144 | OFDIM      | 0         | 217     |
|                | 5745~5825  | 149 to 165 | 149 to 165 |            |           |         |
|                | 5180~5240  | 36 to 48   | 36 to 48   | OFDM       | MCS8      | MIMO    |
| 000 11- 11700  | 5260~5320  | 52 to 64   | 52 to 64   |            |           |         |
| 802.11n_HT20   | 5500~5720  | 100 to 144 | 100 to 144 |            |           |         |
|                | 5745~5825  | 149 to 165 | 149 to 165 |            |           |         |
|                | 5190~5230  | 38 to 46   | 38 to 46   |            |           |         |
| 002 11p UT40   | 5270~5310  | 54 to 62   | 54 to 62   | OFDM       | MCS8      | MIMO    |
| 802.11n_HT40   | 5510~5670  | 102 to 142 | 102 to 142 | OFDIM      |           |         |
|                | 5755~5795  | 151 to 159 | 151 to 159 |            |           |         |
|                | 5210       | 42         | 42         |            | MCS0      |         |
|                | 5290       | 58         | 58         | OFDM       |           |         |
| 802.11ac_VHT80 | 5530~5610  | 106 to 138 | 106 to 138 |            |           | MIMO    |
|                | 5775       | 155        | 155        |            |           |         |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### **MEASUREMENT UNCERTAINTY** 5

| Test Items                                   | Uncertainty           |
|----------------------------------------------|-----------------------|
| AC Power Line Conducted Emission             | +/- 2.34 dB           |
| 26dB & 6dB Emission Bandwidth                | +/- 1.54 Hz           |
| The Maximum Output Power Meas-<br>urement    | +/- 1 dB              |
| Peak Power Spectral Density Meas-<br>urement | +/- 1.54 dB           |
| Frequency Stability                          | +/- 1.54 Hz           |
| Temperature                                  | +/- 0.4 °C            |
| Humidity                                     | +/- 3.5 %             |
| DC / AC Power Source                         | DC= +/- 1%, AC=+/- 1% |

| Radiated S               | purio | us Emi | ssion N | leasurement Uncertainty     |
|--------------------------|-------|--------|---------|-----------------------------|
|                          | +/-   | 2.64   | dB      | 9kHz~30MHz: +-2.3dB         |
| Polarization: Vertical   | +/-   | 4.93   | dB      | 30MHz - 1000MHz: +/- 3.37dB |
| Polarization. Vertical   | +/-   | 4.81   | dB      | 1GHz - 18GHz: +/- 4.04dB    |
|                          | +/-   | 4.52   | dB      | 18GHz - 40GHz: +/- 4.04dB   |
|                          | +/-   | 2.64   | dB      | 9kHz~30MHz: +-2.3dB         |
| Polarization: Horizontal | +/-   | 4.45   | dB      | 30MHz - 1000MHz: +/- 4.22dB |
|                          | +/-   | 4.81   | dB      | 1GHz - 18GHz: +/- 4.08dB    |
|                          | +/-   | 4.52   | dB      | 18GHz - 40GHz: +/- 4.08dB   |

### Note:

- 1. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2. The conformity assessment statement in this report is based solely on the test results, measurement uncertainty is excluded.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### **CONDUCTED EMISSION TEST** 6

## 6.1 Standard Applicable

Frequency range within 150 kHz to 30 MHz shall not exceed the Limit table as below.

|                 |            | nits     |
|-----------------|------------|----------|
| Frequency range | dB(        | uV)      |
| MHz             | Quasi-peak | Average  |
| 0.15 to 0.50    | 66 to 56   | 56 to 46 |
| 0.50 to 5       | 56         | 46       |
| 5 to 30         | 60         | 50       |
| Nota            |            |          |

Note

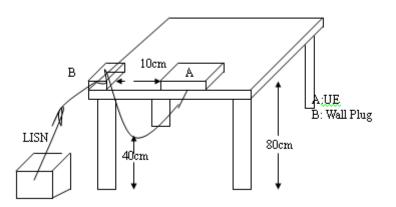
1. The lower limit shall apply at the transition frequencies

2. The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz

#### 6.2 **Measurement Equipment Used**

|                   | Co                             | nducted Emission Te | est Site                |            |            |
|-------------------|--------------------------------|---------------------|-------------------------|------------|------------|
| EQUIPMENT<br>TYPE | MFR                            | MODEL<br>NUMBER     | SERIAL<br>NUMBER        | LAST CAL.  | CAL DUE.   |
| Test Software     | audix                          | e3                  | Ver. 6.11-<br>20180419c | N.C.R      | N.C.R      |
| LISN              | SCHWARZBECK<br>Mess-Elektronik | NSLK8127            | 974                     | 03/25/2020 | 03/24/2021 |
| EMI Test Receiver | R&S                            | ESCI                | 101342                  | 04/28/2020 | 04/27/2021 |
| Coaxial Cable     | EC Lab                         | RF-HY-CAB-250       | RF-HY-CAB-<br>250-01    | 03/27/2020 | 03/26/2021 |
| Pulse Limiter     | EC Lab                         | VTSD 9561F-N        | 485                     | 03/27/2020 | 03/26/2021 |

#### 6.3 **EUT Setup**


- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.10:2013.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The LISN was connected with 120Vac/60Hz power source.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

This document is issued by the Company subject to its General Conditions of Service printed overleaf, available on request or accessible at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a> and for electronic format documents, subject to Terms and Conditions for Electronic Documents at <a href="http://www.sgs.com.tw/Terms-and-Conditions">http://www.sgs.com.tw/Terms-and-Conditions</a>. Attention is drawn to the limitation of liability, indemniincluding to the second of the second design of the

Report No.:E2/2021/10021 Page: 17 of 208



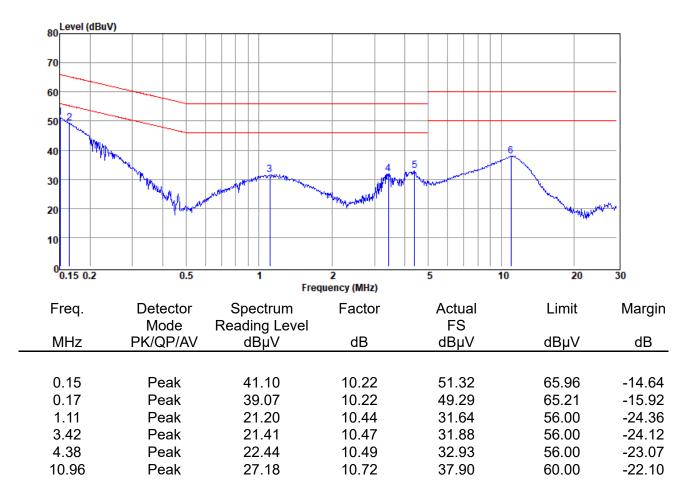


### 6.5 Measurement Procedure

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all phases of power being supplied by given UE are completed.

### 6.6 Measurement Result

Note: Refer to next page for measurement data and plots. Note2: The \* reveals the worst-case results that closet to the limit.

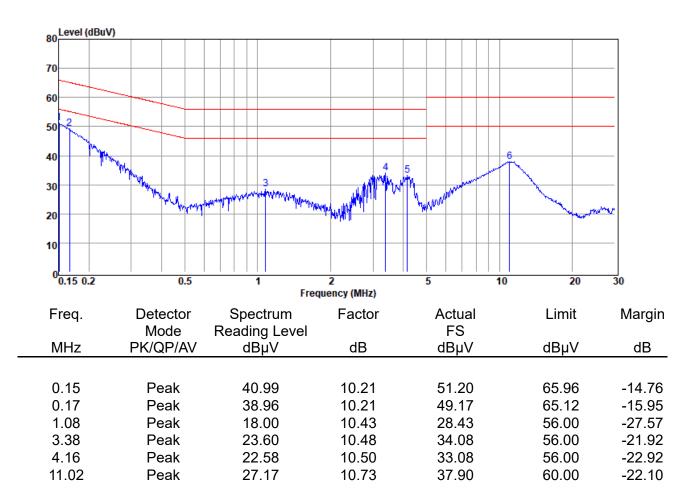

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



## AC POWER LINE CONDUCTED EMISSION TEST DATA

| Report Number | :E2/2020/10021         | Test Site   | :Conduction Room C |
|---------------|------------------------|-------------|--------------------|
| Test Mode     | :WLAN 5G               | Test Date   | :2021-01-28        |
| Power         | :120V/60Hz             | Temp./Humi. | :21.2/62           |
| Probe         | :L1                    | Engineer    | :Ashton Chiu       |
| Note:         | : Adapter:FSP120-AABN3 |             |                    |




Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



| Report Number | :E2/2020/10021         | Test Site   | :Conduction Room C |
|---------------|------------------------|-------------|--------------------|
| Test Mode     | :WLAN 5G               | Test Date   | :2021-01-28        |
| Power         | :120V/60Hz             | Temp./Humi. | :21.2/62           |
| Probe         | :N                     | Engineer    | :Ashton Chiu       |
| Note:         | : Adapter:FSP120-AABN3 |             |                    |



Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



## 7 DUTY CYCLE TEST SIGNAL

Pre-analysis Check: While conducting average power measurement, duty cycle of each mode shall be checked to ensure its duty cycle in order to compensate for the loss due to insufficient ratio of duty cycle.

All duty cycle is pre-scanned, and result as obtained below shows only the most representative ones where duty cycle is conducted as the given transmission with given virtual operation that expresses the percentage.

### 7.1 Measurement Procedure:

- 1. Set span = Zero
- 2. RBW = 8MHz
- 3. VBW = 8MHz,
- 4. Detector = Peak

Duty Cycle:

| Mode        | Duty Cycle (%)<br>=Ton / (Ton+Toff) | Duty Factor (dB)<br>=10*log(1/Duty Cycle) | 1/T<br>(kHz) | VBW<br>setting<br>(kHz) |
|-------------|-------------------------------------|-------------------------------------------|--------------|-------------------------|
| 802.11a     | 95.37                               | 0.21                                      | 0.48         | 1.00                    |
| 802.11n_20  | 94.58                               | 0.24                                      | 0.52         | 1.00                    |
| 802.11ac_20 | 95.07                               | 0.22                                      | 0.52         | 1.00                    |
| 802.11n_40  | 87.44                               | 0.58                                      | 2.02         | 3.00                    |
| 802.11ac_40 | 91.35                               | 0.39                                      | 1.05         | 2.00                    |
| 802.11ac_80 | 83.15                               | 0.80                                      | 2.16         | 3.00                    |

Duty Cycle Factor: 10 \* log(1/0.9537037) = 0.21 Duty Cycle Factor: 10 \* log(1/0.94581281) = 0.24 Duty Cycle Factor: 10 \* log(1/0.95073892) = 0.22 Duty Cycle Factor: 10 \* log(1/0.87439614) = 0.58 Duty Cycle Factor: 10 \* log(1/0.91346154) = 0.39 Duty Cycle Factor: 10 \* log(1/0.83154122) = 0.8

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### DUTY CYCLE TEST SIGNAL MEASUREMENT RESULT 7.2

#### 802.11a

| Swept SA<br>KEYSIGHT                                                                                                                                                                                                                                                                                                                                                              | Iyzer 1                                         | Input Z                                                                                                          | Ζ: 50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | #Atten: 30 dB                                                                         | PNO: Fas                                                       | t Ava Tv                        | pe: Voltage                            | 123456                                                                                                                                          |                                                                                                                                                                                                   | Frequer                                                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------|---------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                   | Coupling: DC<br>Align: Auto                     | Correc                                                                                                           | ctions: Off<br>Ref: Int (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       | Gate: Off<br>IF Gain: L<br>Sig Track                           | Trig: Fr                        | ee Run                                 | P N N N N N                                                                                                                                     | 5.1800                                                                                                                                                                                            | Frequency<br>000000 GHz                                                                                                              |
| 1 Spectrum                                                                                                                                                                                                                                                                                                                                                                        |                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ref Lvl Offset                                                                        | 11.70 dB                                                       |                                 | ΔMkr                                   | 3 2.156 ms                                                                                                                                      | Span<br>0.0000                                                                                                                                                                                    | 00000 Hz                                                                                                                             |
| Scale/Div 10 c                                                                                                                                                                                                                                                                                                                                                                    | зв                                              |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ref Level 30.00                                                                       |                                                                |                                 |                                        | 0.58 dB                                                                                                                                         | Sv                                                                                                                                                                                                | vept Span                                                                                                                            |
| 20.0                                                                                                                                                                                                                                                                                                                                                                              |                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3Δ4                                                                                   |                                                                |                                 |                                        |                                                                                                                                                 |                                                                                                                                                                                                   | ro Span                                                                                                                              |
| 10.0                                                                                                                                                                                                                                                                                                                                                                              | ***                                             | -                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aleilain a shalanna                                                                   |                                                                | ntip gitte north gitte an optig |                                        | personal and personal data personal data                                                                                                        |                                                                                                                                                                                                   | Full Span                                                                                                                            |
| -10.0<br>-20.0                                                                                                                                                                                                                                                                                                                                                                    |                                                 |                                                                                                                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                       |                                                                |                                 |                                        |                                                                                                                                                 | Start Fi<br>5.1800                                                                                                                                                                                | eq<br>000000 GHz                                                                                                                     |
| -30.0<br>-40.0<br>-50.0                                                                                                                                                                                                                                                                                                                                                           |                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4                                                                                     | *                                                              |                                 | *                                      |                                                                                                                                                 | Stop Fr<br>5.1800                                                                                                                                                                                 | eq<br>000000 GHz                                                                                                                     |
| -60.0 Center 5.1800                                                                                                                                                                                                                                                                                                                                                               | 00000 GHz                                       |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #Video BW 8                                                                           | 0 MH7                                                          |                                 |                                        | Span 0 Hz                                                                                                                                       | AL                                                                                                                                                                                                | JTO TUNE                                                                                                                             |
| Res BW 8 MH                                                                                                                                                                                                                                                                                                                                                                       |                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | #VIGEO DIV O                                                                          |                                                                |                                 | Sweep 10.                              | 0 ms (5001 pts)                                                                                                                                 | CF Ste                                                                                                                                                                                            | p<br>100 MHz                                                                                                                         |
| Mode                                                                                                                                                                                                                                                                                                                                                                              | Trace Scale                                     |                                                                                                                  | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Y                                                                                     | Function                                                       | Function V                      | Vidth Fu                               | nction Value                                                                                                                                    | Au<br>Ma                                                                                                                                                                                          |                                                                                                                                      |
| 1 Δ2<br>2 F<br>3 Δ4                                                                                                                                                                                                                                                                                                                                                               | 1 t<br>1 t<br>1 t                               | (Δ)<br>(Δ)                                                                                                       | 2.062 ms<br>1.750 ms<br>2.156 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 11.76 dBr                                                                             | m                                                              |                                 |                                        |                                                                                                                                                 | Freq O<br>0 Hz                                                                                                                                                                                    | ffset                                                                                                                                |
| 4 F<br>5<br>6                                                                                                                                                                                                                                                                                                                                                                     | 1 t                                             |                                                                                                                  | 1.750 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11.76 dBr                                                                             | m                                                              |                                 |                                        |                                                                                                                                                 |                                                                                                                                                                                                   | g                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                   |                                                 |                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                       |                                                                |                                 |                                        |                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                      |
| Spectrum Analyz                                                                                                                                                                                                                                                                                                                                                                   |                                                 | 3:20                                                                                                             | 08, 2021<br>0:20 PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\Box \Delta$                                                                         |                                                                |                                 |                                        |                                                                                                                                                 | Signal '<br>(Span Z                                                                                                                                                                               | oom)                                                                                                                                 |
| n HT20<br>pectrum Analyz<br>wept SA<br>KEYSIGHT                                                                                                                                                                                                                                                                                                                                   | ter 1                                           | 3:20                                                                                                             | 50 Ω<br>50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #Atten: 30 dB                                                                         | PNO: Fast<br>Gate: Off<br>IF Gain: Low                         | Avg Type<br>Trig: Free          | Voltage                                | 123456                                                                                                                                          | Center Fr                                                                                                                                                                                         | Frequency                                                                                                                            |
| n HT20<br>pectrum Analyz<br>wept SA<br>KEYSIGHT                                                                                                                                                                                                                                                                                                                                   | rer 1                                           | <ul> <li>3:20</li> <li>Input Z: 5</li> </ul>                                                                     | 50 Ω<br>50 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | #Atten: 30 dB                                                                         |                                                                | Trig: Free                      | Voltage<br>Run                         | 123456<br>WWWWWW<br>PNNNN                                                                                                                       | Center Fr                                                                                                                                                                                         | Frequency                                                                                                                            |
| In HT20<br>spectrum Analyz<br>wept SA<br>KEYSIGHT<br>RL ++ A<br>xy<br>Spectrum                                                                                                                                                                                                                                                                                                    | eer 1                                           | 3:20                                                                                                             | 50 Ω<br>ons: Off<br>: Int (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f Lvi Offset 11                                                                       | Gate: Off<br>IF Gain: Low<br>Sig Track: O<br>.70 dB            | Trig: Free                      | Voltage<br>Run                         | 123456<br>WWWWWW<br>PNNNN<br>2.020 ms                                                                                                           | Center Fr<br>5.180000                                                                                                                                                                             | Frequency<br>0000 GHz                                                                                                                |
| In HT20<br>spectrum Analyz<br>Swept SA<br>(EYSIGHT I<br>RL ++ A<br>Sale<br>Scale/Div 10 dB<br>Log                                                                                                                                                                                                                                                                                 | nput: RF<br>Coupling: DC<br>Align: Auto         | 3:20                                                                                                             | 50 Ω<br>ons: Off<br>: Int (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                       | Gate: Off<br>IF Gain: Low<br>Sig Track: O<br>.70 dB            | Trig: Free                      | Voltage<br>Run                         | 123456<br>WWWWWW<br>PNNNN                                                                                                                       | Center Fr<br>5.180000<br>Span<br>0.000000                                                                                                                                                         | Frequency<br>0000 GHz                                                                                                                |
| In HT20<br>spectrum Analyz<br>wept SA<br>KEYSIGHT II<br>RL ++-<br>Sr<br>Scale/Div 10 dB<br>-09<br>00<br>10.0                                                                                                                                                                                                                                                                      | eer 1                                           | 3:20                                                                                                             | 50 Ω<br>ons: Off<br>: Int (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f Lvi Offset 11                                                                       | Gate: Off<br>IF Gain: Low<br>Sig Track: O<br>.70 dB            | Trig: Free                      | Voltage<br>Run                         | 123456<br>WWWWWW<br>PNNNN<br>2.020 ms<br>-0.94 dB                                                                                               | Center Fr<br>5.180000<br>Span<br>0.0000000<br>Sven<br>Zero<br>Fu                                                                                                                                  | Frequency<br>equency<br>0000 GHz<br>000 Hz<br>ot Span<br>Span                                                                        |
| In HT20<br>spectrum Analyz<br>wept SA<br>KEYSIGHT<br>RL + A<br>xa<br>I spectrum<br>Scale/Div 10 dB<br>000<br>000<br>000<br>000<br>000<br>000<br>000<br>0                                                                                                                                                                                                                          | nput: RF<br>Coupling: DC<br>Align: Auto         | 3:20                                                                                                             | 50 Ω<br>ons: Off<br>: Int (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f Lvi Offset 11                                                                       | Gate: Off<br>IF Gain: Low<br>Sig Track: O<br>.70 dB            | Trig: Free                      | Voltage<br>Run                         | 123456<br>WWWWWW<br>PNNNN<br>2.020ms<br>-0.94dB                                                                                                 | Center Fr<br>5.180000<br>Span<br>0.000000<br>Svej<br>Zero<br>Fu<br>Start Frec                                                                                                                     | Frequency<br>equency<br>0000 GHz<br>000 Hz<br>ot Span<br>Span                                                                        |
| In HT20<br>Spectrum Analyz<br>Spectrum Analyz<br>Spectrum<br>Scale/Div 10 dB<br>Og<br>00<br>10.0<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                            | nput: RF<br>Coupling: DC<br>Align: Auto         | 3:20                                                                                                             | 50 Ω<br>ons: Off<br>: Int (S)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | f Lvi Offset 11                                                                       | Gate: Off<br>IF Gain: Low<br>Sig Track: O<br>.70 dB            | Trig: Free                      | Voltage<br>Run                         | 123456<br>WWWWWW<br>PNNNN<br>2.020 ms<br>-0.94 dB                                                                                               | Center Fr<br>5.180000<br>Span<br>0.000000<br>Start Free<br>5.180000<br>Ful<br>Start Free<br>5.180000<br>Stop Free                                                                                 | Frequency<br>equency<br>0000 GHz<br>000 Hz<br>ot Span<br>Span<br>I Span                                                              |
| In HT20<br>Spectrum Analyz<br>Wept SA<br>(EYSIGHT II<br>RL → A<br>Spectrum<br>Scale/Div 10 dB<br>00<br>00<br>10.0<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                           | ter 1<br>nput: RF<br>Coupling: DC<br>Nign: Auto | 3:20                                                                                                             | 50 Ω<br>50 Ω | f Lvi Offset 11                                                                       | Gate: Off<br>IF Gain: Low<br>Sig Track: O<br>.70 dB<br>IBm     | Trig: Free                      | Voltage<br>Run                         | 123456<br>WWWWWW<br>PNNNN<br>2.020 ms<br>-0.94 dB                                                                                               | Center Fr<br>5.180000<br>Span<br>0.000000<br>Start Free<br>5.180000<br>Stop Free<br>5.180000                                                                                                      | Frequency<br>equency<br>0000 GHz<br>000 Hz<br>000 Hz<br>1 Span<br>1 Span<br>1<br>0000 GHz                                            |
| In HT20<br>spectrum Analyz<br>wept SA<br>KEYSIGHT II<br>Scale/Div 10 dB<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                               | ter 1                                           | 3:20                                                                                                             | 50 Ω<br>50 Ω | f Lvi Offset 11.<br>f Level 30.00 d                                                   | Gate: Off<br>IF Gain: Low<br>Sig Track: O<br>.70 dB<br>IBm     | , Trig: Free                    | Voltage<br>Run                         | 12 3 4 5 6<br>WWWWWW<br>P N N N N N<br>2.020 ms<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB | Center Fr<br>5.180000<br>Span<br>0.000000<br>Start Free<br>5.180000<br>Ful<br>Start Free<br>5.180000<br>AUT<br>CF Step                                                                            | Frequency<br>equency<br>0000 GHz<br>000 Hz<br>ot Span<br>Span<br>I Span<br>I Span<br>I Span<br>0000 GHz<br>0000 GHz<br>00000 GHz     |
| In HT20<br>spectrum Analyz<br>wept SA<br>KEYSIGHT<br>I Spectrum<br>Scale/Div 10 dB<br>-9<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>20                                                                                                                                                                                                                                   | ter 1<br>nput: RF<br>Coupling DC<br>Nign: Auto  | 3:20                                                                                                             | 50 Ω<br>50 Ω | f Lvi Offset 11.<br>f Level 30.00 d                                                   | Gate: Off<br>IF Gain: Low<br>Sig Track: O<br>.70 dB<br>IBm     | , Trig: Free                    | Voltage<br>Run<br>AMkr3<br>weep 20.0 m | 12 3 4 5 6<br>WWWWWW<br>P N N N N N<br>2.020 ms<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB<br>-0.94 dB | Center Fr<br>5.180000<br>Span<br>0.000000<br>Start Free<br>5.180000<br>Ful<br>Start Free<br>5.180000<br>AUT                                                                                       | Frequency<br>equency<br>0000 GHz<br>000 Hz<br>ot Span<br>Span<br>I Span<br>I Span<br>I Span<br>0000 GHz<br>0000 GHz<br>00000 GHz     |
| In HT20           Spectrum Analyz           Swept SA           KEYSIGHT           RL           →           1 Spectrum           Scale/Div 10 dB           Log           20.0           10.0           20.0           30.0           40.0           50.0           660.0           Center 5.180000           Res BW 8 MHz           5 Marker Table           Mode T           1 Δ2 | rer 1                                           | Size                                                                                                             | 50 Ω<br>50 Π<br>50 Π | f LvI Offset 11.<br>f Level 30.00 d<br>Video BW 8.0<br>Υ<br>Δ) -1.978 dB<br>12.41 dBm | Gate: Off<br>IF Gain: Low<br>Sig Track: O<br>.70 dB<br>IBm<br> | rig: Free                       | Voltage<br>Run<br>AMkr3<br>weep 20.0 m | 1 2 3 4 5 6<br>WWWWWW<br>PNNNN<br>2.020 ms<br>-0.94 dB<br>                                                                                      | Center Fr<br>5.180000<br>Span<br>0.000000<br>Span<br>0.000000<br>Start Free<br>5.180000<br>Stop Free<br>5.180000<br>AUT<br>CF Step<br>8.000000<br>AUT<br>CF Step<br>8.000000<br>Auto<br>Free Offs | Frequency<br>equency<br>0000 GHz<br>000 Hz<br>ot Span<br>1 Span<br>1 Span<br>1 Span<br>1 O000 GHz<br>0 0000 GHz<br>0 0 TUNE<br>0 MHz |
| In HT20           Spectrum Analyz           Swept SA           KEYSIGHT           RL           J           Scale/Div 10 dB           Log           20.0           10.0           20.0           30.0           40.0           50.0           60.0           Center 5.180000           Res BW 8 MHz           5 Marker Table           Mode T           1 Δ2                       | rer 1                                           | <ul> <li>3:20</li> <li>Input Z: 5<br/>Correctio<br/>Freq Ref</li> <li>X</li> <li>(Δ) 1</li> <li>(Δ) 2</li> </ul> | 50 Ω<br>50 Π<br>50 Π | f Lvi Offset 11.<br>f Level 30.00 d<br>v v v v v v v v v v v v v v v v v v v          | Gate: Off<br>IF Gain: Low<br>Sig Track: O<br>.70 dB<br>IBm<br> | rig: Free                       | Voltage<br>Run<br>AMkr3<br>weep 20.0 m | 12 3 4 5 6<br>WWWWWW<br>PNNNN<br>2.020 ms<br>-0.94 dB<br>-0.94 dB<br>Span 0 Hz<br>s (10001 pts)<br>tion Value                                   | Center Fr<br>5.180000<br>Span<br>0.000000<br>Span<br>0.000000<br>Stop Free<br>5.180000<br>AUT<br>CF Step<br>8.000000<br>Auto<br>Man                                                               | Frequency<br>equency<br>0000 GHz<br>000 Hz<br>ot Span<br>Span<br>I Span<br>I Span<br>I Span<br>0000 GHz<br>0 TUNE<br>0 MHz<br>et     |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | 0.134, Wu Kung Road, New Taipei Industrial Park, Wu | ku District, New Taipei City, Taiwan/新北市五股區新北 | 上產業園區五工路 134 號      |
|-------------------|-----------------------------------------------------|-----------------------------------------------|---------------------|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                 | f (886-2) 2298-0488                           | www.sgs.com.tw      |
|                   |                                                     |                                               | Member of SGS Group |



### Report No.: E2/2021/10021 Page: 22 of 208

### 802.11ac VHT20

| Spectrum Analy<br>Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | zer 1 v                                                                                                         | +                                                      |                                                                                                                                                                  |                                                                         |                                  |                                                                                          | ¢                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Frequer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ncy |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Input: RF<br>Coupling: DC<br>Align: Auto                                                                        | Input Z: 50 Ω<br>Corrections: 0<br>Freq Ref: Int       | Off                                                                                                                                                              | PNO: Fast<br>Gate: Off<br>IF Gain: Low                                  | Avg Type: Volt<br>Trig: Free Run |                                                                                          | ₩ 5.180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | er Frequency<br>0000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s   |
| 1 Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                 |                                                        |                                                                                                                                                                  | Sig Track: Off                                                          | Δ                                | Mkr3 2.030 m                                                                             | Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 000000 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| Scale/Div 10 dl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | в                                                                                                               |                                                        | Ref LvI Offset 1<br>Ref Level 30.00                                                                                                                              |                                                                         |                                  | 0.60 d                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Swept Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 014                                                                                                             | 2                                                      |                                                                                                                                                                  |                                                                         |                                  | h a char a sun char                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zero Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   |
| 10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | / 3/                                                                                                            | 14 <b>11 11 11 11</b>                                  |                                                                                                                                                                  |                                                                         |                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Full Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N2                                                                                                              |                                                        |                                                                                                                                                                  |                                                                         |                                  |                                                                                          | Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Freq<br>0000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                        |                                                                                                                                                                  |                                                                         |                                  |                                                                                          | Stop I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =   |
| -40.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                        |                                                                                                                                                                  |                                                                         |                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 |                                                        |                                                                                                                                                                  |                                                                         |                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AUTO TUNE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ٦   |
| Center 5.18000<br>Res BW 8 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                 |                                                        | #Video BW 8.0                                                                                                                                                    | 0 MHz                                                                   | Sween                            | Span 0  <br>20.0 ms (10001 pt                                                            | -Iz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4   |
| 5 Marker Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                               |                                                        |                                                                                                                                                                  |                                                                         |                                  | ,,                                                                                       | 8.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0000 MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
| Mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Trace Scale                                                                                                     | х                                                      | Y                                                                                                                                                                | Function                                                                | Function Width                   | Function Value                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Auto<br>Man                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| 1 Δ2<br>2 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 t<br>1 t                                                                                                      |                                                        | 2 ms (Δ) 13.89 dE<br>4 ms -1.283 dBm                                                                                                                             |                                                                         |                                  |                                                                                          | Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | =   |
| 3 <u>∆</u> 4<br>4 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1 t<br>1 t                                                                                                      |                                                        | 0 ms (Δ) 0.5953 dE<br>4 ms -1.283 dBm                                                                                                                            |                                                                         |                                  |                                                                                          | 0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | =   |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                                                        |                                                                                                                                                                  |                                                                         |                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s Scale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                 |                                                        |                                                                                                                                                                  |                                                                         |                                  |                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| 1 5 C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                 | Feb 08, 202<br>3:23:36 Pt                              |                                                                                                                                                                  | · · ·                                                                   |                                  |                                                                                          | Signa<br>(Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |
| n HT 40<br>Spectrum Analyz<br>Swept SA<br>KEYSIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | zer 1                                                                                                           | +<br>Input Ζ: 50 Ω                                     | M Atten: 30 dB                                                                                                                                                   | PNO: Fast<br>Gate: Off                                                  | Avg Type: Volt                   | age 12345                                                                                | 6 Cente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I Track                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _   |
| In HT 40<br>Spectrum Analy<br>Swept SA<br>KEYSIGHT<br>RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | zer 1                                                                                                           | +                                                      | M Atten: 30 dB.                                                                                                                                                  | Gate: Off<br>IF Gain: Low                                               |                                  | age 12345                                                                                | G Cente<br>₩ 5.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lin<br>I Track<br>Zoom)<br>Frequer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _   |
| n HT 40<br>Spectrum Analy<br>Swept SA<br>KEYSIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | zer 1                                                                                                           | H<br>Input Z: 50 Ω<br>Corrections: 0                   | M Atten: 30 dB                                                                                                                                                   | Gate: Off<br>IF Gain: Low<br>Sig Track: Off                             | Avg Type: Volt<br>Trig: Free Run | age 12345                                                                                | 6 Cente<br>W Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I Track<br>Zoom)<br>Frequer<br>Frequency<br>0000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _   |
| In HT 40<br>Spectrum Analy<br>Swept SA<br>KEYSIGHT<br>RL<br>↓<br>VV<br>1 Spectrum<br>Scale/Div 10 dl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | zer 1                                                                                                           | H<br>Input Z: 50 Ω<br>Corrections: 0                   | M Atten: 30 dB.                                                                                                                                                  | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>1.70 dB                  | Avg Type: Volt<br>Trig: Free Run | age 12345<br>WWWWW<br>PNNNN                                                              | G<br>Cente<br>Signa<br>Conte<br>Span<br>Span<br>0.000<br>B<br>Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | In Track<br>Zoom)<br>Frequer<br>Prequency<br>D000000 GHz<br>D000000 Hz<br>Swept Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _   |
| ■ 5 (<br>n HT 40<br>Spectrum Analy,<br>Swept SA<br>KEYSIGHT<br>RL →<br>LN<br>1 Spectrum<br>Scale/Div 10 dl<br>Log<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0<br>20.0 | zer 1                                                                                                           | H<br>Input Z: 50 Ω<br>Corrections: 0                   | M Atten: 30 dB<br>Off<br>(S)<br>Ref Lvl Offset 1                                                                                                                 | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>1.70 dB                  | Avg Type: Volt<br>Trig: Free Run | age 12345<br>WWWWW<br>PNNNN<br>Mkr3 582.0 µ                                              | G<br>Cente<br>Signa<br>Conte<br>Span<br>Span<br>0.000<br>B<br>Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I Track<br>Zoom<br>Frequer<br>Pr Frequency<br>D000000 GHz<br>D000000 Hz<br>Swept Span<br>Zero Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _   |
| In HT 40<br>Spectrum Analy<br>Swept SA<br>KEYSIGHT<br>RL<br>↓vv<br>1 Spectrum<br>Scale/Div 10 dl<br>Log<br>20.0<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | zer 1                                                                                                           | H<br>Input Z: 50 Ω<br>Corrections: 0                   | M Atten: 30 dB<br>Off<br>(S)<br>Ref Lvl Offset 1                                                                                                                 | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>1.70 dB                  | Avg Type: Volt<br>Trig: Free Run | age 12345<br>WWWWW<br>PNNNN<br>Mkr3 582.0 µ                                              | 6 Cente<br>₩ 5.190<br>Span<br>0.000<br>B 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | In Track<br>Zoom)<br>Frequer<br>er Frequency<br>D000000 GHz<br>D000000 Hz<br>Swept Span<br>Zero Span<br>Full Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   |
| ■ 5 0<br>n HT 40<br>Spectrum Analy:<br>Swept SA<br>KEYSIGHT<br>RL →<br>tor<br>1 Spectrum<br>Scale/Div 10 dl<br>Log 20.0<br>10.0 3Δ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | zer 1                                                                                                           | H<br>Input Z: 50 Ω<br>Corrections: 0                   | M Atten: 30 dB<br>Off<br>(S)<br>Ref Lvl Offset 1                                                                                                                 | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>1.70 dB                  | Avg Type: Volt<br>Trig: Free Run | age 12345<br>WWWWW<br>PNNNN<br>Mkr3 582.0 µ                                              | G Center<br>Signa<br>Conter<br>Span<br>Span<br>Span<br>Span<br>Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | In Track<br>Zoom)<br>Frequer<br>er Frequency<br>D000000 GHz<br>D000000 Hz<br>Swept Span<br>Zero Span<br>Full Span                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _   |
| ■ 5<br>n HT 40<br>Spectrum Analy<br>Swept SA<br>KEYSIGHT<br>RL<br>V<br>1 Spectrum<br>Scale/Div 10 dl<br>Log<br>20.0<br>10.0<br>3Δ<br>0.00<br>-10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | zer 1                                                                                                           | H<br>Input Z: 50 Ω<br>Corrections: 0                   | M Atten: 30 dB<br>Off<br>(S)<br>Ref Lvl Offset 1                                                                                                                 | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>1.70 dB                  | Avg Type: Volt<br>Trig: Free Run | age 12345<br>WWWWW<br>PNNNN<br>Mkr3 582.0 µ                                              | 6 Cente<br>5 190<br>5 2<br>6 Cente<br>5 190<br>5 2<br>5 190<br>5 2<br>5 190<br>5 19 | In Track<br>Zoom)<br>Frequer<br>er Frequency<br>D000000 GHz<br>D000000 Hz<br>Swept Span<br>Zero Span<br>Full Span<br>Freq<br>D000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _   |
| ■ 5 0<br>n HT 40<br>Spectrum Analy:<br>Swept SA<br>KEYSIGHT<br>RL<br>207<br>1 Spectrum<br>Scale/Div 10 dl<br>Log<br>20.0<br>0.00<br>-0.00<br>-0.00<br>-50.0<br>-60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Input: RF<br>Coupling: DC<br>Align: Auto                                                                        | H<br>Input Z: 50 Ω<br>Corrections: 0                   | M Atten: 30 dB.<br>Off<br>(S)<br>Ref Lvi Offset 1<br>Ref Level 30.00                                                                                             | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>1.70 dB<br>dBm           | Avg Type: Volt<br>Trig: Free Run | age 12345<br>WWWWW<br>PNNN<br>Mkr3 582.0 µ<br>0.15 d                                     | 6 Cente<br>5.190<br>Span<br>Span<br>Span<br>Span<br>Span<br>Start  <br>5.190<br>Start  <br>5.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | I Track<br>Zoom)<br>Frequency<br>D000000 GHz<br>D000000 Hz<br>Swept Span<br>Full Span<br>Freq<br>D000000 GHz<br>Freq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _   |
| Image: Constraint of the section of the sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | zer 1                                                                                                           | H<br>Input Z: 50 Ω<br>Corrections: 0                   | M Atten: 30 dB<br>Off<br>(S)<br>Ref Lvl Offset 1                                                                                                                 | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>1.70 dB<br>dBm           | Avg Type: Volt<br>Trig: Free Run | age 12345<br>WWWWW<br>PNNNN<br>Mkr3 582.0 µ                                              | 6 Cente<br>5 Signa<br>6 Cente<br>5 Span<br>0.000<br>8 2 2<br>5 Start I<br>5.190<br>5 Start I<br>5.190<br>5 Start I<br>5                                                                                                                                                                                                                   | I Track<br>Zoom<br>Frequer<br>er Frequency<br>2000000 GHz<br>2000000 Hz<br>Swept Span<br>Full Span<br>Full Span<br>Freq<br>2000000 GHz<br>Freq<br>20000000 GHz<br>Freq<br>20000000 GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | _   |
| Image: Constraint of the sector of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | zer 1                                                                                                           | H<br>Input Z: 50 Ω<br>Corrections: (<br>Freq Ref: Int  | M Atten: 30 dB<br>Off<br>(S)<br>Ref Lvi Offset 1<br>Ref Level 30.00<br>#Video BW 8.0                                                                             | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>dBm<br>0 MHz             | Avg Type: Volt<br>Trig: Free Run | age 12.3.4.5<br>WWWWW<br>PNNN<br>Mkr3 582.0 µ<br>0.15 d<br>0.15 d<br>5 20.0 ms (10001 pr | 6 Cente                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | In Track<br>Zoom<br>Frequer<br>Pr Frequency<br>2000000 GHz<br>2000000 Hz<br>Swept Span<br>Zero Span<br>Full Span<br>Full Span<br>Freq<br>20000000 GHz<br>Freq<br>20000000 GHz<br>Erep<br>2000 MHz<br>Auto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | _   |
| Image: Constraint of the sector of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | zer 1 , [<br>Input: RF<br>Coupling: DC<br>Align: Auto<br>B<br>1<br>00000 GHz<br>00000 GHz<br>Trace Scale<br>1 t | H<br>Input Z: 50 Ω<br>Corrections: (<br>Freq Ref. Int) | M Atten: 30 dB.<br>Off<br>(S) #Atten: 30 dB.<br>Ref LvI Offset 1<br>Ref Level 30.00<br>#Video BW 8.0<br>.0 μs (Δ) 1.515 dE                                       | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>dBm<br>0 MHz<br>Function | Avg Type: Volt<br>Trig: Free Run | age 12345<br>WWWWW<br>PNNNN<br>Mkr3 582.0 µ<br>0.15 d                                    | 6 Cente<br>5 Signa<br>6 Cente<br>5 Span<br>5 Span<br>0.000<br>8 2 2<br>5 Start I<br>5.190<br>5 Start I<br>5.190<br>5 Start I<br>5 Sta                                                                                                                                                                                                                  | In Track<br>Zoom<br>Frequer<br>rr Frequency<br>2000000 GHz<br>2000000 Hz<br>2000000 GHz<br>Freq<br>20000000 GHz<br>Freq<br>20000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>200000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>20000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>20000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>20000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>20000000 GHz<br>Ereq<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>200000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>200000000 GHz<br>20000000 GHz<br>200000000 GHz<br>200000000 GHz<br>2000000000 GHz<br>2000000000000000000000000000000000000                                                | -   |
| ■ 5 0<br>n HT 40<br>Spectrum Analy<br>Swept SA<br>KEYSIGHT<br>RL<br>207<br>1 Spectrum<br>Scale/Div 10 dl<br>Log<br>20.0<br>0.00<br>-20.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0<br>-0.0  | Input: RF<br>Coupling: DC<br>Align: Auto                                                                        | Input Z: 50 Ω<br>Corrections: (<br>Freq Ref. Int       | M<br>A Atten: 30 dB<br>Off<br>(S)<br>Ref Lvl Offset 1<br>Ref Level 30.00<br>#Video BW 8.0<br>#Video BW 8.0<br>(Δ) 1.515 dB<br>4.192 dBm<br>0.0 μs (Δ) 0.1455 dBm | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>dBm<br>0 MHz<br>Function | Avg Type: Volt<br>Trig: Free Run | age 12.3.4.5<br>WWWWW<br>PNNN<br>Mkr3 582.0 µ<br>0.15 d<br>0.15 d<br>5 20.0 ms (10001 pr | 6 Cente<br>5.190<br>Span<br>0.000<br>B ■ 2<br>Start I<br>5.190<br>Stop I<br>5.190                                          | In Track<br>Zoom<br>Frequer<br>r Frequency<br>2000000 GHz<br>2000000 Hz<br>Swept Span<br>Zero Span<br>Full Span<br>Full Span<br>Freq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>Ereq<br>2000000 GHz<br>AUTO TUNE<br>Iep<br>2000 MHz<br>Auto<br>Alan<br>Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -   |
| A mode     1 Δ2     2 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | zer 1                                                                                                           | Input Z: 50 Ω<br>Corrections: (<br>Freq Ref. Int       | M 44tten: 30 dB<br>off<br>(S)<br>Ref Lvl Offset 1<br>Ref Level 30.00<br>#Video BW 8.1<br>(Δ) 1.515 dE<br>0 μs (Δ) 1.515 dB                                       | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>dBm<br>0 MHz<br>Function | Avg Type: Volt<br>Trig: Free Run | age 12.3.4.5<br>WWWWW<br>PNNN<br>Mkr3 582.0 µ<br>0.15 d<br>0.15 d<br>5 20.0 ms (10001 pr | 6 Cente<br>5 Signa<br>5 Span<br>0 000<br>8 Span<br>0 000<br>8 Start I<br>5 190<br>5 190      | In Track<br>Zoom<br>Frequency<br>2000000 GHz<br>2000000 Hz<br>2000000 Hz<br>2000000 GHz<br>2000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>2000000 GHz<br>20000000 GHz<br>20000000 GHz<br>20000000 GHz<br>2000000 GHz<br>20000000 GHz<br>2000000 GHz<br>2000000000 GHz<br>20000000 GHZ<br>2000000000 GHZ<br>2000000000 GHZ<br>200000000 GHZ<br>200000000 GHZ<br>200000000 GHZ<br>200000000 GHZ<br>20000000000 GHZ<br>2000000000000000000000000000000000000 |     |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | p.134,Wu Kung Road, New Taipei Industrial Park, Wuku | District, New Taipei City, Taiwan/新北市五股區新出 | 上產業園區五工路 134 號      |
|-------------------|------------------------------------------------------|--------------------------------------------|---------------------|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                  | f (886-2) 2298-0488                        | www.sgs.com.tw      |
|                   |                                                      |                                            | Member of SGS Group |



### Report No.: E2/2021/10021 Page: 23 of 208

### 802.11ac VHT 40

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·    | +                                                                                                                                                                  |                                                                           |                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ¢                                                                                                                                 | Frequen                                                                                                                                                                                      | су       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| RL +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Input: RF<br>Coupling: DC<br>Align: Auto | Input Z: 50 Ω<br>Corrections: Off<br>Freq Ref: Int (S)                                                                                                             | #Atten: 30 dB                                                             | PNO: Fast<br>Gate: Off<br>IF Gain: Low                    | Avg Type: Voltag<br>Trig: Free Run | w <del>ww ww w</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                   | r Frequency<br>000000 GHz                                                                                                                                                                    | Set      |
| LNI<br>1 Spectrum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | T                                        |                                                                                                                                                                    | Ref Lvi Offset 11                                                         | Sig Track: Off                                            | ΔΝ                                 | P NN NN N<br>Ikr3 1.040 ms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Span<br>0.000                                                                                                                     | 00000 Hz                                                                                                                                                                                     |          |
| Scale/Div 10 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B                                        |                                                                                                                                                                    | Ref Level 30.00 d                                                         |                                                           |                                    | 0.15 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                   | wept Span<br>ero Span                                                                                                                                                                        |          |
| 20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 364                                      |                                                                                                                                                                    |                                                                           |                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | Full Span                                                                                                                                                                                    | Ĵ        |
| -10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          |                                                                                                                                                                    |                                                                           |                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Start F<br>5.190                                                                                                                  | Freq<br>0000000 GHz                                                                                                                                                                          |          |
| -30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                          | * * *                                                                                                                                                              |                                                                           |                                                           | 1 1 1                              | 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Stop F<br>5.190                                                                                                                   | req<br>000000 GHz                                                                                                                                                                            |          |
| -60.0<br>Center 5.19000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                          |                                                                                                                                                                    | #Video BW 8.0                                                             | MHz                                                       |                                    | Span 0 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                   | UTO TUNE                                                                                                                                                                                     | )        |
| Res BW 8 MHz<br>5 Marker Table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>د</u><br>۲                            |                                                                                                                                                                    |                                                                           |                                                           | Sweep 2                            | 20.0 ms (10001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CF Ste<br>8.000                                                                                                                   | 000 MHz                                                                                                                                                                                      |          |
| Mode<br>1 Δ2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Trace Scale                              | X<br>(Δ) 952.0 μ                                                                                                                                                   | Y<br>Is (Δ) 0.3910 dB                                                     | Function F                                                | unction Width                      | Function Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                   |                                                                                                                                                                                              | _        |
| 2 F<br>3 Δ4<br>4 F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 t                                      | 620.0 µ                                                                                                                                                            | is 3.596 dBm<br>is (Δ) 0.1529 dB                                          |                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Freq C<br>0 Hz                                                                                                                    | Offset                                                                                                                                                                                       | _        |
| 5<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                          | 020.0 µ                                                                                                                                                            | 3.390 UDIII                                                               |                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | X Axis                                                                                                                            | og                                                                                                                                                                                           |          |
| <b>4</b> 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                          | Feb 08, 2021<br>3:24:35 PM                                                                                                                                         | $\bigcirc \land$                                                          |                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Signal                                                                                                                            | Track                                                                                                                                                                                        |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                          |                                                                                                                                                                    |                                                                           |                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Span )                                                                                                                           | Zoom)                                                                                                                                                                                        |          |
| 1ac VHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 80                                       |                                                                                                                                                                    |                                                                           |                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ll(Span )                                                                                                                         | Zoom)                                                                                                                                                                                        |          |
| Spectrum Analy<br>Swept SA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | /zer 1                                   | +                                                                                                                                                                  |                                                                           |                                                           |                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                   | Zoom)<br>Frequen                                                                                                                                                                             | су       |
| Spectrum Analy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /zer 1                                   | HINDUT Z: 50 Ω<br>Corrections: Off<br>Freq Ref: Int (S)                                                                                                            | #Atten: 30 dB                                                             | PNO: Fast<br>Gate: Off<br>IF Gain: Low                    | Avg Type: Voltag<br>Trig: Free Run | le <u>123456</u><br>W <del>WWWW</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Center                                                                                                                            |                                                                                                                                                                                              | <u> </u> |
| Spectrum Analy<br>Swept SA<br>KEYSIGHT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input: RF                                | Input Z: 50 Ω<br>Corrections: Off                                                                                                                                  |                                                                           | Gate: Off<br>IF Gain: Low<br>Sig Track: Off               | Avg Type: Voltag<br>Trig: Free Run | le 123456                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Center<br>5.210<br>Span                                                                                                           | Frequency<br>0000000 GHz                                                                                                                                                                     |          |
| Spectrum Analy<br>Swept SA<br>KEYSIGHT<br>RL<br>LV<br>1 Spectrum<br>Scale/Div 10 d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Input: RF<br>Coupling: DC<br>Align: Auto | Input Z: 50 Ω<br>Corrections: Off                                                                                                                                  | #Atten: 30 dB<br>Ref Lvi Offset 11.<br>Ref Level 30.00 d                  | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>.70 dB     | Avg Type: Voltag<br>Trig: Free Run | e 123456<br>WWWWWW<br>PNNNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Center<br>5.210<br>Span<br>0.000                                                                                                  | Frequency<br>000000 GHz<br>000000 Hz<br>wept Span                                                                                                                                            | <u> </u> |
| Spectrum Analy<br>Swept SA<br>KEYSIGHT<br>RL +-<br>UN<br>1 Spectrum<br>Scale/Div 10 d<br>Log<br>20.0<br>10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Input: RF<br>Coupling: DC<br>Align: Auto | Input Z: 50 Ω<br>Corrections: Off                                                                                                                                  | Ref Lvi Offset 11                                                         | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>.70 dB     | Avg Type: Voltag<br>Trig: Free Run | le <u>123456</u><br>WWWWWW<br>PNNNN<br>Mkr3 550.0 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Center<br>5.210<br>Span<br>0.000                                                                                                  | Frequency<br>0000000 GHz<br>0000000 Hz                                                                                                                                                       | -<br>-   |
| Spectrum Analy<br>Swept SA<br>KEYSIGHT<br>RL +-<br>UN<br>1 Spectrum<br>Scale/Div 10 d<br>Log<br>20.0<br>10.0<br>.000<br>-10.0<br>-20.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Input: RF<br>Coupling: DC<br>Align: Auto | Input Z: 50 Ω<br>Corrections: Off                                                                                                                                  | Ref Lvi Offset 11                                                         | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>.70 dB     | Avg Type: Voltag<br>Trig: Free Run | le <u>123456</u><br>WWWWWW<br>PNNNN<br>Mkr3 550.0 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Center<br>5.210<br>Span<br>0.000<br>Start F                                                                                       | Frequency<br>r Frequency<br>000000 GHz<br>000000 Hz<br>wept Span<br>ero Span<br>Full Span                                                                                                    | -<br>-   |
| Spectrum Analy           Swept SA           KEYSIGHT           RL           I Spectrum           Scale/Div 10 d           Log           20.0           -0.00           -0.00           -0.00           -0.00           -0.00           -0.00           -0.00           -0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Input: RF<br>Coupling: DC<br>Align: Auto | Input Z: 50 Ω<br>Corrections: Off                                                                                                                                  | Ref Lvi Offset 11                                                         | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>.70 dB     | Avg Type: Voltag<br>Trig: Free Run | le <u>123456</u><br>WWWWWW<br>PNNNN<br>Mkr3 550.0 µs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Center<br>5.210<br>Span<br>0.000<br>S<br>Z<br>Start F<br>5.210<br>Stop F                                                          | Frequency<br>o000000 GHz<br>o00000 Hz<br>wept Span<br>ero Span<br>Full Span<br>Fireq<br>o000000 GHz                                                                                          | -<br>-   |
| Spectrum Analy           Swept SA           KEYSIGHT           RL           I Spectrum           Scale/Div 10 d           Log           20.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0 | Zer 1                                    | Input Z: 50 Ω<br>Corrections: Off                                                                                                                                  | Ref Lvi Offset 11                                                         | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>IBm        | Avg Type: Voltag<br>Trig: Free Run | e 12 3 4 5 6<br>WWWWWW<br>P NN NN N<br>Mkr3 550.0 µs<br>-1.00 dB<br>Fill a fill a | Center<br>5.210<br>Span<br>0.000<br>Start F<br>5.210<br>Stop F<br>5.210<br>Stop F<br>5.210                                        | Frequency<br>r Frequency<br>000000 GHz<br>000000 Hz<br>wept Span<br>Fro Span<br>Full Span<br>Freq<br>0000000 GHz<br>Freq<br>0000000 GHz<br>UTO TUNE                                          | -<br>-   |
| Spectrum Analy           Swept SA           KEYSIGHT           RL           I Spectrum           Scale/Div 10 d           Log           20.0           -10.0           -20.0           -30.0           -50.0           -60.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zer 1                                    | Input Z: 50 Ω<br>Corrections: Off                                                                                                                                  | Ref LvI Offset 11.<br>Ref Level 30.00 d                                   | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>IBm        | Avg Type: Voltag<br>Trig: Free Run | e <u>123456</u><br>www.www<br>P N N N N<br>Mkr3 550.0 µs<br>-1.00 dB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Center<br>5.210<br>Span<br>0.000<br>Start F<br>5.210<br>Stop F<br>5.210<br>Stop F<br>5.210<br>A<br>CF Sttc<br>8.000               | Frequency<br>r Frequency<br>000000 GHz<br>000000 Hz<br>wept Span<br>ero Span<br>Full Span<br>Freq<br>000000 GHz<br>Freq<br>000000 GHz<br>UTO TUNE<br>Pp<br>000 MHz                           | <u> </u> |
| Spectrum Analy<br>Swept SA<br>KEYSIGHT<br>RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zer 1                                    | Input Z: 50 Ω<br>Corrections: Off<br>Freq Ref: Int (S)                                                                                                             | Ref LvI Offset 11.<br>Ref Level 30.00 d<br>#Video BW 8.0                  | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>IBM<br>MHz | Avg Type: Voltag<br>Trig: Free Run | e 12 3 4 5 6<br>WWWWWW<br>P NN NN N<br>Mkr3 550.0 µs<br>-1.00 dB<br>Fill a fill a | Center<br>5.210<br>Span<br>0.000<br>Start F<br>5.210<br>Stop F<br>5.210<br>Stop F<br>5.210<br>A<br>CF Stt<br>8.000<br>A<br>N<br>M | Frequency<br>000000 GHz<br>000000 Hz<br>wept Span<br>ero Span<br>Full Span<br>Full Span<br>Freq<br>0000000 GHz<br>UTO TUNE<br>ep<br>0000 MHz<br>uto<br>Ian                                   | -<br>-   |
| Spectrum Analy           Swept SA           KEYSIGHT           RL           1           Scale/Div 10 d           Log           20.0           20.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0          | Zer 1                                    | Input Z: 50 Ω           Corrections: Off           Freq Ref: Int (S)           X           (Δ)           464.0 μ           66.00 μ           (Δ)           550.0 μ | Ref LvI Offset 11.<br>Ref Level 30.00 d<br>#Video BW 8.0<br>#Video BW 8.0 | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>IBM<br>MHz | Avg Type: Voltag<br>Trig: Free Run | P N N N N<br>Mkr3 550.0 µs<br>-1.00 dB<br>Span 0 Hz<br>20.0 ms (10001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Center<br>5.210<br>Span<br>0.000<br>Start F<br>5.210<br>Stop F<br>5.210<br>CF Stt<br>8.000<br>A<br>A<br>CF Stt                    | Frequency<br>000000 GHz<br>000000 Hz<br>wept Span<br>ero Span<br>Full Span<br>Full Span<br>Freq<br>0000000 GHz<br>UTO TUNE<br>ep<br>0000 MHz<br>uto<br>Ian                                   |          |
| Spectrum Analy           Swept SA           KEYSIGHT           RL           I Spectrum           Scale/Div 10 d           Log           20.0           10.0           30.0           40.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0           -0.0 | Zer 1                                    | Input Z: 50 Ω           Corrections: Off           Freq Ref: Int (S)                                                                                               | Ref LvI Offset 11.<br>Ref Level 30.00 d<br>#Video BW 8.0<br>#Video BW 8.0 | Gate: Off<br>IF Gain: Low<br>Sig Track: Off<br>IBM<br>MHz | Avg Type: Voltag<br>Trig: Free Run | P N N N N<br>Mkr3 550.0 µs<br>-1.00 dB<br>Span 0 Hz<br>20.0 ms (10001 pts)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Centei<br>5.210<br>Span<br>0.000<br>Start F<br>5.210<br>Stop F<br>5.210<br>Stop F<br>5.210<br>A<br>CF Stt<br>8.000<br>A<br>Freq C | Frequency<br>r Frequency<br>000000 GHz<br>wept Span<br>ero Span<br>Full Span<br>Freq<br>000000 GHz<br>Treq<br>000000 GHz<br>UTO TUNE<br>ep<br>000 MHz<br>uto<br>tan<br>Dffset<br>Scale<br>og | -<br>-   |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |                     |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|--|--|--|
| 台灣檢驗科技股份有限公司                                                                                                                  | t (886-2) 2299-3279 | f (886-2) 2298-0488 | www.sgs.com.tw      |  |  |  |
|                                                                                                                               |                     |                     | Member of SGS Group |  |  |  |



## 8 EMISSION BANDWIDTH MEASUREMENT

### 8.1 Standard Applicable

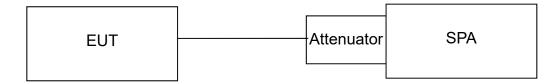
There is no limit bandwidth for U-NII-1, U-NII-2-A and U-NII-2-C. The minimum of 6dB Bandwidth measurement is 0.5 MHz for U-NII-3

### 8.2 Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules.
- 3. Remove the antenna from the EUT and then connect a low loss RF cable from the Antenna port to the spectrum analyzer.
  - 3.a. 26dB Band width Measurement: Set the spectrum analyzer as 1% of emission BW Sweep=auto,
    Detector = Peak,
    Trace Mode = Max Hold,
    Manually readjust RBW until the RBW/EBW ratio is 1% based on EBW as observed on the result of pre-sequence measurement.
  - 3.b. Mark the peak frequency and -26dB (upper and lower) frequency.
- 4. Repeat the procedures as list above until all test default channels (low, middle, and high) are completed.
- Minimum Emission Bandwidth for the band 5.725-5.850GHz.

   a. Set the spectrum analyzer as
   RBW = 100 kHz,
   VBW = 3\*RBW,
   Span = 30M/50MHz,
   Detector=Peak,
   Sweep=auto
   b. Mark the peak frequency and –6dB (upper and lower) frequency.
- 6. Repeat above procedures until all frequency of interest measured was complete.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。


Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only



#### 8.3 **Measurement Equipment Used**

| SGS Conducted Room |            |                   |                  |            |            |  |  |
|--------------------|------------|-------------------|------------------|------------|------------|--|--|
| EQUIPMENT TYPE     | MFR        | MODEL<br>NUMBER   | SERIAL<br>NUMBER | LAST CAL.  | CAL DUE.   |  |  |
| Spectrum Analyzer  | KEYSIGHT   | N9010B            | MY59071573       | 06/26/2020 | 06/25/2021 |  |  |
| Attenuator         | Marvelous  | MVE2213-10        | RF06             | 11/19/2020 | 11/18/2021 |  |  |
| Attenuator         | Marvelous  | WATT-218FS-<br>10 | RF18             | 11/19/2020 | 11/18/2021 |  |  |
| DC Block           | PASTERNACK | PE8210            | RF153            | 11/19/2020 | 11/18/2021 |  |  |

#### 8.4 **Test Set-up**



#### 8.5 **Measurement Result**

#### 8.5.1 FCC 26dB Bandwidth

| 802.11a_Ch0    |                     |                    |  |  |  |  |
|----------------|---------------------|--------------------|--|--|--|--|
| Freq.<br>(MHz) | 26dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) |  |  |  |  |
| 5180           | 22.51               | 13.520             |  |  |  |  |
| 5220           | 21.80               | 13.380             |  |  |  |  |
| 5240           | 22.43               | 13.510             |  |  |  |  |
| 5260           | 22.11               | 13.450             |  |  |  |  |
| 5300           | 21.08               | 13.240             |  |  |  |  |
| 5320           | 22.11               | 13.450             |  |  |  |  |
| 5500           | 22.78               | 13.580             |  |  |  |  |
| 5580           | 23.05               | 13.630             |  |  |  |  |
| 5700           | 21.91               | 13.410             |  |  |  |  |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. Ni<br>台灣檢驗科技股份有限公司 | p.134,Wu Kung Road, New Taipei Industrial Park, Wuku<br>t (886-2) 2299-3279 | u District, New Taipei City, Taiwan/新北市五股區新北.<br>f (886-2) 2298-0488 | 產業園區五工路 134 號<br>WWW.SQS.COM.tW |
|------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------|
| B 13 1 A WAT I LLAC IN 17 I K A I  | 1 (000-2) 2200-0210                                                         | 1 (000-2) 2230-0400                                                  | www.595.6611.tw                 |
|                                    |                                                                             |                                                                      | Member of SGS Group             |



#### 802.11n\_HT20\_Ch1

| Freq.<br>(MHz) | 26dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) | Freq.<br>(MHz) | 26dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) |
|----------------|---------------------|--------------------|----------------|---------------------|--------------------|
| 5180           | 23.59               | 13.730             | 5180           | 21.88               | 13.400             |
| 5220           | 21.59               | 13.340             | 5220           | 23.47               | 13.710             |
| 5240           | 22.27               | 13.480             | 5240           | 22.55               | 13.530             |
| 5260           | 22.58               | 13.540             | 5260           | 22.78               | 13.580             |
| 5300           | 22.72               | 13.560             | 5300           | 21.63               | 13.350             |
| 5320           | 22.28               | 13.480             | 5320           | 23.59               | 13.730             |
| 5500           | 21.89               | 13.400             | 5500           | 23.46               | 13.700             |
| 5580           | 22.92               | 13.600             | 5580           | 22.05               | 13.430             |
| 5700           | 23.21               | 13.660             | 5700           | 22.20               | 13.460             |

#### 802.11n \_HT40\_Ch0

802.11n\_HT20\_Ch0

802.11n \_HT40\_Ch1

| Freq.<br>(MHz) | 26dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) | Freq.<br>(MHz) | 26dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) |
|----------------|---------------------|--------------------|----------------|---------------------|--------------------|
| 5190           | 40.80               | 16.110             | 5190           | 40.56               | 16.080             |
| 5230           | 41.08               | 16.140             | 5230           | 40.64               | 16.090             |
| 5270           | 40.59               | 16.080             | 5270           | 40.80               | 16.110             |
| 5310           | 40.46               | 16.070             | 5310           | 40.77               | 16.100             |
| 5510           | 40.98               | 16.130             | 5510           | 40.95               | 16.120             |
| 5550           | 40.83               | 16.110             | 5550           | 40.59               | 16.080             |
| 5670           | 40.85               | 16.110             | 5670           | 40.68               | 16.090             |

#### 802.11ac \_VHT80\_Ch0

802.11ac \_VHT80\_Ch1

| Freq.<br>(MHz) | 26dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) | Freq.<br>(MHz) | 26dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) |
|----------------|---------------------|--------------------|----------------|---------------------|--------------------|
| 5210           | 81.89               | 19.130             | 5210           | 83.48               | 19.220             |
| 5290           | 82.65               | 19.170             | 5290           | 83.26               | 19.200             |
| 5530           | 82.43               | 19.160             | 5530           | 82.80               | 19.180             |
| 5610           | 82.26               | 19.150             | 5610           | 82.85               | 19.180             |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Talwan Ltd. N | 0.134, Wu Kung Road, New Taipei Industrial Park, Wuk | tu District, New Taipei City, Taiwan/新北市五股區新北 | 產業園區五工路 134 號       |
|-------------------|------------------------------------------------------|-----------------------------------------------|---------------------|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                  | f (886-2) 2298-0488                           | www.sgs.com.tw      |
|                   |                                                      |                                               | Member of SGS Group |

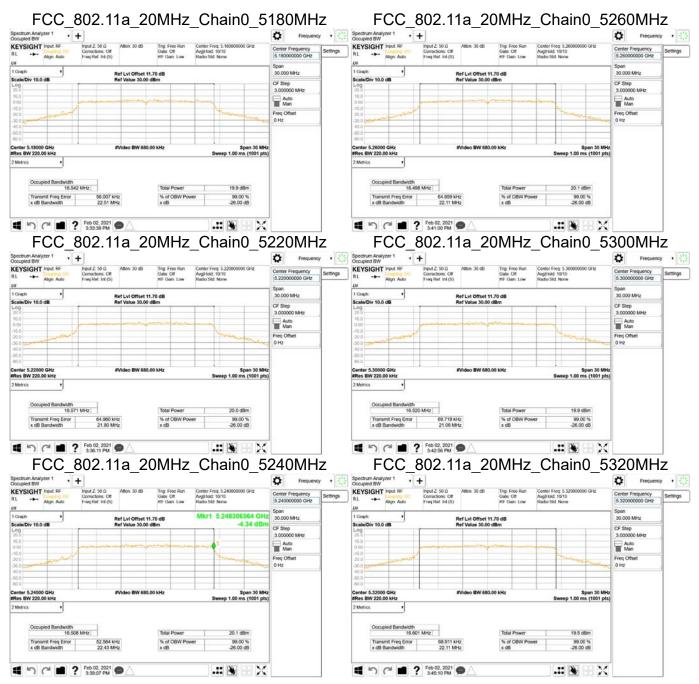


#### 8.5.2 6dB Bandwidth (5725 MHz~ 5850 MHz) measure with Peak detector for FCC

802 11a Ch0

| Freq.<br>(MHz) | 6dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) |  |  |  |  |
|----------------|--------------------|--------------------|--|--|--|--|
| 5745           | 14.21              | 11.530             |  |  |  |  |
| 5785           | 16.37              | 12.140             |  |  |  |  |
| 5825           | 16.38              | 12.140             |  |  |  |  |

| 802.11n_HT20_Ch0 |                    |                    | 802.11n_HT20_Ch1 |                    |                    |
|------------------|--------------------|--------------------|------------------|--------------------|--------------------|
| Freq.<br>(MHz)   | 6dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) | Freq.<br>(MHz)   | 6dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) |
| 5745             | 17.57              | 12.450             | 5745             | 16.66              | 12.220             |
| 5785             | 15.68              | 11.950             | 5785             | 15.60              | 11.930             |
| 5825             | 17.33              | 12.390             | 5825             | 17.35              | 12.390             |


| 8 | 802.11n_HT40_Ch0 |                    |                    | 802.11n_HT40_Ch1 |                    |                    |
|---|------------------|--------------------|--------------------|------------------|--------------------|--------------------|
|   | Freq.<br>(MHz)   | 6dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) | Freq.<br>(MHz)   | 6dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) |
| ſ | 5755             | 35.71              | 15.530             | 5755             | 36.07              | 15.570             |
|   | 5795             | 33.90              | 15.300             | 5795             | 35.75              | 15.530             |

| 802.11ac _VHT80_Ch0 |                    |                    | 802.11ac _VHT80_C | h1                 |                    |
|---------------------|--------------------|--------------------|-------------------|--------------------|--------------------|
| Freq.<br>(MHz)      | 6dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) | Freq.<br>(MHz)    | 6dB<br>BW<br>(MHz) | 10 Log (B)<br>(dB) |
| 5775                | 75.18              | 18.760             | 5775              | 74.56              | 18.730             |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

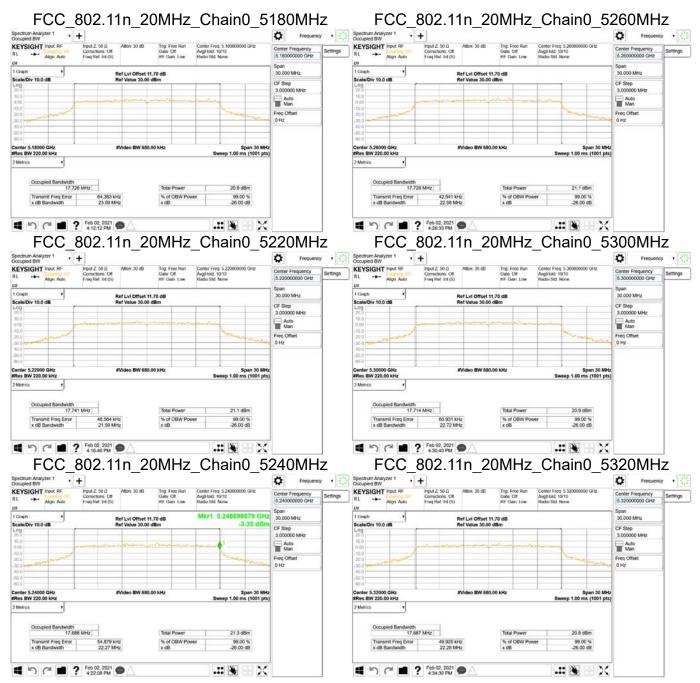
| SGS Taiwan Ltd. N | φ.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                          | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                              |                     | Member of SGS Group |  |





Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

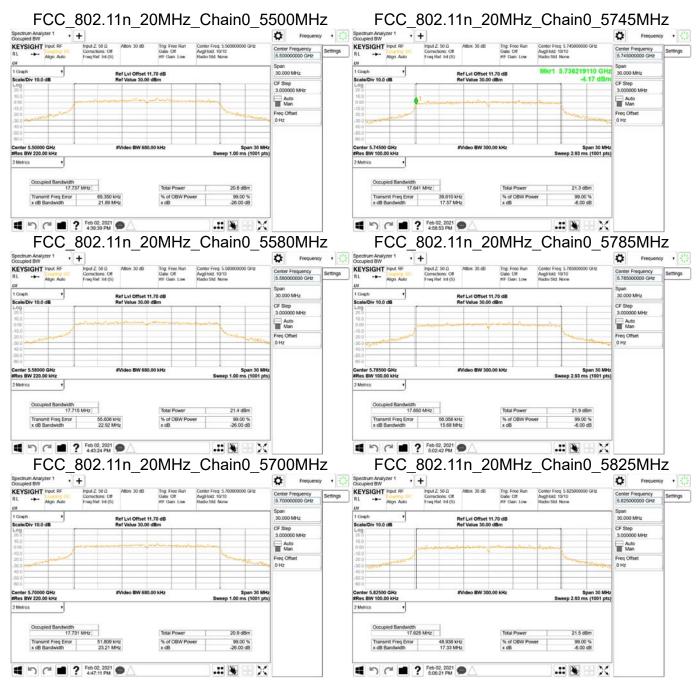
| SGS Taiwan Ltd. N | φ.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                          | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                              |                     | Member of SGS Group |  |






Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

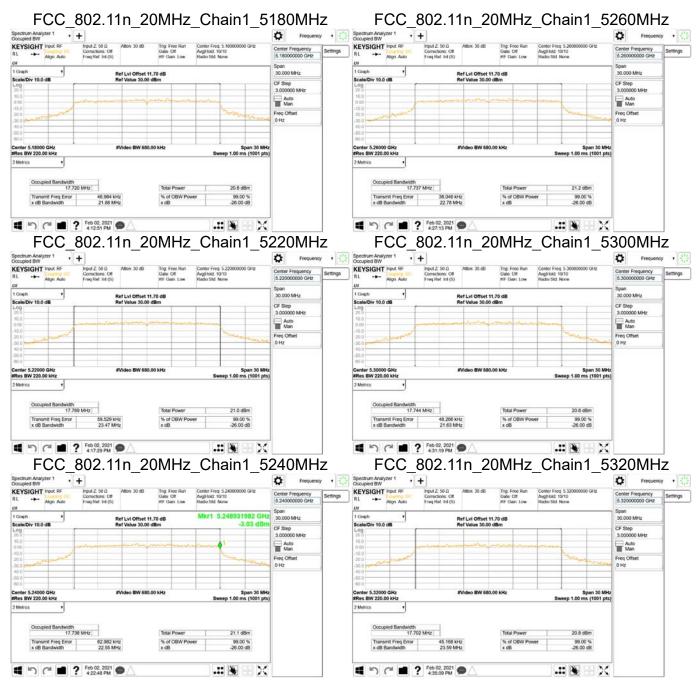
| SGS Taiwan Ltd. N | No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|---------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                           | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                               |                     | Member of SGS Group |  |






除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

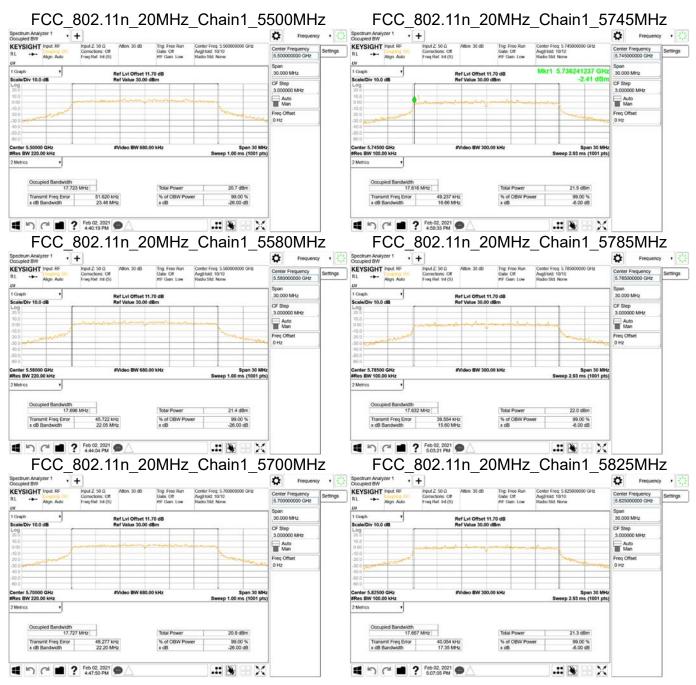
| SGS Taiwan Ltd. N | ∮0.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|---------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                           | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                               |                     | Member of SGS Group |  |






除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | №.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                          | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                              |                     | Member of SGS Group |  |






除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

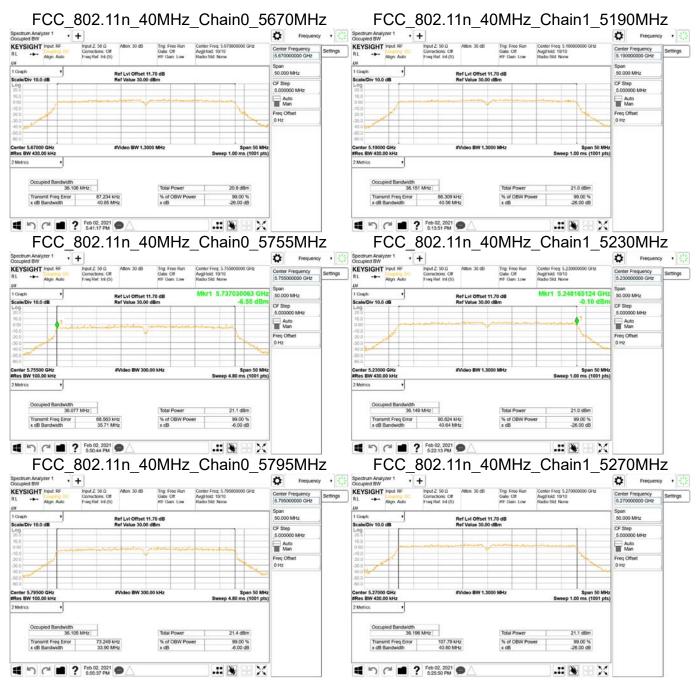
| SGS Taiwan Ltd. N | φ.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                          | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                              |                     | Member of SGS Group |  |






除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

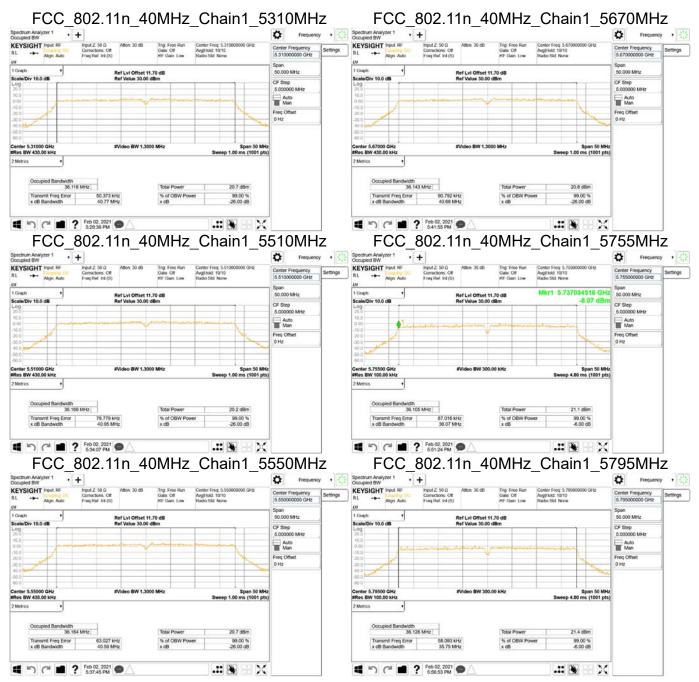
| SGS Taiwan Ltd. N | φ.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                          | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                              |                     | Member of SGS Group |  |






除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

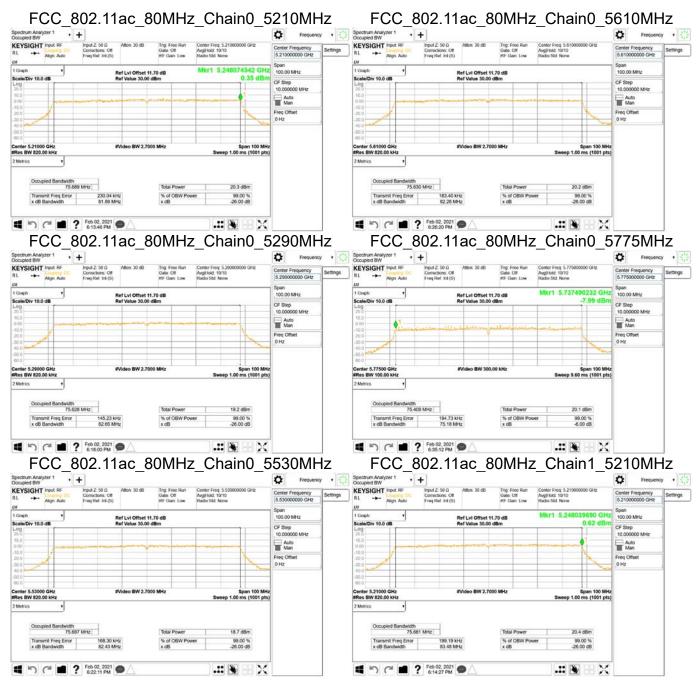
| SGS Taiwan Ltd. N | №.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                          | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                              |                     | Member of SGS Group |  |






除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | №.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                          | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                              |                     | Member of SGS Group |  |






除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|---------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                           | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                               |                     | Member of SGS Group |  |






Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N   | ).134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |  |  |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 台灣檢驗科技股份有限公司        | <b>F限公司</b> t (886-2) 2299-3279 f (886-2) 2298-0488 www.sgs.com.tw                                           |  |  |  |  |  |  |
| Member of SGS Group |                                                                                                              |  |  |  |  |  |  |





除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | 0.134, Wu Kung Road, New Taipei Industrial Park, W     | /uku District, New Taipei City, Taiwan/新北市五股區新北; | 產業園區五工路 134 號       |  |  |  |  |
|-------------------|--------------------------------------------------------|--------------------------------------------------|---------------------|--|--|--|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279 f (886-2) 2298-0488 www.sgs.com.tw |                                                  |                     |  |  |  |  |
|                   |                                                        |                                                  | Member of SGS Group |  |  |  |  |



### 8.5.3 **BW Verification for DFS Function**

802.11a\_Ch0

| Freq.<br>(MHz) | Measured<br>Freq.<br>(MHz) | Limit<br>(MHz) |
|----------------|----------------------------|----------------|
| 5240           | 5248.31                    | < 5250         |
| 5745           | 5736.83                    | > 5725         |

802.11n\_HT20\_Ch0

802.11n\_HT20\_Ch1

| Freq.<br>(MHz) | Measured<br>Freq.<br>(MHz) | Limit<br>(MHz) | Freq.<br>(MHz) | Measured<br>Freq.<br>(MHz) | Limit<br>(MHz) |
|----------------|----------------------------|----------------|----------------|----------------------------|----------------|
| 5240           | 5248.90                    | < 5250         | 5240           | 5248.93                    | < 5250         |
| 5745           | 5736.22                    | > 5725         | 5745           | 5736.24                    | > 5725         |

### 802.11n HT40 Ch0

802.11n HT40 Ch1

| Freq.<br>(MHz) | Measured<br>Freq.<br>(MHz) | Limit Freq.<br>(MHz) (MHz) |      | Measured<br>Freq.<br>(MHz) | Limit<br>(MHz) |
|----------------|----------------------------|----------------------------|------|----------------------------|----------------|
| 5230           | 5248.16                    | < 5250                     | 5230 | 5248.17                    | < 5250         |
| 5755           | 5737.03                    | > 5725                     | 5755 | 5737.03                    | > 5725         |

### 802.11ac \_VHT80\_Ch0

802.11ac \_VHT80\_Ch1

| Freq.<br>(MHz) | Measured<br>Freq.<br>(MHz) | Limit Freq.<br>(MHz) (MHz) |      | Measured<br>Freq.<br>(MHz) | Limit<br>(MHz) |
|----------------|----------------------------|----------------------------|------|----------------------------|----------------|
| 5210           | 5248.07                    | < 5250                     | 5210 | 5248.04                    | < 5250         |
| 5775           | 5737.49                    | > 5725                     | 5775 | 5737.46                    | > 5725         |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



### MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT 9

### 9.1 Standard Applicable

## FCC

| OPERZTION<br>Band                                                                                                                                                                                  | EUT CATEGORY |                                   | LIMIT                             |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|-----------------------------------|--|--|--|
|                                                                                                                                                                                                    |              | Access Point (Master device)      | 1 Watt(30dBm)                     |  |  |  |
| U-NII-1                                                                                                                                                                                            |              | Fixed point-to-point Access Ponit | 1 Watt(30dBm)                     |  |  |  |
|                                                                                                                                                                                                    | $\boxtimes$  | Mobile and portable client device | 250mW(23.98dBm)                   |  |  |  |
| U-NII-2A                                                                                                                                                                                           | $\boxtimes$  |                                   | 250mW(23.98dBm) or 11dBm+10 log B |  |  |  |
| U-NII-2C                                                                                                                                                                                           | $\boxtimes$  |                                   | 250mW(23.98dBm) or 11dBm+10 log B |  |  |  |
| U-NII-3                                                                                                                                                                                            | $\boxtimes$  |                                   | 1 Watt(30dBm)                     |  |  |  |
| If transmitting antennas of directional gain greater than 6 dBi are used, the Maximum transmit power shall be reduced by the amount in dB that the direction-al gain of the antenna exceeds 6 dBi. |              |                                   |                                   |  |  |  |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



# Note:

As per section F. 2). e). (ii) of FCC KDB 662911 D01

If antenna gains are not equal and each transmit antenna is driven by only one spatial stream, directional gain may be calculated by either of the following formulas.

$$DirectionalGain = 10 \cdot \log \left[ \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

where

Each antenna is driven by no more than one spatial stream;

NSS = the number of independent spatial streams of data;

NANT = the total number of antennas

 $g_{j,k} = 10^{Gk/20}$  if the kth antenna is being fed by spatial stream j, or zero if it is not;

 $G_k$  is the gain in dBi of the kth antenna.

The antenna gain is not greater than 6 dBi. Therefore, reduction of power is not required.

# 9.2 Measurement Procedure

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules .
- 3. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 4. Power Meter is used as the auxiliary test equipment to conduct the output power measurement.
- 5. Record the max. reading and add 10 log(1/duty cycle).
- 6. Repeat above procedures until all frequency (low, middle, and high channel) measured were complete.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### 9.3 **Measurement Equipment Used**

| SGS Conducted Room |                     |                   |                  |            |            |  |  |
|--------------------|---------------------|-------------------|------------------|------------|------------|--|--|
| EQUIPMENT TYPE     | E MFR MODE<br>NUMBE |                   | SERIAL<br>NUMBER | LAST CAL.  | CAL DUE.   |  |  |
| Spectrum Analyzer  | KEYSIGHT            | N9010B            | MY59071573       | 06/26/2020 | 06/25/2021 |  |  |
| Power Meter        | Anritsu             | ML2496A           | 1512003          | 07/23/2020 | 07/22/2021 |  |  |
| Power Sensor       | Anritsu             | MA2411B           | 1339378          | 07/23/2020 | 07/22/2021 |  |  |
| Power Sensor       | Anritsu             | MA2411B           | 1339379          | 07/23/2020 | 07/22/2021 |  |  |
| Attenuator         | Marvelous           | MVE2213-10        | RF06             | 11/19/2020 | 11/18/2021 |  |  |
| Attenuator         | Marvelous           | WATT-218FS-<br>10 | RF18             | 11/19/2020 | 11/18/2021 |  |  |
| DC Block           | PASTERNACK          | PE8210            | RF153            | 11/19/2020 | 11/18/2021 |  |  |

#### **Test Set-up** 9.4

| FUT | Attenuator | Power Meter |
|-----|------------|-------------|
| EUT | Allendalor | Fower Meter |
|     |            |             |

#### 9.5 **Measurement Result**

#### Conducted output power (FCC) 9.5.1

## 802.11a Ch0

| 02.11a_0 |           |      | TOTAL | TOTAL  |       | REQUIRED         |       | T      |
|----------|-----------|------|-------|--------|-------|------------------|-------|--------|
| СН       | Frequency | Data | POWER | POWER  |       | LIMIT            |       | RESULT |
|          | (MHz)     | Rate | (dBm) | (mW)   |       | (dBm)            |       |        |
| 36       | 5180      | 6    | 14.46 | 27.899 |       | 23.98            |       | PASS   |
| 44       | 5220      | 6    | 14.94 | 31.159 |       | 23.98            |       | PASS   |
| 48       | 5240      | 6    | 14.68 | 29.349 |       | 23.98            |       | PASS   |
| 52       | 5260      | 6    | 14.79 | 30.101 | 23.98 | or 11+10log(B) = | 24.45 | PASS   |
| 60       | 5300      | 6    | 14.80 | 30.171 | 23.98 | or 11+10log(B) = | 24.24 | PASS   |
| 64       | 5320      | 6    | 14.64 | 29.079 | 23.98 | or 11+10log(B) = | 24.45 | PASS   |
| 100      | 5500      | 6    | 14.16 | 26.037 | 23.98 | or 11+10log(B) = | 24.58 | PASS   |
| 116      | 5580      | 6    | 14.79 | 30.101 | 23.98 | or 11+10log(B) = | 24.63 | PASS   |
| 140      | 5700      | 6    | 14.40 | 27.516 | 23.98 | or 11+10log(B) = | 24.41 | PASS   |
| 149      | 5745      | 6    | 14.49 | 28.092 |       | 30               |       | PASS   |
| 157      | 5785      | 6    | 14.69 | 29.416 |       | 30               |       | PASS   |
| 165      | 5825      | 6    | 14.35 | 27.201 |       | 30               |       | PASS   |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | 0.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |  |  |  |  |  |  |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279 f (886-2) 2298-0488 www.sgs.com.tw                                                       |  |  |  |  |  |  |  |
|                   | Member of SGS Grou                                                                                           |  |  |  |  |  |  |  |



# Report No.: E2/2021/10021 Page: 43 of 208

## 802.11a Ch1

| СН  | Frequency<br>(MHz) | Data<br>Rate | TOTAL<br>POWER<br>(dBm) | TOTAL<br>POWER<br>(mW) |       | REQUIRED<br>LIMIT<br>(dBm) |       | RESULT |
|-----|--------------------|--------------|-------------------------|------------------------|-------|----------------------------|-------|--------|
| 36  | 5180               | 6            | 14.34                   | 27.139                 |       | 23.98                      |       | PASS   |
| 44  | 5220               | 6            | 14.02                   | 25.211                 |       | 23.98                      |       | PASS   |
| 48  | 5240               | 6            | 14.03                   | 25.269                 |       | 23.98                      |       | PASS   |
| 52  | 5260               | 6            | 14.04                   | 25.327                 | 23.98 | or 11+10log(B) =           | 24.45 | PASS   |
| 60  | 5300               | 6            | 14.03                   | 25.269                 | 23.98 | or 11+10log(B) =           | 24.24 | PASS   |
| 64  | 5320               | 6            | 14.09                   | 25.620                 | 23.98 | or 11+10log(B) =           | 24.45 | PASS   |
| 100 | 5500               | 6            | 14.12                   | 25.798                 | 23.98 | or 11+10log(B) =           | 24.58 | PASS   |
| 116 | 5580               | 6            | 14.23                   | 26.460                 | 23.98 | or 11+10log(B) =           | 24.63 | PASS   |
| 140 | 5700               | 6            | 14.45                   | 27.835                 | 23.98 | or 11+10log(B) =           | 24.41 | PASS   |
| 149 | 5745               | 6            | 14.12                   | 25.798                 |       | 30                         |       | PASS   |
| 157 | 5785               | 6            | 14.10                   | 25.679                 |       | 30                         |       | PASS   |
| 165 | 5825               | 6            | 14.11                   | 25.739                 |       | 30                         |       | PASS   |

## 802.11n\_HT20\_Ch0

| СН  | Frequency<br>(MHz) | Data<br>Rate | TOTAL<br>POWER<br>(dBm) | TOTAL<br>POWER<br>(mW) | REQUIRED<br>LIMIT<br>(dBm) |                  |       | RESULT |
|-----|--------------------|--------------|-------------------------|------------------------|----------------------------|------------------|-------|--------|
| 36  | 5180               | MCS0         | 15.50                   | 35.497                 |                            | 23.98            |       | PASS   |
| 44  | 5220               | MCS0         | 15.68                   | 36.999                 |                            | 23.98            |       | PASS   |
| 48  | 5240               | MCS0         | 15.72                   | 37.342                 |                            | 23.98            |       | PASS   |
| 52  | 5260               | MCS0         | 15.88                   | 38.743                 | 23.98                      | or 11+10log(B) = | 24.54 | PASS   |
| 60  | 5300               | MCS0         | 15.62                   | 36.492                 | 23.98                      | or 11+10log(B) = | 24.56 | PASS   |
| 64  | 5320               | MCS0         | 15.33                   | 34.135                 | 23.98                      | or 11+10log(B) = | 24.48 | PASS   |
| 100 | 5500               | MCS0         | 15.05                   | 32.003                 | 23.98                      | or 11+10log(B) = | 24.40 | PASS   |
| 116 | 5580               | MCS0         | 15.53                   | 35.743                 | 23.98                      | or 11+10log(B) = | 24.60 | PASS   |
| 140 | 5700               | MCS0         | 15.09                   | 32.299                 | 23.98                      | or 11+10log(B) = | 24.66 | PASS   |
| 149 | 5745               | MCS0         | 15.31                   | 33.978                 |                            | 30               |       | PASS   |
| 157 | 5785               | MCS0         | 15.45                   | 35.091                 |                            | 30               |       | PASS   |
| 165 | 5825               | MCS0         | 15.13                   | 32.598                 |                            | 30               |       | PASS   |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

|                   |                                                |                                                    |                | - |
|-------------------|------------------------------------------------|----------------------------------------------------|----------------|---|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                            | f (886-2) 2298-0488                                | www.sgs.com.tw |   |
| SGS Taiwan Ltd. N | 0.134,Wu Kung Road, New Taipei Industrial Park | k, Wuku District, New Taipei City, Taiwan/新北市五股區新北 | 1產業園區五工路 134 號 |   |



# Report No.: E2/2021/10021 Page: 44 of 208

## 802.11n\_HT20\_Ch1

| СН  | Frequency<br>(MHz) | Data<br>Rate | TOTAL<br>POWER<br>(dBm) | TOTAL<br>POWER<br>(mW) | REQUIRED<br>LIMIT<br>(dBm) |                  |       | RESULT |
|-----|--------------------|--------------|-------------------------|------------------------|----------------------------|------------------|-------|--------|
| 36  | 5180               | MCS0         | 15.08                   | 32.225                 |                            | 23.98            |       | PASS   |
| 44  | 5220               | MCS0         | 15.88                   | 38.743                 |                            | 23.98            |       | PASS   |
| 48  | 5240               | MCS0         | 15.87                   | 38.654                 |                            | 23.98            |       | PASS   |
| 52  | 5260               | MCS0         | 15.92                   | 39.102                 | 23.98                      | or 11+10log(B) = | 24.58 | PASS   |
| 60  | 5300               | MCS0         | 15.94                   | 39.282                 | 23.98                      | or 11+10log(B) = | 24.35 | PASS   |
| 64  | 5320               | MCS0         | 15.01                   | 31.710                 | 23.98                      | or 11+10log(B) = | 24.73 | PASS   |
| 100 | 5500               | MCS0         | 15.12                   | 32.523                 | 23.98                      | or 11+10log(B) = | 24.70 | PASS   |
| 116 | 5580               | MCS0         | 15.28                   | 33.744                 | 23.98                      | or 11+10log(B) = | 24.43 | PASS   |
| 140 | 5700               | MCS0         | 15.82                   | 38.212                 | 23.98                      | or 11+10log(B) = | 24.46 | PASS   |
| 149 | 5745               | MCS0         | 14.60                   | 28.853                 |                            | 30               |       | PASS   |
| 157 | 5785               | MCS0         | 15.07                   | 32.151                 |                            | 30               |       | PASS   |
| 165 | 5825               | MCS0         | 15.08                   | 32.225                 |                            | 30               |       | PASS   |

### 802.11n HT20 MIMO

| 011 | Frequency | Data | Avg. POW | /ER (dBm) | TOTAL          | TOTAL         |       | REQUIRED         |       | DEQUE T |
|-----|-----------|------|----------|-----------|----------------|---------------|-------|------------------|-------|---------|
| СН  | (MHz)     | Rate | CH 0     | CH 1      | POWER<br>(dBm) | POWER<br>(mW) |       | LIMIT<br>(dBm)   |       | RESULT  |
| 36  | 5180      | MCS8 | 15.31    | 15.04     | 18.43          | 69.652        |       | 23.98            |       | PASS    |
| 44  | 5220      | MCS8 | 15.32    | 14.83     | 18.33          | 68.142        |       | 23.98            |       | PASS    |
| 48  | 5240      | MCS8 | 15.68    | 14.79     | 18.51          | 70.958        |       | 23.98            |       | PASS    |
| 52  | 5260      | MCS8 | 15.71    | 14.75     | 18.51          | 70.937        | 23.98 | or 11+10log(B) = | 24.54 | PASS    |
| 60  | 5300      | MCS8 | 15.45    | 14.69     | 18.34          | 68.216        | 23.98 | or 11+10log(B) = | 24.35 | PASS    |
| 64  | 5320      | MCS8 | 15.14    | 14.77     | 18.21          | 66.240        | 23.98 | or 11+10log(B) = | 24.48 | PASS    |
| 100 | 5500      | MCS8 | 14.96    | 14.83     | 18.15          | 65.279        | 23.98 | or 11+10log(B) = | 24.40 | PASS    |
| 116 | 5580      | MCS8 | 15.43    | 15.04     | 18.49          | 70.658        | 23.98 | or 11+10log(B) = | 24.43 | PASS    |
| 140 | 5700      | MCS8 | 15.01    | 14.69     | 18.11          | 64.643        | 23.98 | or 11+10log(B) = | 24.46 | PASS    |
| 149 | 5745      | MCS8 | 14.83    | 14.53     | 17.93          | 62.156        |       | 30               |       | PASS    |
| 157 | 5785      | MCS8 | 15.41    | 14.79     | 18.36          | 68.601        |       | 30               |       | PASS    |
| 165 | 5825      | MCS8 | 15.01    | 14.68     | 18.10          | 64.571        |       | 30               |       | PASS    |

### 802.11n\_HT40\_Ch0

| СН  | Frequency<br>(MHz) | Data<br>Rate | TOTAL<br>POWER<br>(dBm) | TOTAL<br>POWER<br>(mW) |       | RESULT           |       |      |
|-----|--------------------|--------------|-------------------------|------------------------|-------|------------------|-------|------|
| 38  | 5190               | MCS0         | 14.72                   | 29.668                 |       | 23.98            |       | PASS |
| 46  | 5230               | MCS0         | 14.94                   | 31.210                 |       | 23.98            |       | PASS |
| 54  | 5270               | MCS0         | 14.96                   | 31.354                 | 23.98 | or 11+10log(B) = | 27.08 | PASS |
| 62  | 5310               | MCS0         | 14.75                   | 29.874                 | 23.98 | or 11+10log(B) = | 27.07 | PASS |
| 102 | 5510               | MCS0         | 14.75                   | 29.874                 | 23.98 | or 11+10log(B) = | 27.13 | PASS |
| 110 | 5550               | MCS0         | 13.65                   | 23.190                 | 23.98 | or 11+10log(B) = | 27.11 | PASS |
| 134 | 5670               | MCS0         | 14.85                   | 30.570                 | 23.98 | or 11+10log(B) = | 27.11 | PASS |
| 151 | 5755               | MCS0         | 14.83                   | 30.429                 |       | 30               |       | PASS |
| 159 | 5795               | MCS0         | 14.96                   | 31.354                 |       | 30               |       | PASS |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | 0.134, Wu Kung Road, New Taipei Industrial Park, Wuku Di | strict, New Taipei City, Taiwan/新北市五股區新: | 比產業園區五工路 134 號      |
|-------------------|----------------------------------------------------------|------------------------------------------|---------------------|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                      | f (886-2) 2298-0488                      | www.sgs.com.tw      |
|                   |                                                          |                                          | Member of SGS Group |



# Report No.: E2/2021/10021 Page: 45 of 208

## 802.11n HT40 Ch1

| СН  | Frequency<br>(MHz) | Data<br>Rate | TOTAL<br>POWER<br>(dBm) | TOTAL<br>POWER<br>(mW) | REQUIRED<br>LIMIT<br>(dBm) |                  |       | RESULT |
|-----|--------------------|--------------|-------------------------|------------------------|----------------------------|------------------|-------|--------|
| 38  | 5190               | MCS0         | 14.62                   | 28.993                 |                            | 23.98            |       | PASS   |
| 46  | 5230               | MCS0         | 14.44                   | 27.816                 |                            | 23.98            |       | PASS   |
| 54  | 5270               | MCS0         | 14.45                   | 27.880                 | 23.98                      | or 11+10log(B) = | 27.11 | PASS   |
| 62  | 5310               | MCS0         | 14.51                   | 28.268                 | 23.98                      | or 11+10log(B) = | 27.10 | PASS   |
| 102 | 5510               | MCS0         | 14.66                   | 29.261                 | 23.98                      | or 11+10log(B) = | 27.12 | PASS   |
| 110 | 5550               | MCS0         | 13.48                   | 22.299                 | 23.98                      | or 11+10log(B) = | 27.08 | PASS   |
| 134 | 5670               | MCS0         | 14.68                   | 29.396                 | 23.98                      | or 11+10log(B) = | 27.09 | PASS   |
| 151 | 5755               | MCS0         | 14.11                   | 25.781                 |                            | 30               |       | PASS   |
| 159 | 5795               | MCS0         | 14.51                   | 28.268                 |                            | 30               |       | PASS   |

### 802.11n HT40 MIMO

| СН  | Frequency | Data | Avg. POW | /ER (dBm) | TOTAL<br>POWER | TOTAL<br>POWER |       | REQUIRED<br>LIMIT |       | RESULT |
|-----|-----------|------|----------|-----------|----------------|----------------|-------|-------------------|-------|--------|
| GI  | (MHz)     | Rate | CH 0     | CH 1      | (dBm)          | (mW)           |       | (dBm)             |       | RESOLI |
| 38  | 5190      | MCS8 | 14.38    | 13.83     | 17.71          | 58.978         |       | 23.98             |       | PASS   |
| 46  | 5230      | MCS8 | 14.6     | 13.82     | 17.82          | 60.544         |       | 23.98             |       | PASS   |
| 54  | 5270      | MCS8 | 14.93    | 13.75     | 17.97          | 62.707         | 23.98 | or 11+10log(B) =  | 27.08 | PASS   |
| 62  | 5310      | MCS8 | 14.51    | 13.76     | 17.74          | 59.489         | 23.98 | or 11+10log(B) =  | 27.07 | PASS   |
| 102 | 5510      | MCS8 | 14.05    | 14.01     | 17.62          | 57.853         | 23.98 | or 11+10log(B) =  | 27.12 | PASS   |
| 110 | 5550      | MCS8 | 12.58    | 12.15     | 15.96          | 39.478         | 23.98 | or 11+10log(B) =  | 27.08 | PASS   |
| 134 | 5670      | MCS8 | 14.21    | 13.88     | 17.64          | 58.095         | 23.98 | or 11+10log(B) =  | 27.09 | PASS   |
| 151 | 5755      | MCS8 | 14.16    | 13.44     | 17.41          | 55.057         |       | 30                |       | PASS   |
| 159 | 5795      | MCS8 | 14.31    | 13.58     | 17.55          | 56.932         |       | 30                |       | PASS   |

### 802.11ac\_VHT80\_Ch0

| СН  | Frequency<br>(MHz) | Data<br>Rate | TOTAL<br>POWER<br>(dBm) | TOTAL<br>POWER<br>(mW) |       | RESULT           |       |      |
|-----|--------------------|--------------|-------------------------|------------------------|-------|------------------|-------|------|
| 42  | 5210               | MCS0         | 13.75                   | 23.720                 |       | 23.98            |       | PASS |
| 58  | 5290               | MCS0         | 11.18                   | 13.126                 | 23.98 | or 11+10log(B) = | 30.17 | PASS |
| 106 | 5530               | MCS0         | 13.44                   | 22.086                 | 23.98 | or 11+10log(B) = | 30.16 | PASS |
| 122 | 5610               | MCS0         | 13.58                   | 22.810                 | 23.98 | or 11+10log(B) = | 30.15 | PASS |
| 155 | 5775               | MCS0         | 13.61                   | 22.968                 |       | 30               |       | PASS |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | 0.134, Wu Kung Road, New Taipei Industrial Park, Wuku | u District, New Taipei City, Taiwan/新北市五股區新北 | 產業園區五工路 134 號       |
|-------------------|-------------------------------------------------------|----------------------------------------------|---------------------|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                   | f (886-2) 2298-0488                          | www.sgs.com.tw      |
|                   |                                                       |                                              | Member of SGS Group |



# Report No.: E2/2021/10021 Page: 46 of 208

## 802.11ac\_VHT80\_Ch1

| СН  | Frequency<br>(MHz) | Data<br>Rate | TOTAL<br>POWER<br>(dBm) | TOTAL<br>POWER<br>(mW) |       | RESULT           |       |      |
|-----|--------------------|--------------|-------------------------|------------------------|-------|------------------|-------|------|
| 42  | 5210               | MCS0         | 13.57                   | 22.757                 |       | 23.98            |       | PASS |
| 58  | 5290               | MCS0         | 11.01                   | 12.622                 | 23.98 | or 11+10log(B) = | 30.20 | PASS |
| 106 | 5530               | MCS0         | 13.98                   | 25.010                 | 23.98 | or 11+10log(B) = | 30.18 | PASS |
| 122 | 5610               | MCS0         | 13.31                   | 21.435                 | 23.98 | or 11+10log(B) = | 30.18 | PASS |
| 155 | 5775               | MCS0         | 13.51                   | 22.445                 |       | 30               |       | PASS |

### 802.11ac\_VHT80\_MIMO

|     | Frequency | Data | Avg. POW | 'ER (dBm) | TOTAL          | TOTAL         |       | REQUIRED         |       |        |
|-----|-----------|------|----------|-----------|----------------|---------------|-------|------------------|-------|--------|
| СН  | (MHz)     | Rate | CH 0     | CH 1      | POWER<br>(dBm) | POWER<br>(mW) |       | LIMIT<br>(dBm)   |       | RESULT |
| 42  | 5210      | MCS0 | 12.46    | 12.09     | 16.09          | 40.648        |       | 23.98            |       | PASS   |
| 58  | 5290      | MCS0 | 10.46    | 10.02     | 14.06          | 25.451        | 23.98 | or 11+10log(B) = | 30.17 | PASS   |
| 106 | 5530      | MCS0 | 13.36    | 13        | 17.00          | 50.063        | 23.98 | or 11+10log(B) = | 30.16 | PASS   |
| 122 | 5610      | MCS0 | 12.06    | 11.75     | 15.72          | 37.318        | 23.98 | or 11+10log(B) = | 30.15 | PASS   |
| 155 | 5775      | MCS0 | 11.98    | 11.64     | 15.62          | 36.516        |       | 30               |       | PASS   |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | 0.134, Wu Kung Road, New Taipei Industrial Park, Wuku E | District, New Taipei City, Taiwan/新北市五股區新北 | 產業園區五工路 134 號       |
|-------------------|---------------------------------------------------------|--------------------------------------------|---------------------|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                     | f (886-2) 2298-0488                        | www.sgs.com.tw      |
|                   |                                                         |                                            | Member of SGS Group |



# **10 MAXIMUM POWER SPECTRAL DENSITY**

# 10.1 Standard Applicable

## FCC

| OPERZTION<br>Band                                                                                                                                                                                         | EUT CATEGORY |                                   | LIMIT         |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------|---------------|--|--|
|                                                                                                                                                                                                           |              | Access Point (Master device)      | 17dBm/ MHz    |  |  |
| U-NII-1                                                                                                                                                                                                   |              | Fixed point-to-point Access Ponit |               |  |  |
|                                                                                                                                                                                                           | $\boxtimes$  | Mobile and portable client device | 11dBm/ MHz    |  |  |
| U-NII-2A                                                                                                                                                                                                  | $\boxtimes$  |                                   | 11dBm/ MHz    |  |  |
| U-NII-2C                                                                                                                                                                                                  | $\boxtimes$  |                                   | 11dBm/ MHz    |  |  |
| U-NII-3                                                                                                                                                                                                   | $\boxtimes$  |                                   | 30dBm/ 500kHz |  |  |
| If transmitting antennas of directional gain greater than 6 dBi are used, the Maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. |              |                                   |               |  |  |

# Note:

As per section F. 2). e). (ii) of FCC KDB 662911 D01

If antenna gains are not equal and each transmit antenna is driven by only one spatial stream, directional gain may be calculated by either of the following formulas.

• DirectionalGain = 
$$10 \cdot \log \left[ \frac{\sum_{j=1}^{N_{SS}} \left\{ \sum_{k=1}^{N_{ANT}} g_{j,k} \right\}^2}{N_{ANT}} \right]$$

# where

Each antenna is driven by no more than one spatial stream; NSS = the number of independent spatial streams of data; NANT = the total number of antennas  $g_{j,k} = / 20 \ 10$ Gk if the kth antenna is being fed by spatial stream j, or zero if it is not; G<sub>k</sub> is the gain in dBi of the kth antenna.

The antenna gain is not greater than 6 dBi. Therefore, reduction of power is not required.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



# **10.2 Measurement Procedure**

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules .
- 3. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to Spectrum.
- 4. For U-NII1, U-NII-2A, U-NII-2C Band:

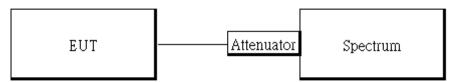
Set RBW=1MHz, VBW=3MHz, where span is enough to capture the entire bandwidth, Sweep time = Auto (601 pts), detector = sample, traces 100 sweeps of video averaging. (SA-2 with the omission of procedure x, the integration with 26dB EBW bandwidth) **For U-NII-3 Band**:

Set RBW= approximately 1% of EBW, VBW≥ 3RBW, where span is enough to capture the entire bandwidth, Sweep time = Auto, detector = RMS or sample, traces 100 sweeps of video averaging.

- 5. User the cursor on spectrum to peak search the highest level of trace
- 6. Record the max. reading and add 10 log(1/duty cycle).
- 7. Repeat above procedures until all default test channel (low, middle, and high) was complete.
- MIMO mode: offset is set following "measure and add 10 Log (N)" on spectrum to measure the PSD for MIMO mode. Offset = cable loss + 10 log (N), where N is number of transmitting antenna.

Note: For the test of PSD at MIMO mode, the highest emission of worst case employing Measure and add 10 log (N) technical is reported after the comparison between Main Antenna at single transmitting mode and Aux that yields the higher value. The MIMO transmitting mode produces higher value of outcome.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.


除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。



#### 10.3 **Measurement Equipment Used**

| SGS Conducted Room |            |                   |                  |            |            |  |  |
|--------------------|------------|-------------------|------------------|------------|------------|--|--|
| EQUIPMENT TYPE     | MFR        | MODEL<br>NUMBER   | SERIAL<br>NUMBER | LAST CAL.  | CAL DUE.   |  |  |
| Spectrum Analyzer  | KEYSIGHT   | N9010B            | MY59071573       | 06/26/2020 | 06/25/2021 |  |  |
| Attenuator         | Marvelous  | MVE2213-10        | RF06             | 11/19/2020 | 11/18/2021 |  |  |
| Attenuator         | Marvelous  | WATT-218FS-<br>10 | RF18             | 11/19/2020 | 11/18/2021 |  |  |
| DC Block           | PASTERNACK | PE8210            | RF153            | 11/19/2020 | 11/18/2021 |  |  |

# 10.4 Test Set-up



#### 10.5 **Measurement Result**

#### 10.5.1 Power spectral density

|                    | POWER DENSITY 802.11a MODE      |                                 |                        |                                     |                                      |                  |                |
|--------------------|---------------------------------|---------------------------------|------------------------|-------------------------------------|--------------------------------------|------------------|----------------|
| Frequency<br>(MHz) | ch0 meas<br>PSD<br>(dBm/MHz)    | ch1 meas<br>PSD<br>(dBm/MHz)    | Duty<br>Factor<br>(dB) | Maxmum Corr'd                       | l PSD(dBm/MHz)                       | Limit            | Margin<br>(dB) |
| 5180.00            | 2.39                            | 0.00                            | 0.21                   | 2.                                  | 60                                   | 11.00 dBm/MHz    | -8.40          |
| 5220.00            | 2.46                            | 0.00                            | 0.21                   | 2.0                                 | 67                                   | 11.00 dBm/MHz    | -8.33          |
| 5240.00            | 2.95                            | 0.00                            | 0.21                   | 3.                                  | 16                                   | 11.00 dBm/MHz    | -7.84          |
| 5260.00            | -0.46                           | 0.00                            | 0.21                   | -0.                                 | 25                                   | 11.00 dBm/MHz    | -11.25         |
| 5300.00            | 0.87                            | 0.00                            | 0.21                   | 1.0                                 | 08                                   | 11.00 dBm/MHz    | -9.92          |
| 5320.00            | -0.10                           | 0.00                            | 0.21                   | 0.                                  | 11                                   | 11.00 dBm/MHz    | -10.89         |
| 5500.00            | 1.93                            | 0.00                            | 0.21                   | 2.                                  | 14                                   | 11.00 dBm/MHz    | -8.86          |
| 5580.00            | 2.12                            | 0.00                            | 0.21                   | 2.3                                 | 33                                   | 11.00 dBm/MHz    | -8.67          |
| 5700.00            | 3.12                            | 0.00                            | 0.21                   | 3.3                                 | 33                                   | 11.00 dBm/MHz    | -7.67          |
| Frequency<br>(MHz) | ch0 meas<br>PSD<br>(dBm/300kHz) | ch1 meas<br>PSD<br>(dBm/300kHz) | Duty<br>Factor<br>(dB) | 10log<br>(500kHz/RBW)<br>Factor(dB) | Maxmum Corr'd<br>PSD<br>(dBm/500kHz) | Limit            | Margin<br>(dB) |
| 5745.00            | -2.06                           | 0.00                            | 0.21                   | 2.22                                | 0.37                                 | 30.00 dBm/500kHz | -29.63         |
| 5785.00            | -3.29                           | 0.00                            | 0.21                   | 2.22                                | -0.86                                | 30.00 dBm/500kHz | -30.86         |
| 5825.00            | -2.85                           | 0.00                            | 0.21                   | 2.22                                | -0.42                                | 30.00 dBm/500kHz | -30.42         |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | p.134,Wu Kung Road, New Taipei Industrial Park, Wuku Distrie | ct, New Taipei City, Taiwan/新北市五股區新: | 北產業園區五工路 134 號      |
|-------------------|--------------------------------------------------------------|--------------------------------------|---------------------|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                          | f (886-2) 2298-0488                  | www.sgs.com.tw      |
|                   |                                                              |                                      | Member of SGS Group |

# Report No.: E2/2021/10021 Page: 50 of 208

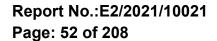


|                    | POWER DENSITY 802.11n HT20 MODE |                                 |                        |                                     |                                      |                  |                |
|--------------------|---------------------------------|---------------------------------|------------------------|-------------------------------------|--------------------------------------|------------------|----------------|
| Frequency<br>(MHz) | ch0 meas<br>PSD<br>(dBm/MHz)    | ch1 meas<br>PSD<br>(dBm/MHz)    | Duty<br>Factor<br>(dB) | Maxmum Corr'o                       | l PSD(dBm/MHz)                       | Limit            | Margin<br>(dB) |
| 5180.00            | 0.12                            | 1.58                            | 0.24                   | 4.                                  | 16                                   | 11.00 dBm/MHz    | -6.84          |
| 5220.00            | -0.23                           | 1.05                            | 0.24                   | 3.                                  | 71                                   | 11.00 dBm/MHz    | -7.29          |
| 5240.00            | 0.40                            | 1.99                            | 0.24                   | 4.                                  | 52                                   | 11.00 dBm/MHz    | -6.48          |
| 5260.00            | 1.21                            | 1.28                            | 0.24                   | 4.                                  | 50                                   | 11.00 dBm/MHz    | -6.50          |
| 5300.00            | -1.02                           | 0.40                            | 0.24                   | 3.                                  | 00                                   | 11.00 dBm/MHz    | -8.00          |
| 5320.00            | 0.45                            | 1.14                            | 0.24                   | 4.                                  | 06                                   | 11.00 dBm/MHz    | -6.94          |
| 5500.00            | -0.03                           | 0.39                            | 0.24                   | 3.                                  | 44                                   | 11.00 dBm/MHz    | -7.56          |
| 5580.00            | 2.54                            | 1.32                            | 0.24                   | 5.                                  | 22                                   | 11.00 dBm/MHz    | -5.78          |
| 5700.00            | 0.98                            | 2.54                            | 0.24                   | 5.                                  | 08                                   | 11.00 dBm/MHz    | -5.92          |
| Frequency<br>(MHz) | ch0 meas<br>PSD<br>(dBm/300kHz) | ch1 meas<br>PSD<br>(dBm/300kHz) | Duty<br>Factor<br>(dB) | 10log<br>(500kHz/RBW)<br>Factor(dB) | Maxmum Corr'd<br>PSD(dBm/500kHz<br>) | Limit            | Margin<br>(dB) |
| 5745.00            | -4.12                           | -3.92                           | 0.24                   | 2.22                                | 1.45                                 | 30.00 dBm/500kHz | -28.55         |
| 5785.00            | -3.50                           | -2.98                           | 0.24                   | 2.22                                | 2.24                                 | 30.00 dBm/500kHz | -27.76         |
| 5825.00            | -2.60                           | -2.04                           | 0.24                   | 2.22                                | 3.16                                 | 30.00 dBm/500kHz | -26.84         |

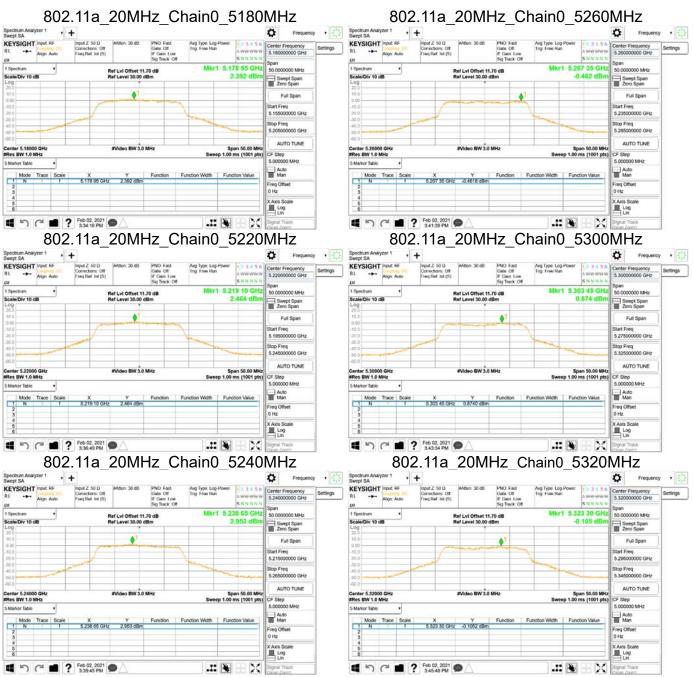
|                    | POWER DENSITY 802.11n HT40 MODE |                                 |                        |                                     |                                      |                  |                |
|--------------------|---------------------------------|---------------------------------|------------------------|-------------------------------------|--------------------------------------|------------------|----------------|
| Frequency<br>(MHz) | ch0 meas<br>PSD<br>(dBm/MHz)    | ch1 meas<br>PSD<br>(dBm/MHz)    | Duty<br>Factor<br>(dB) | Maxmum Corr'd PSD(dBm/MHz)          |                                      | Limit            | Margin<br>(dB) |
| 5190.00            | -4.25                           | -2.78                           | 0.58                   | 0.                                  | 14                                   | 11.00 dBm/MHz    | -10.86         |
| 5230.00            | -4.51                           | -5.36                           | 0.58                   | -1.                                 | .32                                  | 11.00 dBm/MHz    | -12.32         |
| 5270.00            | -5.62                           | -5.26                           | 0.58                   | -1.                                 | .85                                  | 11.00 dBm/MHz    | -12.85         |
| 5310.00            | -3.41                           | -2.97                           | 0.58                   | 0.                                  | 41                                   | 11.00 dBm/MHz    | -10.59         |
| 5510.00            | -4.44                           | -3.01                           | 0.58                   | -0.08                               |                                      | 11.00 dBm/MHz    | -11.08         |
| 5550.00            | -5.12                           | -5.55                           | 0.58                   | -1.                                 | .74                                  | 11.00 dBm/MHz    | -12.74         |
| 5670.00            | -5.28                           | -6.10                           | 0.58                   | -2                                  | .08                                  | 11.00 dBm/MHz    | -13.08         |
| Frequency<br>(MHz) | ch0 meas<br>PSD<br>(dBm/300kHz) | ch1 meas<br>PSD<br>(dBm/300kHz) | Duty<br>Factor<br>(dB) | 10log<br>(500kHz/RBW)<br>Factor(dB) | Maxmum Corr'd<br>PSD(dBm/500kHz<br>) | Limit            | Margin<br>(dB) |
| 5755.00            | -9.95                           | -8.49                           | 0.58                   | 2.22                                | -3.35                                | 30.00 dBm/500kHz | -33.35         |
| 5795.00            | -7.93                           | -8.91                           | 0.58                   | 2.22                                | -2.58                                | 30.00 dBm/500kHz | -32.58         |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | 0.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, | New Taipei City, Taiwan/新北市五股區新北, | 產業園區五工路 134 號  |
|-------------------|----------------------------------------------------------------|-----------------------------------|----------------|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                            | f (886-2) 2298-0488               | www.sgs.com.tw |
|                   |                                                                |                                   | N 1 (000 0     |



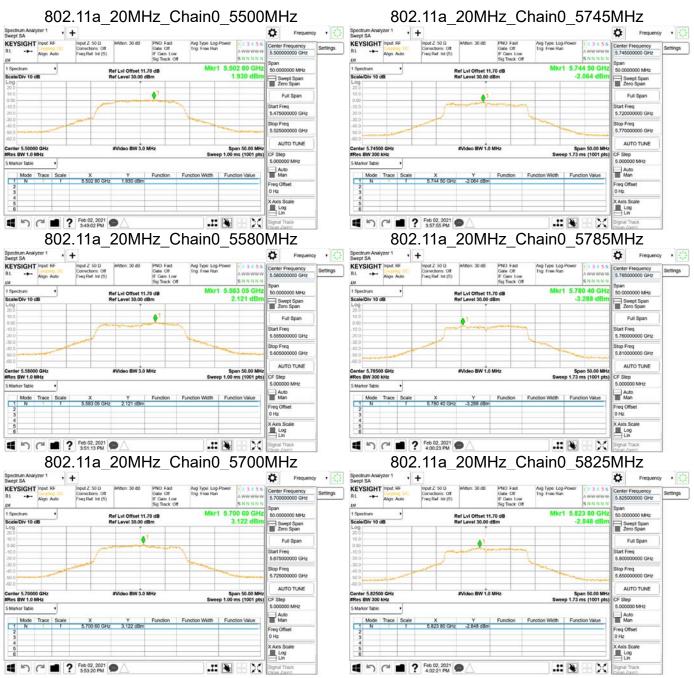

# Report No.: E2/2021/10021 Page: 51 of 208


|                    | POWER DENSITY 802.11ac VHT80 MODE |                                 |                        |                                     |                                      |                  |                |
|--------------------|-----------------------------------|---------------------------------|------------------------|-------------------------------------|--------------------------------------|------------------|----------------|
| Frequency<br>(MHz) | ch0 meas<br>PSD<br>(dBm/MHz)      | ch1 meas<br>PSD<br>(dBm/MHz)    | Duty<br>Factor<br>(dB) | Maxmum Corr'd                       | I PSD(dBm/MHz)                       | Limit            | Margin<br>(dB) |
| 5210.00            | -7.68                             | -8.92                           | 0.80                   | -4.                                 | 45                                   | 11.00 dBm/MHz    | -15.45         |
| 5290.00            | -10.94                            | -7.75                           | 0.80                   | -5.                                 | 25                                   | 11.00 dBm/MHz    | -16.25         |
| 5530.00            | -9.49                             | -10.92                          | 0.80                   | -6.34                               |                                      | 11.00 dBm/MHz    | -17.34         |
| 5610.00            | -9.27                             | -5.04                           | 0.80                   | -2.                                 | 85                                   | 11.00 dBm/MHz    | -13.85         |
| Frequency<br>(MHz) | ch0 meas<br>PSD<br>(dBm/300kHz)   | ch1 meas<br>PSD<br>(dBm/300kHz) | Duty<br>Factor<br>(dB) | 10log<br>(500kHz/RBW)<br>Factor(dB) | Maxmum Corr'd<br>PSD(dBm/500kHz<br>) | Limit            | Margin<br>(dB) |
| 5775.00            | -13.34                            | -12.57                          | 0.80                   | 2.22                                | -6.91                                | 30.00 dBm/500kHz | -36.91         |

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only. 除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

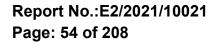
| SGS Talwan Ltd. | No.134,Wu Kung Road, New Taipei Industrial Park, W | /uku District, New Taipei City, Taiwan/新北市五股區新北 | 產業園區五工路 134 號       |
|-----------------|----------------------------------------------------|-------------------------------------------------|---------------------|
| 台灣檢驗科技股份有限公司    | t (886-2) 2299-3279                                | f (886-2) 2298-0488                             | www.sgs.com.tw      |
| _               |                                                    |                                                 | Member of SGS Group |



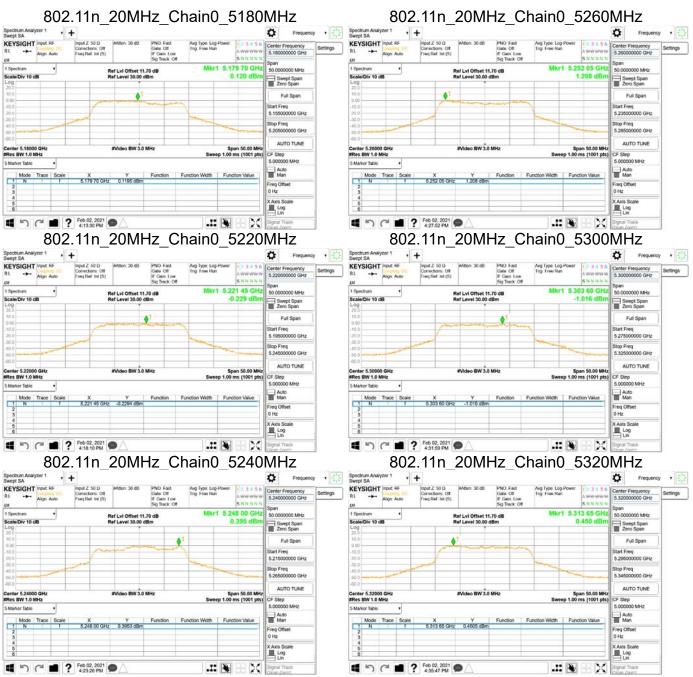





除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。


| SGS Taiwan Ltd. N | 0.134, Wu Kung Road, New Taipei Industrial Park, Wuku Distric | :t, New Taipei City, Taiwan/新北市五股區新北 | 產業園區五工路 134 號       |
|-------------------|---------------------------------------------------------------|--------------------------------------|---------------------|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                           | f (886-2) 2298-0488                  | www.sgs.com.tw      |
|                   |                                                               |                                      | Member of SGS Group |

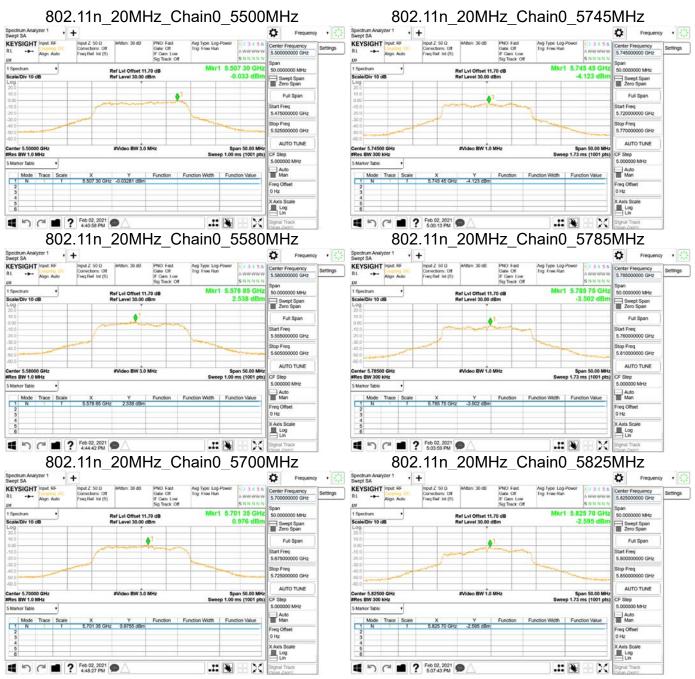





除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |  |  |
|-------------------|---------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|--|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                           | f (886-2) 2298-0488 | www.sgs.com.tw      |  |  |  |
|                   |                                                                                                               |                     | Member of SGS Group |  |  |  |








除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | p.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|--------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                          | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                              |                     | Member of SGS Group |  |





除非另有說明,此報告結果僅對測試之樣品負責,同時此樣品僅保留90天。本報告未經本公司書面許可,不可部份複製。

| SGS Taiwan Ltd. N | No.134,Wu Kung Road, New Taipei Industrial Park, Wuku District, New Taipei City, Taiwan/新北市五股區新北產業園區五工路 134 號 |                     |                     |  |
|-------------------|---------------------------------------------------------------------------------------------------------------|---------------------|---------------------|--|
| 台灣檢驗科技股份有限公司      | t (886-2) 2299-3279                                                                                           | f (886-2) 2298-0488 | www.sgs.com.tw      |  |
|                   |                                                                                                               |                     | Member of SGS Group |  |