ELECTROMAGNETIC EMISSIONS COMPLIANCE REPORT

Applicant：

Product Name：

Brand Name：
Model No．：
HVIN：
Model Difference：
Report Number：
FCC ID
IC：
Issue Date：
Date of Test：
Date of EUT Received：May 21， 2021

We hereby certify that：

The above equipment was tested by SGS Taiwan Ltd．Central RF Lab The test data，data evaluation，test procedures，and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63．10：2013 and the energy emitted by the sample EUT comply with FCC rule part §15．225，ISED RSS－210．

The results of this report relate only to the sample identified in this report．

Report No．：ER／2021／50021
Page： 2 of 34

Revision History

Report Number	Revision	Description	Issue Date	Revised By
ER／2021／50021	00	Original	July 9，2021	Yuri Tsai

Table of Contents

1 GENERAL INFORMATION 4
2 SYSTEM TEST CONFIGURATION 6
3 SUMMARY OF TEST RESULTS 8
4 DESCRIPTION OF TEST MODES 9
5 MEASUREMENT UNCERTAINTY 10
6 CONDUCTED EMISSIONS TEST 11
7 RADIATED EMISSION TEST 15
8 FREQUENCY STABILITY 28
9 EMISSION BANDWIDTH MEASUREMENT 31
10 ANTENNA REQUIREMENT 34

1 GENERAL INFORMATION

1．1 Product Description

Product Name：	Clover Flex
Brand Name：	clover
Model No．：	C403
HVIN：	C403W
Model Difference：	N／A
Hardware Version：	N／A
Firmware Version：	N／A
EUT Series No．：	C043UT11750016
Power Supply：	7．6V from Li－ion Polymer rechargeable battery or 12V from Adapter

1．2 RF specification

Radio Technology：	NFC
Operating Frequency	13.56 MHz
Transmit Power	$<123 \mathrm{dBuV} / \mathrm{m}$ at 3 m.
Number of Channels	1
Modulation Type	ASK
Antenna Type	Loop

Note：Antenna information is provided by the applicant．

Report No．：ER／2021／50021
Page： 5 of 34

1．3 Test Methodology

FCC Part 15，Subpart C §15．225
RSS－210 issue 10 Annex B B． 6 Dec． 2019
RSS－Gen Issue 5，Amendment 2，February 2021
ANSI C63．10：2013．

1．4 Test Facility

Laboratory	Test Site Address	Test Site Name	FCC Designation number	IC CAB identifier
SGS Taiwan Ltd． Central RF Lab． （TAF code 3702）	No．134，Wu Kung Road，New Taipei Industrial Park，Wuku District，New Taipei City，Taiwan．	SAC 1	TW0027	TW3702
		SAC 3		
		Conduction 1		
		Conducted 1		
		Conducted 2		
		Conducted 3		
		Conducted 4		
		Conducted 5		
		Conducted 6		
	No．2，Keji 1st Rd．，Guishan District， Taoyuan City，Taiwan 333	Conduction A	TW0028	
		SAC C		
		SAC D		
		SAC G		
		Conducted A		
		Conducted B		
		Conducted C		
		Conducted D		
		Conducted E		
		Conducted F		
		Conducted G		
Note：Test site name is remarked on the equipment list in each section of this report as an indication where measurements occurred in specific test site and address．				

1．5 Special Accessories

There is no other accessory attached．This is the worst case condition．

1．6 Equipment Modifications

There was no modification incorporated into the EUT．

2 SYSTEM TEST CONFIGURATION

2．1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application．

2．2 EUT Exercise

The Transmitter was operated in the normal operating mode．The Tx frequency was fixed which was for the purpose of the measurements．

2．3 Test Procedure

2．3．1 Conducted Emissions

The EUT is a placed on a table which is 0.8 m above ground plane．Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz ．The CISPR Quasi－Peak and Average detector mode is employed．The two LISNs provide $50 \mathrm{uH} / 50$ ohm of coupling impedance for the measuring instrument． Both lines of the power mains connected to the EUT were checked for maximum conducted interference．

2．3．2 Radiated Emissions

The EUT is a placed on a turn table．For emissions testing at or below 1 GHz ，the table height shall be 0.8 m above the reference ground plane．For emission measurements above 1 GHz ，the table height shall be 1.5 m ．The turn table shall rotate 360 degrees to determine the position of maximum emission level．EUT is set 3m away from the receiving antenna which varied from 1 m to 4 m to find out the highest emission．And also， each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical．In order to find out the max．emission，the relative positions of this transmitter（EUT）was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made＂while keeping the antenna in the＇cone of radiation＇from that area and pointed at the area both in azimuth and elevation，with polarization oriented for maximum response．＂is still within the 3 dB illumination BW of the measurement antenna．

2．3．3 Radiated Emission Test Sites For Measurements From 9 kHz To 30 MHz

Radiated emission below 30 MHz is measured in a $9 \mathrm{~m}^{*} 9 \mathrm{~m} * 6 \mathrm{~m}$ semi－anechoic chamber， the measurements correspond to those obtained at an open－field test site．
There is a comparison data of both open－field test site and semi－Anechoic chamber，and the result came out very similar．

Report No．：ER／2021／50021
Page： 7 of 34

2．4 Configuration of Tested System

Fig．2－1 Emission test set up configuration

Fig．2－2 Conduction test set up configuration

Table 2－1 Equipment Used in Tested System

Item	Equipment	Mfr／Brand	Model／Type No．	Series No．
1.	NFC Test software	N／A	N／A	N／A
2.	Flex Cable Kit	Clover	N／A	H041UQ639402 13

3 SUMMARY OF TEST RESULTS

FCC Rules	ISED Rules	Description Of Test	Result
$\S 15.207$	RSS－Gen § 8．8	AC Power Line Conducted Emission	Compliant
$\S 15.225(\mathrm{a})$－（d）	RSS210 Annex B B．6	Radiated Emission	Compliant
$\S 15.209$	RSS－Gen §8．9	Radiated Emission Limits， general requirement	Compliant
$\S 15.225(\mathrm{e})$	RSS210 Annex B B．6（b）	Frequency Stability	Compliant
$\S 2.1049$ $\S 15.215 ~(c) ~$ RSS－Gen §6．7	Emission Bandwidth	Compliant	
$\S 15.203$	N／A	Antenna Requirement	Compliant

4 DESCRIPTION OF TEST MODES

4．1 The Worst Test Modes and Channel Details

1．The EUT stay in continuous transmission mode．
2．The frequency 13.56 MHz is the default channel to test，where it is the only manipulative channel as this application supports．
3．Only one configuration is supported／applicable as follows．

RADIATED EMISSION TEST				
MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	
NFC	1	1	ASK	
FREQUENCY STABILITY				
MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	
NFC	1	1	ASK	
20dB BANDWIDTH				
MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION	
NFC	1	1	ASK	

The field strength of radiation emission was measured as EUT three orthogonal planes，E1／ E2／H，are positioned to pre－scan the emission generating the highest one．The worst position is tested and recorded．

5 MEASUREMENT UNCERTAINTY

Test Items	Uncertainty		
AC Power Line Conducted Emission	$+/-$	2.34	dB
Frequency Stability	$+/-$	1.53	Hz
Emission Bandwidth	$+/-$	1.53	Hz
Temperature	$+/-$	0.4	${ }^{\circ} \mathrm{C}$
Humidity	$+/-$	3.5	$\%$
DC／AC Power Source	$+/-$	1	$\%$

Radiated Spurious Emission Measurement Uncertainty				
Polarization：Vertical	$\mathbf{+ / -}$	$\mathbf{2 . 6 4}$	$\mathbf{d B}$	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$
	$\mathbf{+ / -}$	$\mathbf{4 . 9 3}$	$\mathbf{d B}$	$30 \mathrm{MHz}-1000 \mathrm{MHz}$
	$\mathbf{+ / -}$	$\mathbf{4 . 8 1}$	$\mathbf{d B}$	$1 \mathrm{GHz}-18 \mathrm{GHz}$
	$\mathbf{+ / -}$	$\mathbf{4 . 5 2}$	$\mathbf{d B}$	$18 \mathrm{GHz}-40 \mathrm{GHz}$
Polarization：Horizontal	$\mathbf{+ / -}$	$\mathbf{2 . 6 4}$	dB	$9 \mathrm{kHz} \sim 30 \mathrm{MHz}$
	$\mathbf{+ / -}$	$\mathbf{4 . 4 5}$	dB	$30 \mathrm{MHz}-1000 \mathrm{MHz}$
	$\mathbf{+ / -}$	$\mathbf{4 . 8 1}$	dB	$1 \mathrm{GHz}-18 \mathrm{GHz}$
	$\mathbf{+ / -}$	$\mathbf{4 . 5 2}$	dB	$18 \mathrm{GHz}-40 \mathrm{GHz}$

Note：

1．This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of $\mathrm{k}=2$ ．
2．The conformity assessment statement in this report is based solely on the test results，measurement uncertainty is excluded．

6 CONDUCTED EMISSIONS TEST

6．1 Standard Applicable

According to $\S 15.207$ and frequency within 150 kHz to 30 MHz shall not exceed the limit table as below．

$\begin{array}{c}\text { Frequency range } \\ \mathrm{MHz}\end{array}$ $\begin{array}{c}\text { Limits } \\ \text {（dBuV）}\end{array}$ Quasi－peak $]$ Average		
	66 to 56	56 to 46
0.50 to 5	56	46
5 to 30	60	50
Note 1．The lower limit shall apply at the transition frequencies 2．The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.		

6．2 Measurement Equipment Used：

Radiated Emission Test Site：Conduction 1						
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL．	CAL DUE．	
LISN	SCHWARZBECK	NSLK 8127	$8127-465$	$04 / 09 / 2021$	$04 / 08 / 2022$	
Coaxial Cables	N／A	Coaxial Cable	161207	$12 / 07 / 2020$	$12 / 06 / 2021$	
Test Software	audix	e3	Ver．6．11－ 20180413	$01 / 01 / 2021$	$12 / 31 / 2021$	
EMI Test Receiver	R\＆S	ESCI 7	100759	$07 / 13 / 2020$	$07 / 12 / 2021$	

6．3EUT Setup

1．The conducted emission tests were performed in the test site，using the setup in accordance with the ANSI C63．10：2013．

2．The AC／DC Power adaptor of EUT was plug－in LISN．The EUT was placed flushed with the rear of the table．

3．The LISN was connected with $120 \mathrm{Vac} / 60 \mathrm{~Hz}$ power source．

6．4 Test SET－UP（Block Diagram of Configuration）

6．5 Measurement Procedure

1．The EUT was placed on a table which is 0.8 m above ground plane．
2．Maximum procedure was performed on the six highest emissions to ensure EUT compliance．
3．Repeat above procedures until all frequency measured were complete．

6．6 Measurement Result

Note：Refer to next page for measurement data and plots．
Note2：The＊reveals the worst－case results that closet to the limit．

Report No．：ER／2021／50021
Page： 13 of 34

AC POWER LINE CONDUCTED EMISSION TEST DATA

Report Number
Test Mode
Power
Probe
：ER／2021／50021
：NFC
：AC 120V／60Hz
：L

Test Site
：Conduction 6F
Test Date ：2021－06－16
Temp．／Humi．
：25．3／58
Engineer
：Neo Tsai

Note：

\(\left.$$
\begin{array}{ccccccc}\text { Freq．} & \begin{array}{c}\text { Detector } \\
\text { Mode } \\
\text { PK／QP／AV }\end{array} & \begin{array}{c}\text { Spectrum } \\
\text { Reading Level } \\
\mathrm{dB} \mu \mathrm{V}\end{array} & \text { Factor } & \begin{array}{c}\text { Actual } \\
\mathrm{dB}\end{array}
$$ \& \begin{array}{c}\mathrm{FS}

\mathrm{dB} \mu \mathrm{V}\end{array} \& \mathrm{dB} \mu \mathrm{V}\end{array}\right]\)| dB |
| :---: |
| MHz |

Report Number	$:$ ER／2021／50021	Test Site	：Conduction 6F
Test Mode	$:$ NFC	Test Date	$: 2021-06-16$
Power	$: A C 120 \mathrm{~V} / 60 \mathrm{~Hz}$	Temp．／Humi．	$: 25.3 / 58$
Probe	$:$ N	Engineer	：Neo Tsai
Note：	$:$		

7 RADIATED EMISSION TEST

7．1 Measurement Procedure

1．Configure the EUT according to ANSI C63．10．
2．The EUT was placed on a turn table which is 0.8 m above ground plane and been measured in the frequency range between 0.009 MHz to 30 MHz and 30 MHz to 1 GHz ．
3．The turn table shall rotate 360 degrees to determine the position of maximum emission level．
4．EUT is set 3 m away from the receiving antenna which varied from 1 m to 4 m to find out the highest emission．
5．Maximum procedure was performed on the six highest emissions to ensure EUT compliance．
6．And also，each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical．
7．Repeat above procedures until all default test channel measured were complete．

7．2 Test SET－UP（Block Diagram of Configuration）

（A）Radiated Emission Test Set－Up，Frequency Below 30MHz．

（B）Radiated Emission Test Set－Up，Frequency From 30MHz to 1000 MHz

7．3 Measurement Equipment Used：

Radiated Emission Test Site：SAC 1						
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL．	CAL DUE．	
Site Cal	SGS	SAC I chamber	N／A	$01 / 01 / 2021$	$12 / 31 / 2021$	
Bi－log Antenna	TESEO	CBL 6112D	35242 \＆AT－ N0555	$01 / 13 / 2021$	$01 / 12 / 2022$	
Loop Antenna	ETS．LINDGREN	6502	148045	$10 / 19 / 2020$	$10 / 18 / 2021$	
Spectrum Analyzer	Agilent	E4446A	MY51100003	$10 / 29 / 2020$	$10 / 28 / 2021$	
Test Software	audix	e3	Ver．6．11－ 20180413	$01 / 01 / 2021$	$12 / 31 / 2021$	
EMI Test Receiver	R\＆S	ESCI 7	100759	$07 / 13 / 2020$	$07 / 12 / 2021$	
Pre－Amplifier	HP	$8447 D$	2944 A 09469	$12 / 16 / 2020$	$12 / 15 / 2021$	
Coaxial Cable	Huber Suhner	succoflex 102	MY2622／2	$12 / 16 / 2020$	$12 / 15 / 2021$	
Coaxial Cable	Huber Suhner	succoflex $104 A$	$800086 / 4 a$	$12 / 16 / 2020$	$12 / 15 / 2021$	
Coaxial Cable	Huber Suhner	EMC 104－ SM－SM－ 2000	160123	$12 / 16 / 2020$	$12 / 15 / 2021$	

7．4 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor（if any）from the measured reading．The basic equation with a sample calculation is as follows：

$$
\mathrm{FS}=\mathrm{RA}+\mathrm{AF}+\mathrm{CL}-\mathrm{AG}
$$

Where \quad FS $=$ Field Strength	CL $=$ Cable Attenuation Factor（Cable Loss）
RA $=$ Reading Amplitude	AG $=$ Amplifier Gain
AF $=$ Antenna Factor	

7．5 Field Strength of Fundamental Emission

7．5．1 Applicable standard

Rules and specifiactions	CFR 47 Part 15 section 15．225（a）－（d）		
Frequency of Emission $(\mathbf{M H z})$	Field Strength $(\boldsymbol{\mu V / m} / \mathbf{m})$ at 30m	Field Strength $(\mathbf{d B} \boldsymbol{\mathrm { VV } / \mathrm { m }) \text { at 30m }}$	Field Strength $(\mathrm{dB} \boldsymbol{\mu} \mathbf{V / m})$ at 3m
$1.705 \sim 13.110$	30	29.5	69.5
$13.110 \sim 13.410$	106	40.5	80.5
$13.410 \sim 13.553$	334	50.5	90.47
$13.553 \sim 13.567$	15848	84	124
$13.567 \sim 13.710$	334	50.5	90.47
$13.710 \sim 14.010$	106	40.5	80.5
$14.010 \sim 30.00$	30	29.5	69.5

Radiated Mask per ISED RSS 210 Annex B B6
（a） 15.848 millivolts $/ \mathrm{m}(84 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})$ at 30 m ，within the band $13.553-13.567 \mathrm{MHz}$ ．
（b） 334 microvolts $/ \mathrm{m}(50.5 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m})$ at 30 m ，within the bands $13.410-13.553 \mathrm{MHz}$ and $13.567-13.710 \mathrm{MHz}$ ．
 $13.710-14.010 \mathrm{MHz}$ ．
（d）RSS－Gen general field strength limits for frequencies outside the band 13．110－14．010 MHz

7．5．2 Distance Extrapolation Factor

30m to 3 m

Distance extrapolation $=40$＊ $\log (30 / 3)=40 \mathrm{~dB}$
Limit is re－adjusted in terms of limit taken in $3 m=20 * \log (15848 u V / m)+40=$ $124.00 \mathrm{dBuV} / \mathrm{m}$

30 m to 10 m

Distance extrapolation $=40 * \log (30 / 10)=19.08 \mathrm{~dB}$
Limit is re－adjusted in terms of limit taken in $3 m=20 * \log (15848 \mathrm{uV} / \mathrm{m})+19.08=$ $103.08 \mathrm{dBuV} / \mathrm{m}$

10 m to 3 m

Distance extrapolation $=40 * \log (10 / 3)=20.92 \mathrm{~dB}$
Limit is re－adjusted in terms of limit taken in $3 \mathrm{~m}=20 * \log (15848 \mathrm{uV} / \mathrm{m})+20.92=$ $104.92 \mathrm{dBuV} / \mathrm{m}$

Note：

1．Emission level in $\mathrm{dBuV} / \mathrm{m}=20 \log (\mu \mathrm{~V} / \mathrm{m})$
2．Distance extrapolation factor $=40 \log$（required distance／test distance）（dB）
3．The lower limit shall apply at the transition frequencies．
4．KDB 414788 D01 OATS and 3 m semi－anechoic chamber Justification：
Base on FCC 15.31 （f）（2）：measurements may be performed at a distance closer than that specified in the regulations；however，an attempt should be made to avoid making measurements in the near field．OATS and 3m SAC chamber testing had been performed and 3m SAC measured test result is the worst case test result．
Actual $\mathrm{FS}(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})=$ Spectrum．Reading level $(\mathrm{dB} \mu \mathrm{V})+$ Factor（ dB ）
Factor $(\mathrm{dB})=$ Antenna Factor $(\mathrm{dB} \mu \mathrm{V} / \mathrm{m})$＋Cable Loss (dB)－Pre＿Amplifier Gain（ dB ）
The trace on $R E$（radiation emission）plot is as colored blue，and the detection manner we＇ve employed is peak detector．

7．5．3 Field Strength of Fundamental Emission Measurement Result

Report Number	$:$ ER／2021／50021	Test Site	：SAC I Chamber
Operation Mode	$:$ NFC	Test Date	$: 2021-06-30$
Test Frequency	$: 13.56 \mathrm{MHz}$	Temp．／Humi．	$: 26.8 / 62$
Test Mode	：Main	Antenna Pol．	：VERTICAL
EUT Pol	：H Plane	Engineer	：Neo Tsai

Report No．：ER／2021／50021
Page： 20 of 34

Report Number	$:$ ER／2021／50021	Test Site	：SAC I Chamber
Operation Mode	$:$ NFC	Test Date	$: 2021-06-30$
Test Frequency	$: 13.56 \mathrm{MHz}$	Temp．／Humi．	$: 26.8 / 62$
Test Mode	$:$ Main	Antenna Pol．	：HORIZONTAL
EUT Pol	$: H$ Plane	Engineer	：Neo Tsai

Report No．：ER／2021／50021
Page： 21 of 34

Report Number	$:$ ER／2021／50021	Test Site	：SAC I Chamber
Operation Mode	$:$ NFC	Test Date	$: 2021-06-30$
Test Frequency	$: 13.56 \mathrm{MHz}$	Temp．／Humi．	$: 26.8 / 62$
Test Mode	$:$ Mask	Antenna Pol．	：VERTICAL
EUT Pol	$: H$ Plane	Engineer	：Neo Tsai

Report Number	$:$ ER／2021／50021	Test Site	：SAC I Chamber
Operation Mode	$:$ NFC	Test Date	$: 2021-06-30$
Test Frequency	$: 13.56 \mathrm{MHz}$	Temp．／Humi．	$: 26.8 / 62$
Test Mode	$:$ Mask	Antenna Pol．	：HORIZONTAL
EUT Pol	$: H$ Plane	Engineer	：Neo Tsai

7．6 Radiated Spurious Emission Measurement

7．6．1 Standard Applicable

The field strength of any emissions appearing outside of the $13.110-14.010 \mathrm{MHz}$ shall not exceed the general radiated emission limits in section 15.209 as below．

Frequency $(\mathbf{M H z})$	Field strength $(\mu \mathrm{V} / \mathbf{m})$	Distance （meters）
$0.009 \sim 0.490$	$2400 / \mathrm{F}(\mathrm{kHz})$	300
$0.490 \sim 1.705$	$24000 / \mathrm{F}(\mathrm{kHz})$	30
$1.705-30$	30	30
$30-88$	100	3
$88-216$	150	3
$216-960$	200	3
Above 960	500	3

Note：

1．Emission level in $\mathrm{dB} \mu \mathrm{V} / \mathrm{m}=20 \log (\mu \mathrm{~V} / \mathrm{m})$
2．Distance extrapolation factor $=40 \log$（required distance／test distance）（dB）
3． $20^{*} \log (30 \mathrm{uV} / \mathrm{m})+40 \mathrm{~dB}=69.54 \mathrm{dBuV} / \mathrm{m}$
4．The lower limit shall apply at the transition frequencies．
5．The measurement was undertaken in closer distance at 3 m ，where extrapolation factor is offset to convert the limit of the measurement．
6．Only spurious frequency is permitted to locate within the Restricted Bands specified in provision of $\S 15.205$ and RSS－Gen $\S 8.10$ ．

7．The general radiated emission limits in $\S 15.209$ and RSS－Gen $\S 8.9$ apply for the spurious emission generate from UE，except for the fundamental emission where the respective section specifies otherwise．

7．6．2 Radiated Spurious Emission Measurement Result

Report Number	$:$ ER／2021／50021	Test Site	：SAC I Chamber
Operation Mode	$:$ NFC	Test Date	$: 2021-06-30$
Test Frequency	$: 13.56 \mathrm{MHz}$	Temp．／Humi．	$: 26.8 / 62$
Test Mode	$:$ TX	Antenna Pol．	：VERTICAL
EUT Pol	$: H$ Plane	Engineer	：Neo Tsai

Report Number	$:$ ER／2021／50021	Test Site	：SAC I Chamber
Operation Mode	$:$ NFC	Test Date	$: 2021-06-30$
Test Frequency	$: 13.56 \mathrm{MHz}$	Temp．／Humi．	$: 26.8 / 62$
Test Mode	$:$ TX	Antenna Pol．	：HORIZONTAL
EUT Pol	：H Plane	Engineer	：Neo Tsai

Report Number	$:$ ER／2021／50021	Test Site	：SAC I Chamber
Operation Mode	$:$ NFC	Test Date	$: 2021-06-30$
Test Frequency	$: 13.56 \mathrm{MHz}$	Temp．／Humi．	$: 26.8 / 62$
Test Mode	$:$ TX	Antenna Pol．	：VERTICAL
EUT Pol	$: H$ Plane	Engineer	：Neo Tsai

46.49	Peak	44.30	-13.90	30.40	40.00	-9.60
62.01	Peak	49.19	-18.27	30.92	40.00	-9.08
94.99	Peak	44.67	-14.30	30.37	43.50	-13.13
333.61	Peak	41.83	-8.54	33.29	46.00	-12.71
364.65	Peak	39.39	-8.02	31.37	46.00	-14.63
479.11	Peak	34.94	-5.96	28.98	46.00	-17.02

Report Number	$:$ ER／2021／50021	Test Site	SAC I Chamber
Operation Mode	$:$ NFC	Test Date	$: 2021-06-30$
Test Frequency	$: 13.56 \mathrm{MHz}$	Temp．／Humi．	$: 26.8 / 62$
Test Mode	$:$ TX	Antenna Pol．	：HORIZONTAL
EUT Pol	$: H$ Plane	Engineer	：Neo Tsai

8 FREQUENCY STABILITY

8．1 Applicable Standard

The frequency tolerance of the carrier signal shall be maintained within $+/-0.01 \%$ of the operating frequency over a temperature variation of -20 degrees to +50 degrees C at normal supply voltage，and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C．For battery operated equipment，the equipment tests shall be performed using a new battery．

Carrier frequency stability shall be maintained to $\pm 0.01 \%$（ $\pm 100 \mathrm{ppm}$ ）．
For licence－exempt radio apparatus，the frequency stability shall be measured at temperatures of $-20^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right),+20^{\circ} \mathrm{C}\left(+68^{\circ} \mathrm{F}\right)$ and $+50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$ ．

8．2 Measurement Procedure

1．The EUT was placed on a turn table which is 0.8 m above ground plane．
2．Set EUT as normal operation
3．Set SPA Center Frequency＝fundamental frequency，RBW，VBW＝10kHz，Span $=100 \mathrm{kHz}$ ．
4．Set SPA Max hold．Mark peak．

8．3 Test SET－UP（Block Diagram of Configuration）

8．4 Measurement Equipment Used：

Conducted Emission Test Site：						
EQUIPMENT TYPE	MFR	MODEL NUMBER	SERIAL NUMBER	LAST CAL．	CAL DUE．	
Loop Antenna	ETS．LINDGREN	6502	148045	$10 / 19 / 2020$	$10 / 18 / 2021$	
Temperature Chamber	Giant Force	GTH－150－ 40－CP－AR	MAA0512－018	$05 / 19 / 2021$	$05 / 18 / 2022$	
DC Power Supply	Agilent	E3640A	MY40005907	$10 / 29 / 2020$	$10 / 28 / 2021$	
PXA Spectrum Analyzer	Agilent	N9030A	MY53120760	$04 / 27 / 2021$	$04 / 26 / 2022$	

8．5 Measurement Results

Startup

A．Temperature Variation

Power Supply	Environment	Frequency	Delta (KHz)	Limit (KHz)
Vdc	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	(MHz)		
7.6	-20	13.560034	0.04400	$+/-1.356$
7.6	-10	13.559919	0.15900	$+/-1.356$
7.6	0	13.560098	-0.02000	$+/-1.356$
7.6	10	13.560016	0.06200	$+/-1.356$
7.6	20	13.560078	0.00000	$+/-1.356$
7.6	30	13.559906	0.17200	$+/-1.356$
7.6	40	13.560059	0.01900	$+/-1.356$
7.6	50	13.559945	0.13300	$+/-1.356$

B．Supply Voltage Variation

Power Supply	Environment	Frequency	Delta (KHz)	Limit (KHz)
Vdc	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	(MHz)		
8.74	20	13.560051	0.04700	$+/-1.356$
7.6	20	13.560098	0.00000	$+/-1.356$
6.46	20	13.559915	0.18300	$+/-1.356$

2 minutes

A．Temperature Variation

Power Supply	Environment	Frequency	Delta (KHz)	Limit (KHz)
Vdc	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	(MHz)		
7.6	-20	13.559923	0.11500	$+/-1.356$
7.6	-10	13.559903	0.13500	$+/-1.356$
7.6	0	13.559934	0.10400	$+/-1.356$
7.6	10	13.559916	0.12200	$+/-1.356$
7.6	20	13.560038	0.00000	$+/-1.356$
7.6	30	13.560044	-0.00600	$+/-1.356$
7.6	40	13.559983	0.05500	$+/-1.356$
7.6	50	13.560081	-0.04300	$+/-1.356$

B．Supply Voltage Variation

Power Supply	Environment	Frequency	Delta (KHz)	Limit (KHz)
Vdc	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	(MHz)		
8.74	20	13.560048	-0.11000	$+/-1.356$
7.6	20	13.559938	0.00000	$+/-1.356$
6.46	20	13.559996	-0.05800	$+/-1.356$

5 minutes

A．Temperature Variation

Power Supply	Environment	Frequency	Delta (KHz)	Limit (KHz)
Vdc	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	(MHz)		
7.6	-20	13.559955	0.14500	$+/-1.356$
7.6	-10	13.559991	0.10900	$+/-1.356$
7.6	0	13.560071	0.02900	$+/-1.356$
7.6	10	13.560089	0.01100	$+/-1.356$
7.6	20	13.560100	0.00000	$+/-1.356$
7.6	30	13.559979	0.12100	$+/-1.356$
7.6	40	13.560072	0.02800	$+/-1.356$
7.6	50	13.559978	0.12200	$+/-1.356$

B．Supply Voltage Variation

Power Supply	Environment	Frequency	Delta (KHz)	Limit (KHz)
Vdc	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	(MHz)		
8.74	20	13.560075	-0.09400	$+/-1.356$
7.6	20	13.559981	0.00000	$+/-1.356$
6.46	20	13.560015	-0.03400	

10 minutes
A．Temperature Variation

Power Supply	Environment	Frequency	Delta (KHz)	Limit (KHz)
Vdc	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	(MHz)		
7.6	-20	13.560065	-0.10700	$+/-1.356$
7.6	-10	13.559994	-0.03600	$+/-1.356$
7.6	0	13.559965	-0.00700	$+/-1.356$
7.6	10	13.559914	0.04400	$+/-1.356$
7.6	20	13.559958	0.00000	$+/-1.356$
7.6	30	13.559962	-0.00400	$+/-1.356$
7.6	40	13.559918	0.04000	$+/-1.356$
7.6	50	13.559963	-0.00500	$+/-1.356$

B．Supply Voltage Variation

Power Supply	Environment	Frequency	Delta (KHz)	Limit (KHz)
Vdc	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	(MHz)		
8.74	20	13.560051	-0.09500	$+/-1.356$
7.6	20	13.559956	0.00000	$+/-1.356$
6.46	20	13.560080	-0.12400	

Report No．：ER／2021／50021
Page： 31 of 34

9 EMISSION BANDWIDTH MEASUREMENT

9．1 Applicable Standard：

The 20 dB and 99% bandwidth shall be specified in operating frequency band．

9．2 Limit：

None

9．3 Test Set－up

Refer to section 8.3 in this report

9．4 Measurement Equipment Used：

Refer to section 8.4 in this report

9．5 Measurement Procedure

1．Placed the EUT on the testing table．
2．Set the EUT under transmission condition continuously at specific channel frequency．
3．The resolution bandwidth of 1 kHz and the video bandwidth of 3 kHz were used．
4．Measured the spectrum width with power higher than 20 dB below carrier．

9．6 Measurement Result

FCC

20 dB BW（kHz）
27.12

Opration range	Frequency（MHz）	Limit（MHz）
Low	13.54805	>13.11
High	13.57155	<14.01

IC
99\％BW（kHz）
23.12

Bandwidth

Report No．：ER／2021／50021
Page： 33 of 34

Operation range low

Operation range High

Unless otherwise stated the results shown in this test report refer only to the sample（s）tested and such sample（s）are retained for 90 days only．
除非另有說明，此報告結果僅對測試之樣品負責，同時此様品僅保留 90 天。本報告未經本公司書面許可，不可部份複製。
This document is issued by the Company subject to its General Conditions of Service printed overleaf，available on request or accessible at http：／／www．sgs．com．tw／Terms－and－Conditions and for electronic format documents，subject to Terms and Conditions for Electronic Documents at http：／／www．sgs．com．tw／Terms－and－Conditions．Attention is drawn to the limitation of liability， indemnification and jurisdiction issues defined therein．Any holder of this document is advised that information contained hereon reflects the Company＇s findings at the time of its intervention only and within the limits of Client＇s instructions，if any．The Company＇s sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents．This document cannot be reproduced except in full，without prior written approval of the Company．Any unauthorized alteration，forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law．

10 ANTENNA REQUIREMENT

10．1 Standard Applicable：

For intentional device，according to $\S 15.203$ ，an intentional radiator shall be designed to ensure that no antenna other than furnished by the responsible party shall be used with the device．

10．2 Antenna Connected Construction：

The antenna is designed as permanently attached and no consideration of replacement．Please see EUT photo for details．

