

FCC RF Test Report

APPLICANT	:	Quanta Computer Inc.
EQUIPMENT	:	Clover Mobile 3G
BRAND NAME	:	Clover
MODEL NAME	:	C201
FCC ID	:	HFS-C201
STANDARD	:	FCC Part 15 Subpart C §15.247
CLASSIFICATION	:	(DTS) Digital Transmission System

The product was received on Oct. 25, 2014 and testing was completed on Dec. 26, 2014. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC., the test report shall not be reproduced except in full.

Reviewed by: Joseph Lin / Supervisor

Approved by: Jones Tsai / Manager

SPORTON INTERNATIONAL INC. No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : HFS-C201

Page Number : 1 of 43 Report Issued Date : Jan. 22, 2015 Report Version : Rev. 01 Report Template No.: BU5-FR15CBT4.0 Version 1.0

TABLE OF CONTENTS

RE	VISIO	I HISTORY	.3
SU	MMAR	Y OF TEST RESULT	.4
1	GENE	RAL DESCRIPTION	.5
	1.1	Applicant	.5
	1.2	Manufacturer	.5
	1.3	Product Feature of Equipment Under Test	.5
	1.4	Product Specification subjective to this standard	.6
	1.5	Modification of EUT	.6
	1.6	Testing Location	.6
	1.7	Applicable Standards	.7
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	.8
	2.1	Descriptions of Test Mode	.8
	2.2	Test Mode	
	2.3	Connection Diagram of Test System	.9
	2.4	Support Unit used in test configuration and system	10
	2.5	EUT Operation Test Setup	10
	2.6	Measurement Results Explanation Example	10
3	TEST	RESULT	11
	3.1	6dB and 99% Bandwidth Measurement	11
	3.2	Peak Output Power Measurement	16
	3.3	Power Spectral Density Measurement	18
	3.4	Conducted Band Edges and Spurious Emission Measurement	24
	3.5	Radiated Band Edges and Spurious Emission Measurement	33
	3.6	AC Conducted Emission Measurement	37
	3.7	Antenna Requirements	41
4	LIST	OF MEASURING EQUIPMENT	42
5	UNCE	RTAINTY OF EVALUATION	43
AP	PEND	X A. RADIATED TEST RESULTS	

APPENDIX B. SETUP PHOTOGRAPHS

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR4O2505B	Rev. 01	Initial issue of report	Jan. 22, 2015

SUMMARY OF TEST RESULT

Report Section	FCC Rule	IC Rule	Description	Limit	Result	Remark
3.1	15.247(a)(2)	RSS-210	6dB Bandwidth	≥ 0.5MHz	Pass	_
5.1	13.247 (d)(2)	A8.2(a)	oub bandwidth	2 0.30012	1 455	-
3.1	_	RSS-Gen	99% Bandwidth		Pass	
5.1	-	4.6.1	3378 Bandwidth	-	1 855	-
3.2	15.247(b)(1)	RSS-210	Peak Output Power	≤ 30dBm	Pass	
3.2	15.247(D)(1)	A8.1(b)	Feak Output Fower	≤ 300DIII	F 855	-
3.3	15.247(e)	RSS-210	Power Spectral Density	≤ 8dBm/3kHz	Pass	
5.5	13.247(8)	A8.2(b)	Tower Spectral Density			-
3.4	15.247(d)	RSS-210	Conducted Band Edges	≤ 20dBc	Pass	_
0.4	13.247 (d)	A8.5	and Spurious Emission			_
		RSS-210	Radiated Band Edges	15.209(a) &		Under limit
3.5	15.247(d)	15.247(d)	15.247(d)	and Spurious Emission	15.247(d)	9.85 dB at
			10.2 17 (0)		40.530 MHz	
		RSS-Gen) Pass	Under limit
3.6		7.2.4	AC Conducted Emission	15.207(a)		13.20 dB at
		1.2.1				0.582 MHz
3.7	15.203 &	RSS-210	Antenna Requirement	N/A	Pass	
5.7	15.247(b) A8.4			N/A	r ass	_

1 General Description

1.1 Applicant

Quanta Computer Inc.

No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan

1.2 Manufacturer

Quanta Computer Inc.

No.188, Wenhua 2nd Rd., Guishan Dist., Taoyuan City 33377, Taiwan

1.3 Product Feature of Equipment Under Test

Product Feature			
Equipment	Clover Mobile 3G		
Brand Name	Clover		
Model Name	C201		
FCC ID	HFS-C201		
	GSM/EGPRS/WCDMA/HSPA/NFC		
FUT currents Dedice explication	WLAN 11b/g/n HT20		
EUT supports Radios application	WLAN 11a/n HT20/HT40		
	Bluetooth v4.0 EDR/LE		
EUT Stage	Identical Prototype		

Remark: The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

Accessory List				
AC Adoptor 1	Brand Name: Clover			
AC Adapter 1	Model Name: WB-10G05FU			
AC Adapter 2	Brand Name: Clover			
	Model Name: WB-10G05R			
	Brand Name: CELXPERT ENERGY CORPORATION			
Battery	Model Name: CQT-1401			
	Brand Name: Golden Bridge Electech Inc.			
USB Cable	Model Name: AA002GB-B0308BX			

1.4 Product Specification subjective to this standard

Product Specification subjective to this standard				
Tx/Rx Frequency Range2402 MHz ~ 2480 MHz				
Number of Channels	40			
Carrier Frequency of Each Channel	40 Channel(37 hopping + 3 advertising channel)			
Maximum Output Power to Antenna	8.47 dBm (0.0070 W)			
99% Occupied Bandwidth	1.04MHz			
Antenna Type	PIFA Antenna type with gain -2.84 dBi			
Type of Modulation Bluetooth LE : GFSK				

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 Testing Location

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code : 1190) and the FCC designation No. TW1022 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC Test.

Test Site	SPORTON INTERNATIONAL INC.				
	No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park,				
	Kwei-Shan District, Tao Yuan City, Taiwan, R.O.C.				
Test Site Location	TEL: +886-3-327-3456				
	FAX: +886-3-328-4978				
Test Site No		Sporton Site No.			
Test Site No.	TH02-HY	CO05-HY	03CH07-HY		

Note: The test site complies with ANSI C63.4 2009 requirement.

1.7 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- ANSI C63.10-2013

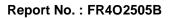
Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. FCC permits the use of the 1.5 meter table as an alternative in C63.10-2013 through inquiry tracking number 961829.
- 3. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

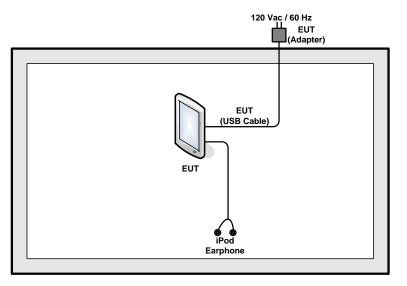
		Bluetooth 4.0 – LE RF Output Power		
Channel	Fraguanay	Data Rate / Modulation		
Channel	Frequency GFSK 1Mbps	GFSK		
		1Mbps		
Ch00	2402MHz	7.64 dBm		
Ch19	2440MHz	8.26 dBm		
Ch39	2480MHz	<mark>8.47</mark> dBm		

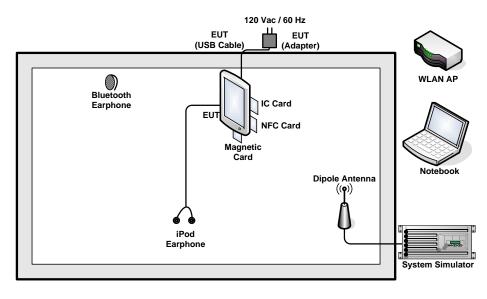

The RF output power was recorded in the following table:

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction (150 kHz to 30 MHz), radiation (9 kHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). Pre-scanned tests, X, Y, Z in three orthogonal panels to determine the final configuration (Z plane as worst plane) from all possible combinations.
- b. AC power line Conducted Emission was tested under maximum output power.

2.2 Test Mode

The following summary table is showing all test modes to demonstrate in compliance with the standard.


	Summary table of Test Cases					
Toot Itom	Data Rate / Modulation					
Test Item	Bluetooth 4.0 – LE / GFSK					
Conducted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
Dedicted	Mode 1: Bluetooth Tx CH00_2402 MHz_1Mbps					
Radiated	Mode 2: Bluetooth Tx CH19_2440 MHz_1Mbps					
TCs	Mode 3: Bluetooth Tx CH39_2480 MHz_1Mbps					
AC Conducted Emission	Mode 1: WCDMA Band V Idle + Bluetooth Link + WLAN (2.4GHz) Link + Camera (Back) + Earphone + USB Cable (Charging from Adapter) + TF					
Remark: TF s	Remark: TF stands for Test Function, and consists of Barcode Scan, Magnetic Stripe Card Read, Chip					
Card	d Read, and NFC Card Read.					



2.3 Connection Diagram of Test System

<Bluetooth 4.0 – LE Tx Mode>

<AC Conducted Emission Mode>

2.4	Support U	nit used in	test config	juration and	svstem

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	System Simulator	Anritsu	MT8820C	N/A	N/A	Unshielded, 1.8 m
2.	WLAN AP	D-Link	DIR-628	KA2DIR628A2	N/A	Unshielded, 1.8 m
3.	Notebook	DELL	Latitude E6320	FCC DoC/ Contains FCC ID: QDS-BRCM1054	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m
4.	Bluetooth Earphone	Sony Ericsson	MW600	PY7DDA-2029	N/A	N/A
5.	iPod Earphone	Apple	N/A	Verification	Unshielded, 1.0 m	N/A
6.	IC Card	N/A	N/A	N/A	N/A	N/A
7.	Magnetic Card	N/A	N/A	N/A	N/A	N/A
8.	NFC Card	N/A	N/A	N/A	N/A	N/A

2.5 EUT Operation Test Setup

For Bluetooth function, programmed RF utility, "ADB" installed in the notebook make the EUT provide functions like channel selection and power level for continuous transmitting and receiving signals.

2.6 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 4.2 dB and 10dB attenuator.

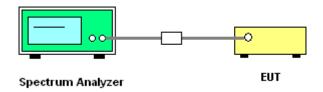
Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

3 Test Result

3.1 6dB and 99% Bandwidth Measurement

3.1.1 Limit of 6dB and 99% Bandwidth

The minimum 6 dB bandwidth shall be at least 500 kHz.

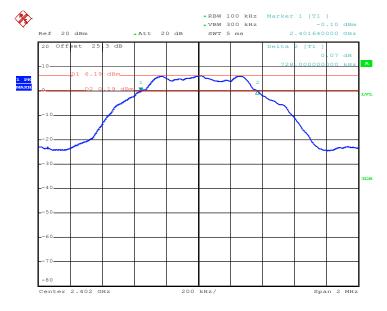

3.1.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

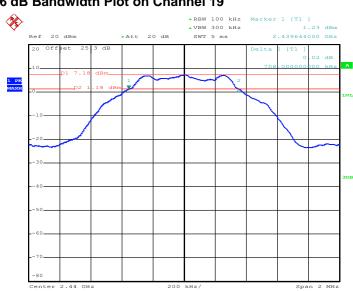
3.1.3 Test Procedures

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 100 kHz. Set the Video bandwidth (VBW) = 300 kHz. In order to make an accurate measurement. The 6 dB bandwidth must be greater than 500 kHz.
- For 99% Bandwidth Measurement, the spectrum analyzer's resolution bandwidth (RBW) is set 30kHz and set the Video bandwidth (VBW) = 100kHz.
- 6. Measure and record the results in the test report.

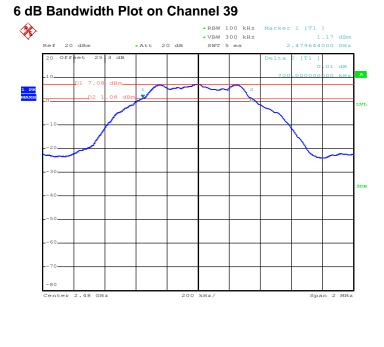
3.1.4 Test Setup



3.1.5 Test Result of 6dB Bandwidth


Test Mode : Bluetooth 4.0 - LE		Temperature :	22~25 ℃			
Test Engir	neer :	r: AC Chang		Relative Humidity :	51~55%	
Channel		uency IHz)	6dB Bandwidth (MHz)		6dB Bandwidth Min. Limit (MHz)	Pass/Fail
00	24	402	0.73		0.5	Pass
19	24	440	C).71	0.5	Pass
39	24	480	C).70	0.5	Pass

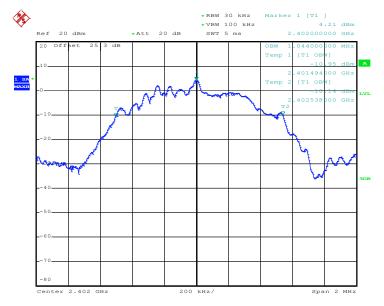
6 dB Bandwidth Plot on Channel 00


4 Date: 17.NOV.2014 14:21:35

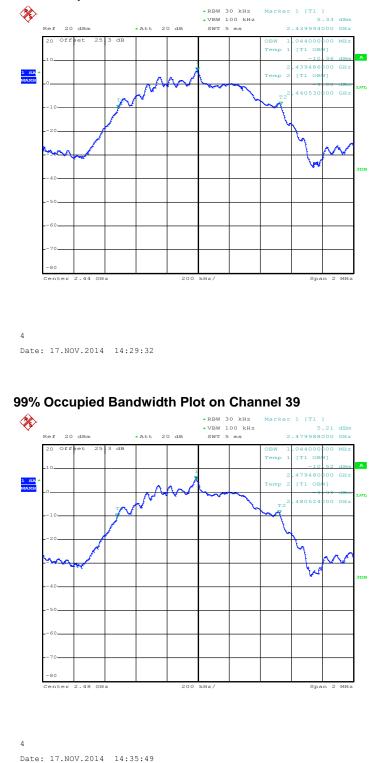
6 dB Bandwidth Plot on Channel 19

4 Date: 17.NOV.2014 14:31:29

4 Date: 17.NOV.2014 14:37:26


SPORTON INTERNATIONAL INC. TEL: 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : HFS-C201

Test Mode : Bluetooth 4.0 - LE		Ter	nperature :	22~25 ℃		
Test Engineer : AC Chang		Rel	ative Humidity :	51~55%		
Channel		Frequency (MHz)		99% Occu	pied Bandwidth (MHz)	
00		2402	2402		1.04	
19		2440		1.04		
39		2480			1.04	


3.1.6 Test Result of 99% Occupied Bandwidth

99% Bandwidth Plot on Channel 00

4 Date: 17.NOV.2014 14:19:49

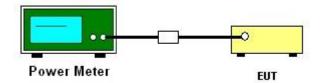
99% Occupied Bandwidth Plot on Channel 19

Note: The occupied channel bandwidth is maintained within the band of operation for all of the modulations.

3.2 Peak Output Power Measurement

3.2.1 Limit of Peak Output Power

For systems using digital modulation in the 2400-2483.5MHz, the limit for peak output power is 30dBm. If transmitting antenna of directional gain greater than 6dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.


3.2.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.2.3 Test Procedures

- The testing follows the Measurement Procedure of FCC KDB No. 558074 DTS D01 Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the power meter by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.2.4 Test Setup

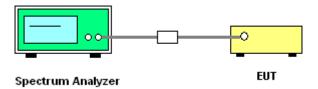
3.2.5 Test Result of Peak Output Power

Test Mode :	Bluetooth 4.0 - LE		Temperature :		22~25 ℃	
Test Engineer :	AC Chang		Relative Humidity :		51~55%	
	-		F	RF Powe	er (dBm)	
Channel	Frequency	(GFSK	М	Max. Limits	
	(MHz)	1	Mbps		(dBm)	Pass/Fail
00	2402		7.64		30.00	Pass
19	2440		8.26		30.00	Pass
39	2480		8.47		30.00	Pass

3.3 Power Spectral Density Measurement

3.3.1 Limit of Power Spectral Density

The peak power spectral density shall not be greater than 8dBm in any 3kHz band at any time interval of continuous transmission.


3.3.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.3.3 Test Procedures

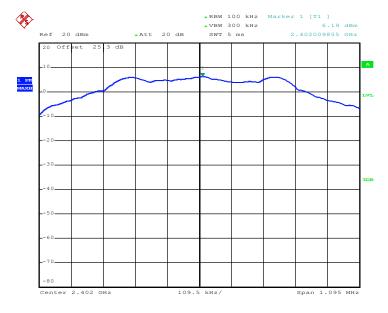
- The testing follows Measurement Procedure 10.2 Method PKPSD of FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- Make the measurement with the spectrum analyzer's resolution bandwidth (RBW) = 3 kHz.
 Video bandwidth VBW = 10 kHz In order to make an accurate measurement, set the span to 1.5 times DTS Channel Bandwidth. (6dB BW)
- 5. Detector = peak, Sweep time = auto couple, Trace mode = max hold, Allow trace to fully stabilize. Use the peak marker function to determine the maximum power level.
- 6. Measure and record the results in the test report.
- 7. The Measured power density (dBm)/ 100kHz is a reference level and used as 20dBc down limit line for Conducted Band Edges and Conducted Spurious Emission.

3.3.4 Test Setup

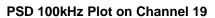
3.3.5 Test Result of Power Spectral Density

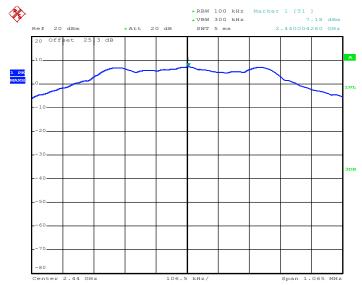
Test Mode : Bluetooth 4.0 - LE 1			etooth 4.0 - LE	Temperature :	22~25 ℃		
Test Engineer : AC Chang Re			Chang	Relative Humidity :	51~55%		
Channal	hannel Frequency (MHz)		Power I	Density Max. Limits		Pass/Fail	
Channel			IHz) PSD/100kHz (dBm) PSD/3kHz (dBm)		(dBm/3kHz)		
00	2402		6.19	-7.45	8	Pass	
19	2440		7.18	-6.44	8	Pass	
39	2480)	7.07	-6.58	8	Pass	

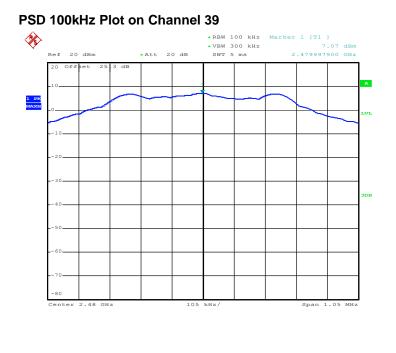
Note:


1. Measured power density (dBm) has offset with cable loss.

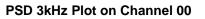
 The Measured power density (dBm)/ 100kHz is reference level and used as 20dBc down for Conducted Band Edges and Conducted Spurious Emission limit line.

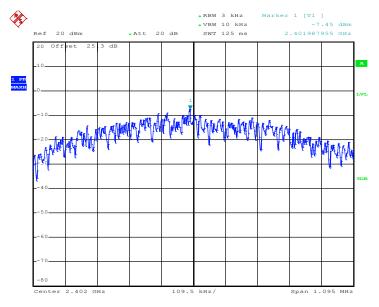

3.3.6 Test Result of Power Spectral Density Plots (100kHz)


PSD 100kHz Plot on Channel 00

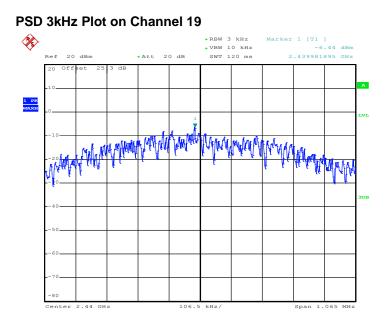

4 Date: 17.NOV.2014 14:22:55

4 Date: 17.NOV.2014 14:33:17




4 Date: 17.NOV.2014 14:38:50

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : HFS-C201


3.3.7 Test Result of Power Spectral Density Plots (3kHz)

4 Date: 17.NOV.2014 14:22:08

4 Date: 17.NOV.2014 14:32:10

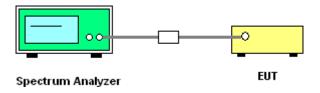
4 Date: 17.NOV.2014 14:38:11

SPORTON INTERNATIONAL INC. TEL : 886-3-327-3456 FAX : 886-3-328-4978 FCC ID : HFS-C201

3.4 Conducted Band Edges and Spurious Emission Measurement

3.4.1 Limit of Conducted Band Edges and Spurious Emission

All harmonics/spurious must be at least 20 dB down from the highest emission level within the authorized band.

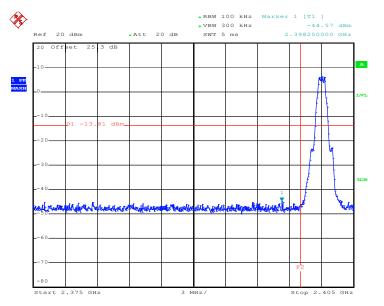

3.4.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

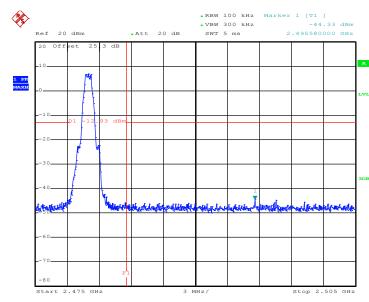
3.4.3 Test Procedure

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement.
- 3. Set to the maximum power setting and enable the EUT transmit continuously.
- 4. Set RBW = 100 kHz, VBW=300 kHz, Peak Detector. Unwanted Emissions measured in any 100 kHz bandwidth outside of the authorized frequency band shall be attenuated by at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when maximum peak conducted output power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB per 15.247(d).
- 5. Measure and record the results in the test report.
- 6. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.

3.4.4 Test Setup



3.4.5 Test Result of Conducted Band Edges

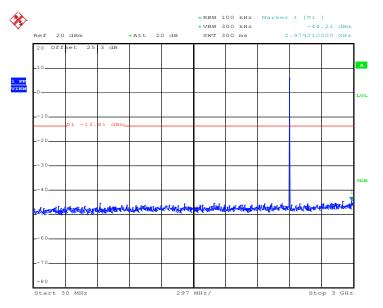

Test Mode :	Bluetooth 4.0 - LE	Temperature :	22~25 ℃
Test Channel :	00 and 39	Relative Humidity :	51~55%
		Test Engineer :	AC Chang

Low Band Edge Plot on Channel 00

4 Date: 17.NOV.2014 14:23:25

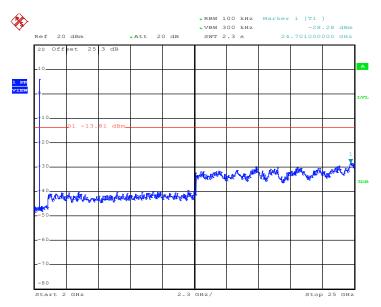
High Band Edge Plot on Channel 39

4 Date: 17.NOV.2014 14:39:19



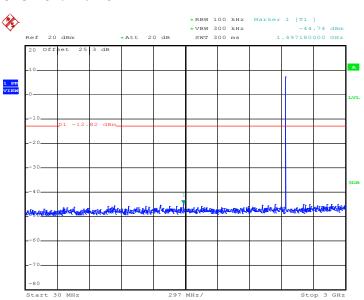
3.4.6 Test Result of Conducted Spurious Emission

Test Mode :	Bluetooth 4.0 - LE	Temperature :	22~25 ℃
Test Channel :	00	Relative Humidity :	51~55%
		Test Engineer :	AC Chang


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

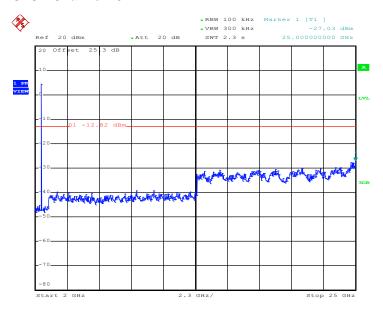
GFSK Channel 00

4 Date: 17.NOV.2014 14:25:29


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 00

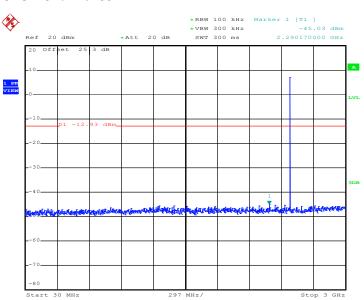
4 Date: 17.NOV.2014 14:25:47

Test Mode :	Bluetooth 4.0 - LE	Temperature :	22~25 ℃
Test Channel :	19	Relative Humidity :	51~55%
		Test Engineer :	AC Chang


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

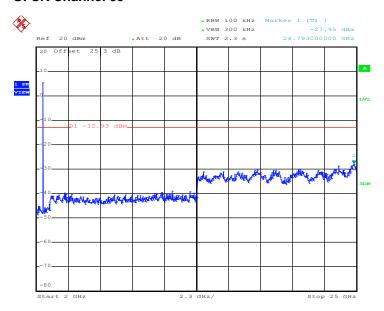
GFSK Channel 19

4 Date: 17.NOV.2014 14:33:56


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 19

4 Date: 17.NOV.2014 14:34:14

Test Mode :	Bluetooth 4.0 - LE	Temperature :	22~25 ℃
Test Channel :	nel : 39 Relative Humidity :		51~55%
		Test Engineer :	AC Chang


Conducted Spurious Emission Plot on Bluetooth LE 1Mbps

GFSK Channel 39

4 Date: 17.NOV.2014 14:40:03

Conducted Spurious Emission Plot on Bluetooth LE 1Mbps GFSK Channel 39

4 Date: 17.NOV.2014 14:40:21

3.5 Radiated Band Edges and Spurious Emission Measurement

3.5.1 Limit of Radiated Band Edges and Spurious Emission

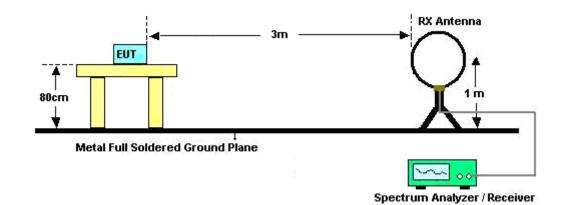
In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device was measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

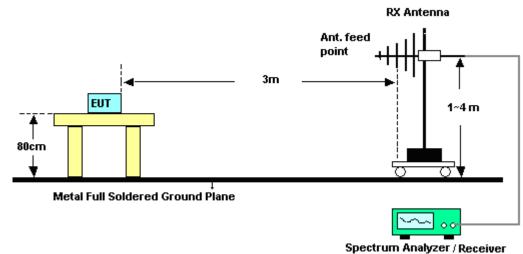
3.5.2 Measuring Instruments

The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.5.3 Test Procedures

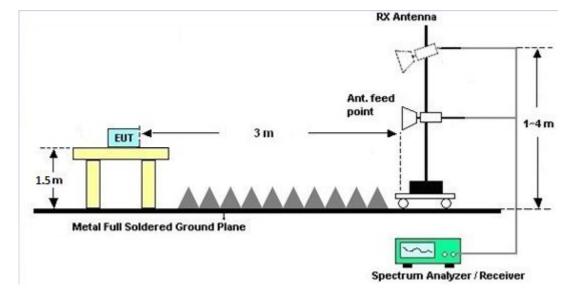

- 1. The testing follows FCC KDB Publication No. 558074 D01 DTS Meas. Guidance v03r02.
- 2. The EUT was arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 4. The EUT was set 3 meters from the interference receiving antenna, which was mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. For measurement below 1GHz, If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, the emission measurement will be repeated using the quasi-peak detector and reported.
- 7. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Set RBW=100 kHz for f < 1 GHz; VBW ≥ RBW; Sweep = auto; Detector function = peak; Trace = max hold;
 - (3) Set RBW = 1 MHz, VBW= 3MHz for $f \ge 1$ GHz for peak measurement. For average measurement:
 - VBW = 10 Hz, when duty cycle is no less than 98 percent.
 - VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control level for the tested mode of operation.

Band	Band Duty Cycle(%)		1/T(kHz)	VBW Setting
Bluetooth 4.0 - LE	62.42	392.00	2.55	3kHz



3.5.4 Test Setup

For radiated emissions below 30MHz



For radiated emissions from 30MHz to 1GHz

Spectrum Analyzer / Receive

For radiated emissions above 1GHz

3.5.5 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

3.5.6 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix A.

3.5.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix A.

3.6 AC Conducted Emission Measurement

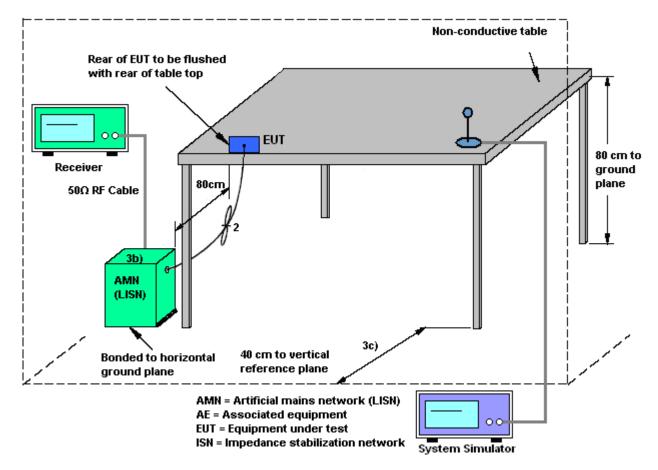
3.6.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of emission (MHz)	Conducted limit (dBµV)				
Frequency of emission (MHZ)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

*Decreases with the logarithm of the frequency.

3.6.2 Measuring Instruments


The section 4.0 of List of Measuring Equipment of this test report is used for test.

3.6.3 Test Procedures

- The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF Bandwidth = 9kHz) with Maximum Hold Mode. Then measurement is also conducted by Average Detector and Quasi-Peak Detector Function respectively.

3.6.4 Test Setup

3.6.5 Test Result of AC Conducted Emission

Test Mode :	Mode 1			Tempe	erature :	:	20~22 ℃
Test Engineer :	Eric Jeng	Eric Jeng			Relative Humidity :		46~48%
Test Voltage :	120Vac / 60Hz			Phase :			Line
Function Type :		V Idle					.4GHz) Link + Camera (Back) + · TF
Final Res	100 90 80 70 60 50 40 40 30 20 10 150k 300 400 ult : Quasi-Peak		00 1M	2M Frequen	3M 4M cy in Hz		22-QP Limit at Main Ports
Frequence (MHz)		Filter	Line	Corr.	Margin		
0.27800	(dBµV) 0 45.7	Off	L1	(dB) 19.5	(dB) 15.2	(dBµV) 60.9	
0.38200		Off	L1	19.5	15.5	58.2	1
0.45400		Off	L1	19.5	14.0	56.8	
0.58200		Off	L1	19.5	13.2	56.0	
0.65400	0 41.9	Off	L1	19.5	14.1	56.0	
5.03000		Off	L1	19.6	23.0	60.0	_
13.55800	0 33.4	Off	L1	19.7	26.6	60.0	
Final Res	ult : Average						
Frequence		Filtor	Lino	Corr.	Margin	Limit	
(MHz)	(dBµV)	Filter	Line	(dB)	(dB)	(dBµV)	
0.27800		Off	L1	19.5	18.6	50.9	
0.38200		Off	L1	19.5	19.3	48.2	_
0.45400		Off	L1	19.5	18.2	46.8	_
0.58200		Off	L1	19.5	18.6	46.0	
0.65400		Off	L1	19.5	18.8	46.0	_
5.03000		Off	L1	19.6	30.8	50.0	
13.55800	30.2	Off	L1	19.7	19.8	50.0	

Test Mode :		Mode 1			Temperature :			20~22 ℃	
Test Engineer :		Eric Jeng			Relative Humidity :			46~48%	
Test Voltage :		120Vac / 60Hz			Phase :			Neutral	
Function Type :		WCDMA Band V Idle + Bluetooth Link + WLAN (2.4GHz) Link + Camera (Back) + Earphone + USB Cable (Charging from Adapter) + TF							
		100							
		90							
		90							
		80							
				+					
		70							
		60					CISPR2	2-QP Limit at Main Ports	
	Level in dBµV	· · · · ·					CISPR2	2-Ave Limit at Main Ports	
	el i.	50	4						
	Lev	40		Minal			,trènn		
				1.1.1947	MAN AND	t in the second		·····	
		30		++	tree hold			the second second second second	
		20					♦		
			••••••••••••••••						
		10			i				
				++ 					
		0							
		0	xoo 400 500 8	00 1M	2M		5M 6 8	10M 20M 30M	
		0	500 400 500 E	00 1M		3M 4M icyin Hz	5M 6 8	10M 20M 30M	
Fina	Il Resu	0		00 1M			5M 6 8	10M 20M 30M	
		0 150k 3 Ilt : Quasi-I	Peak			icy in Hz	5M 6 8	10M 20M 30M	
	II Resu requenc (MHz)	0 150k 3 Ilt : Quasi-I	Peak eak Filter	Line	Frequer			10M 20M 30M	
Fr	equenc	Ilt : Quasi-Po (dBµV	Peak eak /) Filter		Frequen	ncy in Hz Margin	Limit	10M 20M 30M	
Fr 0	equenc (MHz)	150k 3 150k 3 11t : Quasi-I y Quasi-Pe (dBµV 44.0	Peak eak /) Filter Off	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)	10M 20M 30M	
Fr 0 0 0	equenc (MHz) .286000 .358000 .478000	ult : Quasi-Po (dBµV 44.0 42.4 40.4	Peak /) Filter Off Off Off	Line N N	Frequen (dB) 19.5 19.5 19.5	Margin (dB) 16.6 16.4 16.0	Limit (dBµV) 60.6 58.8 56.4	10M 20M 30M	
Fr 0 0 0 0	requenc (MHz) .286000 .358000 .478000 .582000	ult : Quasi-Pa (dBµV 44.0 42.4 40.4 40.7	Peak /) Filter Off Off Off Off Off	Line N N N N	Frequen (dB) 19.5 19.5 19.5 19.5	Margin (dB) 16.6 16.4 16.0 15.3	Limit (dBµV) 60.6 58.8 56.4 56.0	10M 20M 30M	
Fr 0 0 0 0 0 0	equenc (MHz) .286000 .358000 .478000 .582000 .654000	ult : Quasi-Pe (dBµV 44.0 42.4 40.4 40.7 39.8	Peak eak /) Filter Off Off Off Off Off Off Off	Line N N N N N	Frequer (dB) 19.5 19.5 19.5 19.5 19.5	Margin (dB) 16.6 16.4 16.0 15.3 16.2	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0		
Fr 0 0 0 0 0 4	equenc (MHz) .286000 .358000 .478000 .582000 .654000 .670000	ult : Quasi-P (dBµV (dBµV 44.0 42.4 40.4 39.8 32.2	Peak eak /) Filter Off Off Off Off Off Off Off	Line N N N N N N	Frequer (dB) 19.5 19.5 19.5 19.5 19.5 19.5	Margin (dB) 16.6 16.4 16.0 15.3 16.2 23.8	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0 56.0		
Fr 0 0 0 0 0 4	equenc (MHz) .286000 .358000 .478000 .582000 .654000	ult : Quasi-P (dBµV) (dBµV) 44.0 42.4 40.7 39.8 32.2	Peak eak /) Filter Off Off Off Off Off Off Off	Line N N N N N	Frequer (dB) 19.5 19.5 19.5 19.5 19.5	Margin (dB) 16.6 16.4 16.0 15.3 16.2	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0	10M 20M 30M	
Fr 0 0 0 0 0 4 13	equenc (MHz) .286000 .358000 .478000 .582000 .654000 .670000 3.558000	Ilt : Quasi-Po (dBµV) 44.0 42.4 40.4 40.7 39.8 32.2 0 32.9	Peak eak /) Filter Off Off Off Off Off Off Off Of	Line N N N N N N	Frequer (dB) 19.5 19.5 19.5 19.5 19.5 19.5	Margin (dB) 16.6 16.4 16.0 15.3 16.2 23.8	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0 56.0		
Fr 0 0 0 0 4 13 Fina	equenc (MHz) .286000 .358000 .478000 .582000 .654000 .670000 3.558000	Ilt : Quasi-Pa (dBµV 44.0 42.4 40.4 40.4 40.7 39.8 32.2 0 32.9 Ilt : Averag	Peak eak /) Filter Off Off Off Off Off Off Off off o	Line N N N N N N	Frequer (dB) 19.5 19.5 19.5 19.5 19.5 19.5	Margin (dB) 16.6 16.4 16.0 15.3 16.2 23.8	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0 56.0		
Fr 0 0 0 0 4 13 Fina	equenc (MHz) .286000 .358000 .478000 .582000 .654000 .670000 3.558000	Ilt : Quasi-Pa (dBµV 44.0 42.4 40.4 40.4 40.7 39.8 32.2 0 32.9 Ilt : Averag	Peak contraction c	Line N N N N N N	Frequen (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.7	Margin (dB) 16.6 16.4 16.0 15.3 16.2 23.8 27.1	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0 56.0 60.0		
Fr 0 0 0 0 0 4 13 Fina	equenc (MHz) .286000 .358000 .478000 .582000 .654000 .670000 3.558000 al Resu equenc	III : Quasi-Po (dBµV (dBµV 44.0 42.4 40.4 40.4 39.8 32.2) 32.9 III : Averag y Averag (dBµV	Peak contraction c	Line N N N N N N	Frequen (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.7 (Corr.	Margin (dB) 16.6 16.4 16.0 15.3 16.2 23.8 27.1 Margin	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0 56.0 60.0		
Fr 0 0 0 0 0 4 13 Fina Fr 0	equenc (MHz) .286000 .358000 .478000 .582000 .654000 .670000 3.558000 al Resu requenc (MHz)	Ilt : Quasi-P (dBµV (dBµV 44.0 42.4 40.4 40.7 39.8 32.2 0 32.9 Ilt : Averag y Averag (dBµV 28.6	Peak eak /) Filter Off Off Off Off Off Off Off off filter /) States Off Off Off Off Off Off Off Of	Line N N N N N N Line	Frequen (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.7 (Dorr. (dB)	Margin (dB) 16.6 16.4 16.0 15.3 16.2 23.8 27.1 Margin (dB)	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0 56.0 60.0 Limit (dBµV)		
Fr 0 0 0 0 0 4 13 Fina Fr 0 0 0	equenc (MHz) .286000 .358000 .478000 .582000 .654000 .670000 3.558000 al Resu requenc (MHz) .286000	Ilt : Quasi-Po (dBµV 44.0 42.4 40.4 40.4 40.7 39.8 32.2 0 32.9 Ilt : Averag y Averag (dBµV 28.6 26.1 25.9	Peak eak / Pilter Off Off Off Off Off Off Off Off Off Of	Line N N N N N N Line N	Frequer (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.7 19.6 19.7	Margin (dB) 16.6 16.4 16.0 15.3 16.2 23.8 27.1 Margin (dB) 22.0	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0 56.0 60.0 Limit (dBµV) 50.6		
Fr 0 0 0 0 0 0 4 13 5 Fina 6 0 0 0 0 0 0 0 0	equenc (MHz) .286000 .358000 .478000 .582000 .654000 .654000 .3558000 .3558000 .286000 .358000 .478000 .582000	0 3 150k 4 40.4 40.4 40.4 40.7 39.8 32.2 32.9 32.9 Ill: Average (dBµV 28.6 26.1 25.9 26.8 26.8 26.8	Peak eak // Off	Line N N N N N N Line N N N N N	Frequen (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.7 (dB) 19.5 19.5 19.5 19.5 19.5	Margin (dB) 16.6 16.4 16.0 15.3 16.2 23.8 27.1 Margin (dB) 22.0 22.7 20.5 19.2	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0 60.0 56.0 60.0 Limit (dBµV) 50.6 48.8 46.4 46.0		
Fr 0 0 0 0 0 0 4 13 7 Fina 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	equenc (MHz) .286000 .358000 .478000 .582000 .654000 .654000 .3558000 .1 Resu equenc (MHz) .286000 .358000 .358000 .478000 .582000 .654000	It : Quasi-Parameter y Quasi-Parameter (dBµV 44.0 42.4 40.4 40.4 40.4 39.8 32.2 0 32.9 1t : Average (dBµV 28.6 26.1 25.9 26.8 26.8	Peak eak // Off	Line N N N N N N Line N N N N N N	Frequen (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.7 (dB) 19.5 19.5 19.5 19.5 19.5 19.5	Margin (dB) 16.6 16.4 16.0 15.3 16.2 23.8 27.1 Margin (dB) 22.0 22.7 20.5 19.2 19.2	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0 56.0 60.0 Limit (dBµV) 50.6 48.8 46.4 46.0 46.0		
Fr 0 0 0 0 0 0 4 13 7 Fina 5 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	equenc (MHz) .286000 .358000 .478000 .582000 .654000 .654000 .3558000 .3558000 .286000 .358000 .478000 .582000	Ilt : Quasi-Po (dBµV (dBµV 44.0 42.4 40.7 39.8 32.2 0 32.9 Ilt : Averag (dBµV 28.6 26.1 25.9 26.8 26.8 20.0	Peak eak // Off	Line N N N N N N Line N N N N N	Frequen (dB) 19.5 19.5 19.5 19.5 19.5 19.6 19.7 (dB) 19.5 19.5 19.5 19.5 19.5	Margin (dB) 16.6 16.4 16.0 15.3 16.2 23.8 27.1 Margin (dB) 22.0 22.7 20.5 19.2	Limit (dBµV) 60.6 58.8 56.4 56.0 56.0 60.0 56.0 60.0 Limit (dBµV) 50.6 48.8 46.4 46.0		

3.7 Antenna Requirements

3.7.1 Standard Applicable

If directional gain of transmitting antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the FCC rule.

3.7.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.7.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Spectrum Analyzer	Rohde & Schwarz	FSP40	100055	9kHz~40GHz	Jun. 09, 2014	Nov. 13, 2014 ~ Nov. 17, 2014	Jun. 08, 2015	Conducted (TH02-HY)
Power Meter	Agilent	E4416A	GB412923 44	300MHz~40GH z	Jan. 28, 2014	Nov. 13, 2014 ~ Nov. 17, 2014	Jan. 27, 2015	Conducted (TH02-HY)
Power Sensor	Agilent	E9327A	US404415 48	300MHz~40GH z	Jan. 28, 2014	Nov. 13, 2014 ~ Nov. 17, 2014	Jan. 27, 2015	Conducted (TH02-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9kHz~7GHz	Aug. 30, 2014	Nov. 28, 2014	Aug. 29, 2015	Conduction (CO05-HY)
LISN (for auxiliary equipment)	Rohde & Schwarz	ENV216	100081	9kHz ~ 30MHz	Dec. 12, 2013	Nov. 28, 2014	Dec. 11, 2014	Conduction (CO05-HY)
LISN	Rohde & Schwarz	ENV216	100080	9kHz ~ 30MHz	Dec. 04, 2013	Nov. 28, 2014	Dec. 03, 2014	Conduction (CO05-HY)
AC Power Source	ChainTek	APC-1000W	N/A	N/A	N/A	Nov. 28, 2014	N/A	Conduction (CO05-HY)
EMI Test Receiver	Rohde & Schwarz	ESCI 7	100724	9 kHz~7 GHz	Aug. 30, 2014	Dec. 18, 2014 ~ Dec. 26, 2014	Aug. 29, 2015	Radiation (03CH07-HY)
Spectrum Analyzer	Rohde & Schwarz	FSV30	101749	10Hz ~ 30GHz	Feb. 10, 2014	Dec. 18, 2014 ~ Dec. 26, 2014	Feb. 09, 2015	Radiation (03CH07-HY)
Loop Antenna	R&S	HFH2-Z2	100315	9 kHz~30 MHz	Jul. 28, 2014	Dec. 18, 2014 ~ Dec. 26, 2014	Jul. 27, 2015	Radiation (03CH07-HY)
Bilog Antenna	Schaffner	CBL6111C	2726	30MHz ~ 1GHz	Sep. 27, 2014	Dec. 18, 2014 ~ Dec. 26, 2014	Sep. 26, 2015	Radiation (03CH07-HY)
Double Ridge Horn Antenna	ESCO	3117	75962	1GHz~18GHz	Aug. 19, 2014	Dec. 18, 2014 ~ Dec. 26, 2014	Aug. 18, 2015	Radiation (03CH07-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA 9170	BBHA9170 251	18GHz~40GHz	Oct. 02, 2014	Dec. 18, 2014 ~ Dec. 26, 2014	Oct. 01, 2015	Radiation (03CH07-HY)
Preamplifier	COM-POWER	PA-103A	161241	10 MHz ~ 1000MHz	Mar. 17, 2014	Dec. 18, 2014 ~ Dec. 26, 2014	Mar. 16, 2015	Radiation (03CH07-HY)
Preamplifier	Agilent	8449B	3008A023 62	1 GHz~26.5 GHz	Oct. 21, 2014	Dec. 18, 2014 ~ Dec. 26, 2014	Oct. 20, 2015	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	DC~18 GHz	Jul. 07, 2014	Dec. 18, 2014 ~ Dec. 26, 2014	Jul. 06, 2015	Radiation (03CH07-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590075	DC~18 GHz	Apr. 21, 2014	Dec. 18, 2014 ~ Dec. 26, 2014	Apr. 20, 2015	Radiation (03CH07-HY)
Turn Table	ChainTek	ChainTek 3000	N/A	0 ~ 360 degree	N/A	Dec. 18, 2014 ~ Dec. 26, 2014	N/A	Radiation (03CH07-HY)
Antenna Mast	ChainTek	ChainTek 3000	N/A	N/A	N/A	Dec. 18, 2014 ~ Dec. 26, 2014	N/A	Radiation (03CH07-HY)

5 Uncertainty of Evaluation

Uncertainty of Conducted Emission Measurement (150 kHz ~ 30 MHz)

Measuring Uncertainty for a Level of Confidence	2.26
of 95% (U = 2Uc(y))	2.20

Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	4.50
of 95% (U = 2Uc(y))	4.50