

11.3 Left Cheek

	Bands	Chan.	Freq. (MHz)	Modulation type	Conducted Power	Power Drift	Measured 1g SAR	Limits (W/Kg)	Results
ED A 101					(dBm)	(dB)	(W/kg)		
EB-A101		512 (Low)	1850.2	GMSK	29.3	-	-	1.6	Pass
	PCS	661 (Mid)	1880	GMSK	28.9	-	-	1.6	Pass
		810 (High)	1909.8	GMSK	28.6	-	-	1.6	Pass
		512 (Low)	1850.2	GMSK	29.2	-0.06	0.567	1.6	Pass
EB-A100	PCS	661 (Mid)	1880	GMSK	29.1	-0.01	0.64	1.6	Pass
		810 (High)	1909.8	GMSK	29.3	-0.005	0.623	1.6	Pass

<u>11.4 Left Tilted</u>

	Bands	Chan.	Freq. (MHz)	Modulation type	Conducted Power (dBm)	Power Drift (dB)	Measured 1g SAR (W/kg)	Limits (W/Kg)	Results
EB-A101		512 (Low)	1850.2	GMSK	29.3	-	-	1.6	Pass
	PCS	661 (Mid)	1880	GMSK	28.9	-	-	1.6	Pass
		810 (High)	1909.8	GMSK	28.6	-	-	1.6	Pass
		512 (Low)	1850.2	GMSK	29.2	-0.003	0.462	1.6	Pass
EB-A100	PCS	661 (Mid)	1880	GMSK	29.1	-0.02	0.547	1.6	Pass
		810 (High)	1909.8	GMSK	29.3	-0.003	0.462	1.6	Pass

	Bands	Chan.	Freq.	Modulation	Conducted	Power	Measured	Limits	Results
			(MHz)	type	Power	Drift	1g SAR	(W/Kg)	
EB-A101					(dBm)	(dB)	(W/kg)		
LD-AIVI		512 (Low)	1850.2	GMSK	29.3	-	-	1.6	Pass
	PCS	661 (Mid)	1880	GMSK	28.9	-0.07	0.131	1.6	Pass
		810 (High)	1909.8	GMSK	28.6	-	-	1.6	Pass
		512 (Low)	1850.2	GMSK	29.2	-	-	1.6	Pass
EB-A100	PCS	661 (Mid)	1880	GMSK	29.1	-0.03	0.167	1.6	Pass
		810 (High)	1909.8	GMSK	29.3	-	_	1.6	Pass

11.5 Body Worn-keypad up

11.6 Body Worn-keypad down

	Bands	Chan.	Freq. (MHz)	Modulation type	Conducted Power	Power Drift	Measured 1g SAR	Limits (W/Kg)	Results
ED A 101			()	· J F ·	(dBm)	(dB)	(W/kg)	(8)	
EB-A101		512 (Low)	1850.2	GMSK	29.3	-	-	1.6	Pass
	PCS	661 (Mid)	1880	GMSK	28.9	-	-	1.6	Pass
		810 (High)	1909.8	GMSK	28.6	-	-	1.6	Pass
		512 (Low)	1850.2	GMSK	29.2	-	-	1.6	Pass
EB-A100	PCS	661 (Mid)	1880	GMSK	29.1	0.07	0.13	1.6	Pass
		810 (High)	1909.8	GMSK	29.3	-	-	1.6	Pass

12.References

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] IEEE Std. 1528-200X, Draft CD 1.1 " Recommended Practice for Determining the Spatial-Peak Specific Absorption Rate (SAR) in the Human Body Due to Wireless Communications Devices: Experimental Techniques", December 2002
- [3] Supplement C (Edition 01-10) to OET Bulletin 65 (Edition 97-01), "Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to RF Emissions", June 2001
- [4] IEEE Std. C95.3, "IEEE Recommended Practice for the Meaurement of Potentially Hazardous Electromagnetic Fields-RF and Microwave", 1991
- [5] IEEE Std. C95.1, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", 1999
- [6] Robert J. Renka, "Multivariate Interpolation Of Large Sets Of Scattered Data", University of Noth Texas ACM Transactions on Mathematical Software, vol. 14, no. 2, June 1988, pp. 139-148
- [7] DAYS4 System Handbook

Appendix A - System Performance Check Data

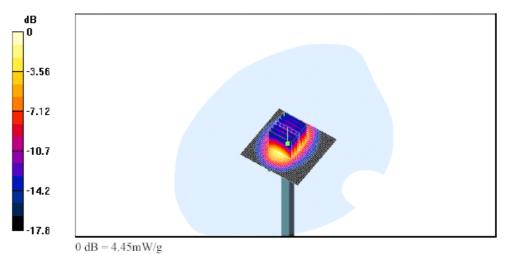
Date/Time: 04/27/04 10:06:42

Test Laboratory: SPORTON

HSL1900MHz Dipole System Calbration

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041 Program Name: System Performance Check

Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: HSL1900 ($\sigma = 1.43596$ mho/m, $\varepsilon_r = 39.2448$, $\rho = 1000$ kg/m³) Phantom section: Flat Section;Ambient Temp=21~23C; Liquid Temp=21.5C; Liquid height=15.2cm


DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.3, 5.3, 5.3); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Pin = 100mW; d = 10mm/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 59.3 V/m Power Drift = -0.1 dB Maximum value of SAR = 4.54 mW/g

Pin = 100mW; d = 10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 6.88 W/kg

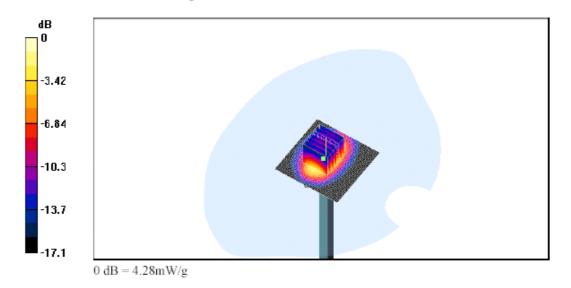
SAR(1 g) = 4 mW/g; SAR(10 g) = 2.08 mW/gReference Value = 59.3 V/mPower Drift = -0.1 dBMaximum value of SAR = 4.45 mW/g

Date/Time: 04/27/04 14:50:56

Test Laboratory: SPORTON

MSL 1900MHz Dipole System Calbration

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d041 Program Name: System Performance Check


Communication System: CW; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: MSL1900 ($\sigma = 1.49962$ mho/m, $\varepsilon_r = 51.2968$, $\rho = 1000$ kg/m³) Phantom section: Flat Section;Ambient Temp=21~23C; Liquid Temp=21.5C; Liquid height=15.2cm

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5, 5, 5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

Pin = 100mW; d = 10mm/Area Scan (51x51x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 56.6 V/m Power Drift = -0.04 dB Maximum value of SAR = 4.51 mW/g

Pin = 100mW; d = 10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 6.4 W/kg SAR(1 g) = 3.83 mW/g; SAR(10 g) = 2.04 mW/g Reference Value = 56.6 V/m Power Drift = -0.04 dB Maximum value of SAR = 4.28 mW/g

©2003 SPORTON International Inc..SAR Testing Lab

Appendix B - SAR Measurement Data

Date/Time: 04/27/04 11:17:22

Test Laboratory: SPORTON

RIGHT-CHEEK 1900 CH 810

DUT: Quanta; Type: BN1; Serial:350421030000600 Program Name: RIGHT HEAD CHEEK

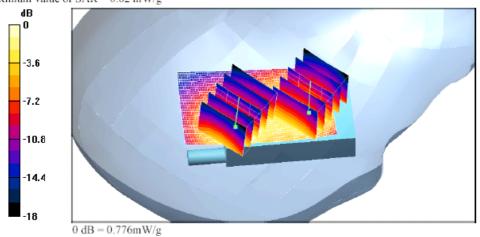
Communication System: GSM 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium: HSL 1900 ($\sigma = 1.44425 \text{ mho/m}$, $\varepsilon_r = 39.2181$, $\rho = 1000 \text{ kg/m}^3$) Phantom section: Right Section:Ambient Temp=21~23C; Liquid Temp=21.5C; Liquid height=15.2cm

DASY4 Configuration:

Probe: ET3DV6 - SN1788; ConvF(5.3, 5.3, 5.3); Calibrated: 8/29/2003

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

CH 810 1909.8MHz/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 19.5 V/m


Power Drift = -0.04 dBMaximum value of SAR = 0.8 mW/g

CH 810 1909.8MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.705 mW/g; SAR(10 g) = 0.371 mW/gReference Value = 19.5 V/mPower Drift = -0.04 dBMaximum value of SAR = 0.776 mW/g

CH 810 1909.8MHz/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 0.818 W/kg SAR(1 g) = 0.573 mW/g; SAR(10 g) = 0.347 mW/g Reference Value = 19.5 V/m Power Drift = -0.04 dB Maximum value of SAR = 0.62 mW/g

©2003 SPORTON International Inc..SAR Testing Lab

Date/Time: 04/27/04 13:30:58

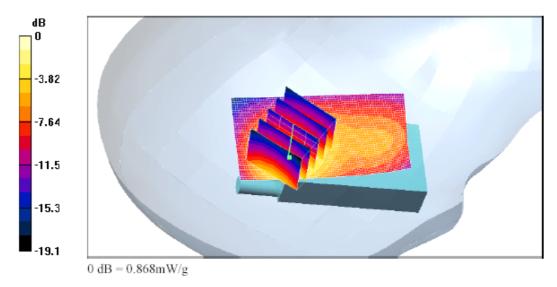
Test Laboratory: SPORTON

RIGHT-TILTED 1900 CH 810

DUT: Quanta; Type: BN1; Serial:350421030000600 Program Name: RIGHT HEAD TILTED

Communication System: GSM 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium: HSL 1900 ($\sigma = 1.44425$ mho/m, $\epsilon_r = 39.2181$, $\rho = 1000$ kg/m³)

Phantom section: Right Section; Ambient Temp=21~23C; Liquid Temp=21.5C; Liquid height=15.2cm


DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.3, 5.3, 5.3); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

CH 810 1909.8MHz/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 21.5 V/m Power Drift = -0.05 dB Maximum value of SAR = 0.895 mW/g

CH 810 1909.8MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 1.4 W/kg

 $\begin{array}{l} \mathrm{SAR}(1\ g) = 0.789\ mW/g; \ \mathrm{SAR}(10\ g) = 0.415\ mW/g \\ \mathrm{Reference}\ \mathrm{Value} = 21.5\ \mathrm{V/m} \\ \mathrm{Power}\ \mathrm{Drift} = -0.05\ \mathrm{dB} \\ \mathrm{Maximum}\ \mathrm{value}\ \mathrm{of}\ \mathrm{SAR} = 0.868\ \mathrm{mW/g} \end{array}$

©2003 SPORTON International Inc..SAR Testing Lab

Date/Time: 04/27/04 11:42:22

Test Laboratory: SPORTON

RIGHT-CHEEK 1900 CH 661

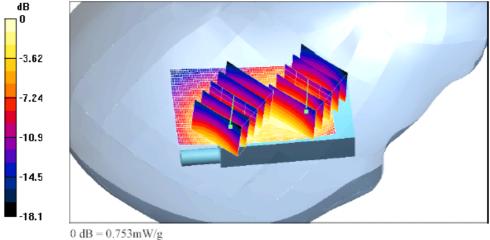
DUT: Quanta; Type: BN1; Serial:350421030000600 Program Name: RIGHT HEAD CHEEK

Communication System: GSM 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: HSL 1900 ($\sigma = 1.41667 \text{ mho/m}$, $\varepsilon_r = 39.2631$, $\rho = 1000 \text{ kg/m}^3$) Phantom section: Right Section ;Ambient Temp=21~23C; Liquid Temp=21.5C; Liquid height=15.2cm

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.3, 5.3, 5.3); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

CH 661 1880MHz/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm


Reference Value = 19.8 V/m Power Drift = -0.005 dB Maximum value of SAR = 0.793 mW/g

CH 661 1880MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 1.22 W/kg

SAR(1 g) = 0.694 mW/g; SAR(10 g) = 0.371 mW/gReference Value = 19.8 V/mPower Drift = -0.005 dBMaximum value of SAR = 0.753 mW/g

CH 661 1880MHz/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 0.872 W/kg SAR(1 g) = 0.617 mW/g; SAR(10 g) = 0.378 mW/g Reference Value = 19.8 V/m Power Drift = -0.005 dB

Maximum value of SAR = 0.665 mW/g

©2003 SPORTON International Inc..SAR Testing Lab

Date/Time: 04/27/04 18:07:30

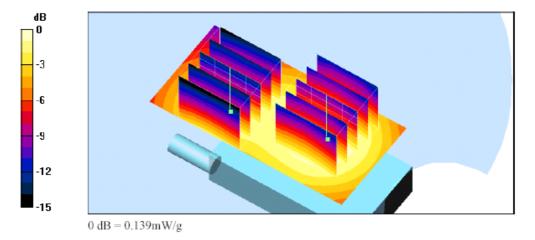
Test Laboratory: SPORTON

Keypad up CH 661

DUT: Quanta; Type: NB1; Serial:350421030000600 Program Name: NB BTM Touch

Communication System: DCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: MSL1900 (σ = 1.48387 mho/m, ε_r = 51.3549, ρ = 1000 kg/m³)

Phantom section: Flat Section; Ambient Temp=21~23C; Liquid Temp=21.5C; Liquid height=15.2cm


DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5, 5, 5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

CH 661 1880.0MHz/Area Scan (101x51x1): Measurement grid: dx=10mm, dy=10mm Reference Value = 8.92 V/m Power Drift = -0.07 dB Maximum value of SAR = 0.14 mW/g

CH 661 1880.0MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 0.195 W/kg SAR(1 g) = 0.131 mW/g; SAR(10 g) = 0.0856 mW/g Reference Value = 8.92 V/m Power Drift = -0.07 dB Maximum value of SAR = 0.139 mW/g

CH 661 1880.0MHz/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 0.162 W/kg SAR(1 g) = 0.104 mW/g; SAR(10 g) = 0.0659 mW/g Reference Value = 8.92 V/m Power Drift = -0.07 dB Maximum value of SAR = 0.111 mW/g

©2003 SPORTON International Inc..SAR Testing Lab

Date/Time: 04/27/04 18:07:30

Test Laboratory: SPORTON

Keypad up CH 661

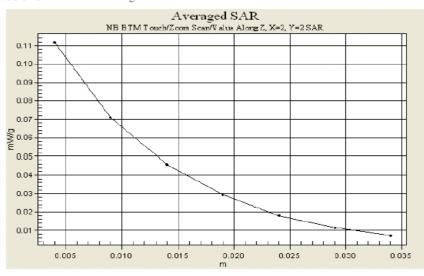
DUT: Quanta; Type: NB1; Serial:350421030000600 Program Name: body worn

Communication System: DCS 1900; Frequency: 1880 MHz;Duty Cycle: 1:8.3 Medium: MSL1900 ($\sigma = 1.48387$ mho/m, $\varepsilon_r = 51.3549$, $\rho = 1000$ kg/m³) Phantom section: Flat Section;Ambient Temp=21~23C; Liquid Temp=21.5C; Liquid height=15.2cm

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5, 5, 5); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003
- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150
- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

CH 661 1880.0MHz/Area Scan (101x51x1): Measurement grid: dx=10mm, dy=10mm


Reference Value = 8.92 V/m Power Drift = -0.07 dB Maximum value of SAR = 0.14 mW/g

CH 661 1880.0MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 0.195 W/kg

SAR(1 g) = 0.131 mW/g; SAR(10 g) = 0.0856 mW/gReference Value = 8.92 V/mPower Drift = -0.07 dBMaximum value of SAR = 0.139 mW/g

CH 661 1880.0MHz/Zoom Scan (5x5x7)/Cube 1: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 0.162 W/kg

SAR(1 g) = 0.104 mW/g; SAR(10 g) = 0.0659 mW/gReference Value = 8.92 V/mPower Drift = -0.07 dBMaximum value of SAR = 0.111 mW/g

Date/Time: 04/27/04 13:30:58

Test Laboratory: SPORTON

RIGHT-TILTED 1900 CH 810

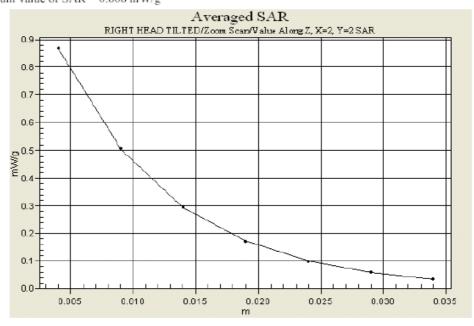
DUT: Quanta; Type: BN1; Serial:350421030000600 Program Name: RIGHT HEAD TILTED

Communication System: GSM 1900; Frequency: 1909.8 MHz;Duty Cycle: 1:8.3 Medium: HSL 1900 ($\sigma = 1.44425$ mho/m, $\varepsilon_r = 39.2181$, $\rho = 1000$ kg/m³) Phantom section: Right Section;Ambient Temp=21~23C; Liquid Temp=21.5C; Liquid height=15.2cm

DASY4 Configuration:

- Probe: ET3DV6 SN1788; ConvF(5.3, 5.3, 5.3); Calibrated: 8/29/2003
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn577; Calibrated: 11/21/2003

- Phantom: SAM 12; Type: QD 000 P40 C; Serial: TP-1150


- Measurement SW: DASY4, V4.1 Build 47; Postprocessing SW: SEMCAD, V1.6 Build 116

CH 810 1909.8MHz/Area Scan (51x91x1): Measurement grid: dx=10mm, dy=10mm

Reference Value = 21.5 V/m Power Drift = -0.05 dB Maximum value of SAR = 0.895 mW/g

CH 810 1909.8MHz/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm Peak SAR (extrapolated) = 1.4 W/kg

SAR(1 g) = 0.789 mW/g; SAR(10 g) = 0.415 mW/gReference Value = 21.5 V/mPower Drift = -0.05 dBMaximum value of SAR = 0.868 mW/g

Appendix C – Calibration Data

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Sproton Int. (Auden)

Object(s)	D1900V2 SN:5d041				
Calibration procedure(s)	QA CAL-05 y Calibration pr	2 ocedure for dipole validation kits			
Calibration date:	February 17,	2004			
Condition of the calibrated item	In Tolerance	(according to the specific calibration	n document)		
17025 international standard.		E used in the calibration procedures and conformity of tory facility: environment temperature 22 +/- 2 degrees			
Calibration Equipment used (M&1	E critical for calibration)	6			
Model Type	ID#	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration		
Power meter EPM E442	GB37480704	6-Nov-03 (METAS, No. 252-0254)	Nov-04		
Power sensor HP 8481A	US37292783	6-Nov-03 (METAS, No. 252-0254)	Nov-04		
Power sensor HP 8481A	MY41092317	18-Oct-02 (Agilent, No. 20021018)	Oct-04		
RF generator R&S SML-03 Network Analyzer HP 8753E	100698 US37390585	27-Mer-2002 (R&S, No. 20-92389) 18-Oct-01 (SPEAG, In house check Nov-03)	In house check: Mar-05 In house check: Oct 05		
	Name	Function	Signature		
Calibrated by:	Judith Mueller	Technician	millet		
Approved by:	Kalja Poković	Laboratory Director	the lite		
			Date issued: February 18, 2004		
This calibration certificate is issue Calibration Laboratory of Schmid		ution until the accreditation process (based on ISO/IEo	C 17025 International Standard) for		

880-KP0301061-A

Page 1 (1)

Schmid & Partner Engineering AG

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

DASY

Dipole Validation Kit

Type: D1900V2

Serial: 5d041

Manufactured: July 4, 2003

Calibrated: February 17, 2004

1. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **head simulating liquid** of the following electrical parameters at 1900 MHz:

Relative Dielectricity	38.8	±5%
Conductivity	1.47 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.96 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

2. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 1. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

 averaged over 1 cm³ (1 g) of tissue:
 41.6 mW/g \pm 16.8 % (k=2)¹

 averaged over 10 cm³ (10 g) of tissue:
 21.6 mW/g \pm 16.2 % (k=2)¹

1 validation uncertainty

3. Dipole Impedance and Return Loss

The impedance was measured at the SMA-connector with a network analyzer and numerically transformed to the dipole feedpoint. The transformation parameters from the SMA-connector to the dipole feedpoint are:

Electrical delay:	1.200 ns	(one direction)
Transmission factor:	0.993	(voltage transmission, one direction)

The dipole was positioned at the flat phantom sections according to section 1 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:	$Re\{Z\} = 51.2 \Omega$
	Im $\{Z\} = 4.9\Omega$
Return Loss at 1900 MHz	-26.1 dB

4. Measurement Conditions

The measurements were performed in the flat section of the SAM twin phantom filled with **body** simulating tissue of the following electrical parameters at 1900 MHz:

Relative Dielectricity	52.5	$\pm 5\%$
Conductivity	1.58 mho/m	± 5%

The DASY4 System with a dosimetric E-field probe ET3DV6 (SN:1507, Conversion factor 4.57 at 1900 MHz) was used for the measurements.

The dipole was mounted on the small tripod so that the dipole feedpoint was positioned below the center marking of the flat phantom section and the dipole was oriented parallel to the body axis (the long side of the phantom). The standard measuring distance was <u>10mm</u> from dipole center to the solution surface. The included distance spacer was used during measurements for accurate distance positioning.

The coarse grid with a grid spacing of 15mm was aligned with the dipole. The 7x7x7 fine cube was chosen for cube integration.

The dipole input power (forward power) was $250 \text{mW} \pm 3$ %. The results are normalized to 1W input power.

5. SAR Measurement with DASY4 System

Standard SAR-measurements were performed according to the measurement conditions described in section 4. The results (see figure supplied) have been normalized to a dipole input power of 1W (forward power). The resulting averaged SAR-values measured with the dosimetric probe ET3DV6 SN:1507 and applying the <u>advanced extrapolation</u> are:

averaged over 1 cm^3 (1 g) of tissue:	42.0 mW/g \pm 16.8 % (k=2) ²
averaged over 10 cm3 (10 g) of tissue:	22.0 mW/g \pm 16.2 % (k=2) ²

6. Dipole Impedance and Return Loss

The dipole was positioned at the flat phantom sections according to section 4 and the distance spacer was in place during impedance measurements.

Feedpoint impedance at 1900 MHz:	$Re{Z} = 46.6 \Omega$
	Im $\{Z\} = 5.1 \Omega$
Return Loss at 1900 MHz	-24.0 dB

7. Handling

Do not apply excessive force to the dipole arms, because they might bend. Bending of the dipole arms stresses the soldered connections near the feedpoint leading to a damage of the dipole.

8. Design

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

Small end caps have been added to the dipole arms in order to improve matching when loaded according to the position as explained in Section 1. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

9. Power Test

After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

² validation uncertainty

Page 1 of 1 Date/Time: 02/17/04 14:13:01

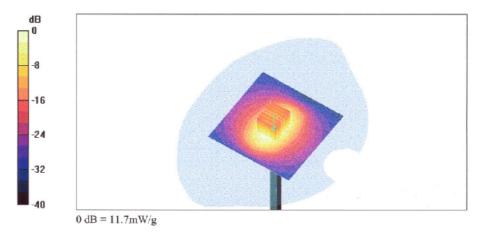
Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: HSL 1900 MHz;

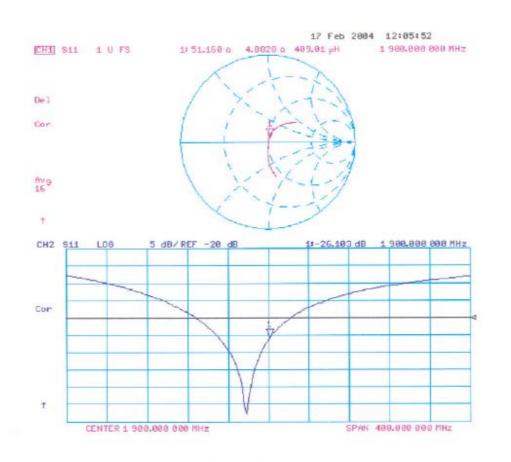
Medium parameters used: f = 1900 MHz; $\sigma = 1.47 \text{ mho/m}$; $\varepsilon_{e} = 38.8$; $\rho = 1000 \text{ kg/m}^{3}$

Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.96, 4.96, 4.96); Calibrated: 1/23/2004
- · Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 Sn411; Calibrated: 11/6/2003
 Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 30; Postprocessing SW: SEMCAD, V1.8 Build 98

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 93.8 V/m Power Drift = 0.002 dBMaximum value of SAR = 11.8 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Peak SAR (extrapolated) = 18.7 W/kg

SAR(1 g) = 10.4 mW/g; SAR(10 g) = 5.39 mW/g Reference Value = 93.8 V/m Power Drift = 0.002 dB Maximum value of SAR = 11.7 mW/g

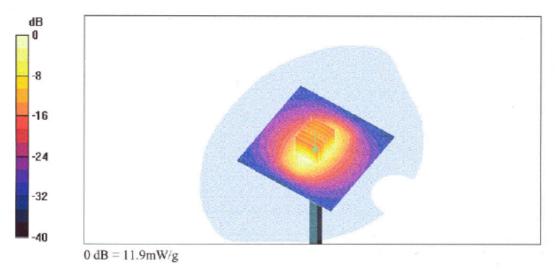
0011

Page 1 of 1 Date/Time: 02/09/04 15:58:45

Test Laboratory: SPEAG, Zurich, Switzerland

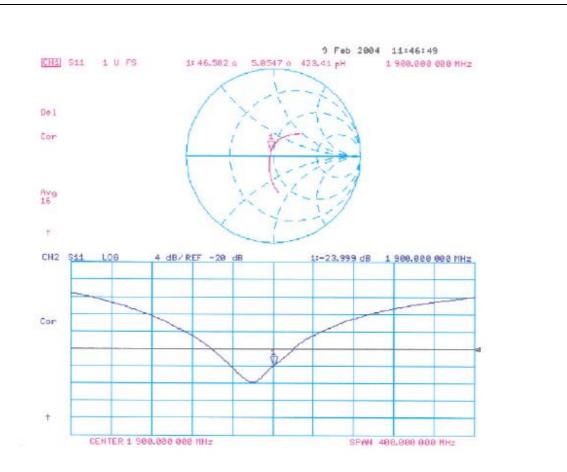
DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN5d041

Communication System: CW-1900; Frequency: 1900 MHz;Duty Cycle: 1:1 Medium: Muscle 1900 MHz; Medium parameters used: f = 1900 MHz; $\sigma = 1.58$ mho/m; $\epsilon_r = 52.5$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY4 (High Precision Assessment)


DASY4 Configuration:

- Probe: ET3DV6 SN1507; ConvF(4.57, 4.57, 4.57); Calibrated: 1/23/2004
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE3 SN411; Calibrated: 11/6/2003
- Phantom: SAM with CRP TP1006; Type: SAM 4.0; Serial: TP:1006;
- Measurement SW: DASY4, V4.2 Build 25; Postprocessing SW: SEMCAD, V1.8 Build 101

Pin = 250 mW; d = 10 mm/Area Scan (81x81x1): Measurement grid: dx=15mm, dy=15mm Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (interpolated) = 11.8 mW/g


Pin = 250 mW; d = 10 mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 92.6 V/m; Power Drift = 0.0 dB Maximum value of SAR (measured) = 11.9 mW/gPeak SAR (extrapolated) = 18.8 W/kgSAR(1 g) = 10.5 mW/g; SAR(10 g) = 5.49 mW/g

R

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Client Auden > Sporton Int. Inc.

August 29, 20	cedure for dosimetric E-field prob	35			
	03				
	03				
		an a			
In folerance (In Tolerance (according to the specific calibration document)				
s traceability of M&TE	used in the calibration procedures and conformity of	the procedures with the ISO/IEC			
in the closed laborato	ry facility: environment temperature 22 +/- 2 degrees	s Celsius and humidity < 75%.			
critical for calibration)					
ID #	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration			
US3642U01700	4-Aug-99 (SPEAG, in house check Aug-02)	In house check: Aug-05			
MY41495277	2-Apr-03 (METAS, No 252-0250)	Apr-04			
MY41092180	18-Sep-02 (Agilent, No. 20020918)	Sep-03			
GB41293874	2-Apr-03 (METAS, No 252-0250)	Apr-04			
US37390585	18-Oct-01 (Agilent, No. 24BR1033101)	In house check: Oct 03			
SN: 6295803	3-Sep-01 (ELCAL, No.2360)	Sep-03			
Name	Function	Signature			
Nico Vetlerii	Technician	Diete			
Katja Pokovis	Laberatory Director	Mon : Konty			
		Date issued: August 28, 2003			
		G 17025 International Standard) fo			
	in the closed laborato ritical for celibration) ID # US3642U01700 MY41495277 MY41092180 GB41293874 US37390585 SN: 6295803 Name Nino Vetters Katja Polsovic s an intermediate solu	ID # Cal Date (Calibrated by, Certificate No.) US3642U01700 4-Aug-99 (SPEAG, in house check Aug-02) MY41495277 2-Apr-03 (METAS, No 252-0250) MY41092160 18-Sep-02 (Agilent, No. 20020918) GB41293874 2-Apr-03 (METAS, No 252-0250) US37390585 18-Oct-01 (Agilent, No. 24BR1033101) SN: 6295803 3-Sep-01 (ELCAL, No.2360) Name Function Nico Vetters Technician			

880-KP0301061-A

Page 1 (1)

Schmid & Partner Engineering AG

speag

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 1 245 9700, Fax +41 1 245 9779 info@speag.com, http://www.speag.com

Probe ET3DV6

SN:1788

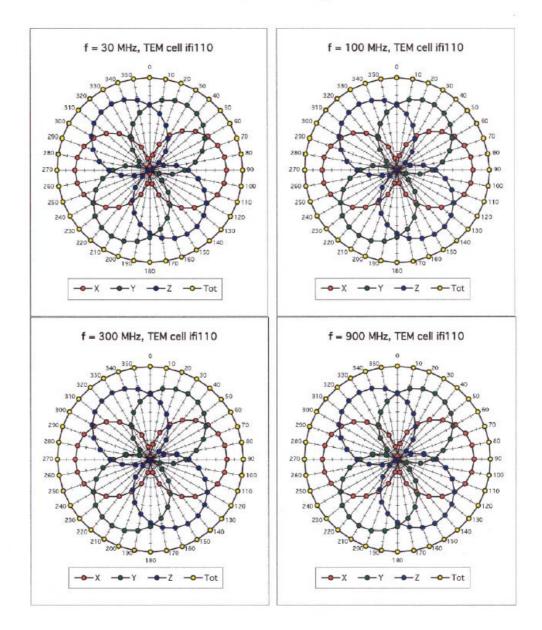
Manufactured: Last calibration: May 28, 2003 August 29, 2003

Calibrated for DASY Systems

(Note: non-compatible with DASY2 system!)

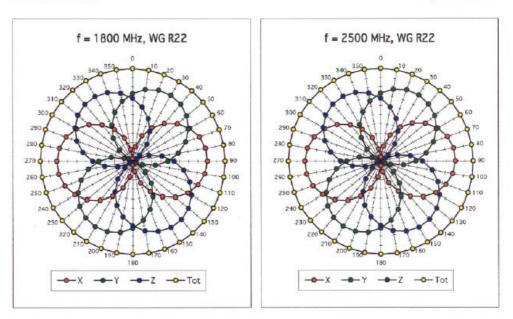
Page 1 of 10

August 29, 2003


DASY - Parameters of Probe: ET3DV6 SN:1788

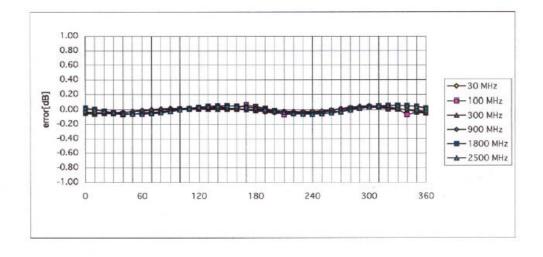
Sensitivity in Free Space			Diode Compression				
	NormX	1.68	3 μV/(V/m) ²		DCP X	95	mV
	NormY	1.62	2 μV/(V/m) ²		DCP Y	95	mV
	NormZ	1.71	μV/(V/m)²		DCP Z	95	mV
Sensitiv	rity in Tissue	e Simulatin	g Liquid				
Head	90	0 MHz	$\varepsilon_r = 41.5 \pm 59$	% σ:	= 0.97 ± 5%	6 mho/m	
Valid for f=	800-1000 MHz	with Head Tissue	e Simulating Liquid accord	ling to EN 5036	1, P1528-200	x	
	ConvF X	6.6	5 ± 9.5% (k=2)		Boundary e	ffect:	
	ConvF Y	6.6	5 ± 9.5% (k=2)		Alpha	0.34	
	ConvF Z	6.6	5 ± 9.5% (k=2)		Depth	2.48	
Head	180	0 MHz	$\varepsilon_r = 40.0 \pm 59$	% σ:	= 1.40 ± 5%	6 mho/m	
Valid for f=	1710-1910 MHz	with Head Tiss	ue Simulating Liquid acco	rding to EN 503	61, P1528-20	xoo	
	ConvF X	5.3	3 ± 9.5% (k=2)		Boundary e	ffect:	
	ConvF Y	5.3	3 ± 9.5% (k=2)		Alpha	0.43	
	ConvF Z	5.3	3 ± 9.5% (k=2)		Depth	2.80	
Bounda	ary Effect						
Head	90	00 MHz	Typical SAR gradient	: 5 % per mm			
	Probe Tip to	Boundary			1 mm	2 mm	
	SAR _{be} [%]		rection Algorithm		8.7	5.0	
	SAR _{be} [%]		tion Algorithm		0.3	0.5	
Head	180	00 MHz	Typical SAR gradient	: 10 % per mm			
	Probe Tip to	Boundary			1 mm	2 mm	
		and the second second	rection Algorithm		12.8	8.9	
	SAR _{be} [%]		tion Algorithm		0.3	0.1	
Sensor	Offset						
Probe Tip to Sensor Center				2.7		mm	
	Optical Surfa	Sensor Center 2.7 mm ace Detection 1.6 ± 0.2 mm					
			Page 2 of 10				

ET3DV6 SN:1788


August 29, 2003

Receiving Pattern (ϕ), $\theta = 0^{\circ}$

Page 3 of 10



ET3DV6 SN:1788

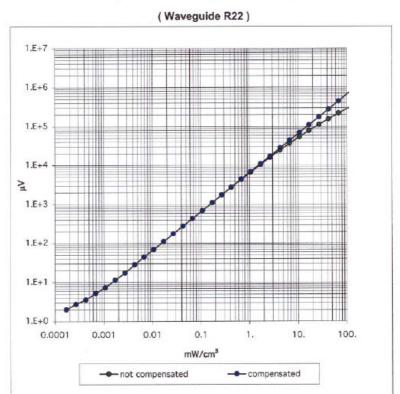
August 29, 2003

Isotropy Error (ϕ), $\theta = 0^{\circ}$

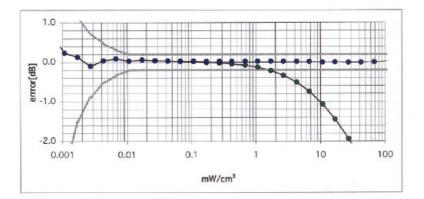
Page 4 of 10

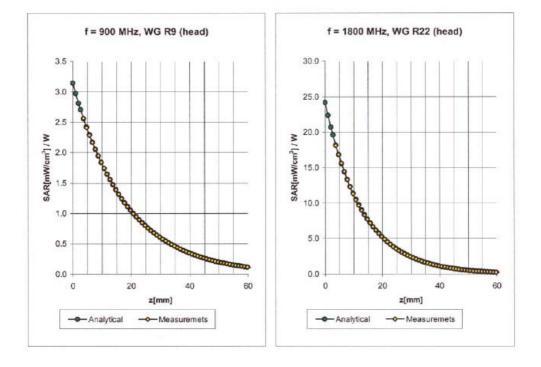
August 29, 2003

Frequency Response of E-Field


1.50 1.40 1.30 1.20 frequency response 1.10 1.00 0.90 0.80 0.70 0.60 0.50 0 500 1000 1500 2000 2500 3000 f [MHz] --- R22

(TEM-Cell:ifi110, Waveguide R22)


Page 5 of 10


Dynamic Range f(SAR_{brain})

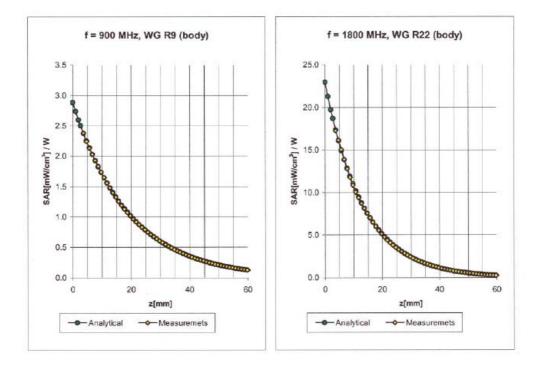
Page 6 of 10

August 29, 2003

Conversion Factor Assessment

Head 900 MHz ε_r = 41.5 ± 5% σ = 0.97 ± 5% mho/m

Valid for f=800-1000 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X


	ConvF X	6.6 ± 9.5% (k=2)	Boundary effect:	
	ConvF Y	6.6 ± 9.5% (k=2)	Alpha 0.34	
	ConvF Z	6.6 ±9.5% (k=2)	Depth 2.48	
Head	1800 MHz	ϵ_r = 40.0 ± 5%	σ = 1.40 ± 5% mho/m	
Valid for f	=1710-1910 MHz with He	ad Tissue Simulating Liquid according	to EN 50361, P1528-200X	
	ConvF X	5.3 ± 9.5% (k=2)	Boundary effect:	
	ConvF Y	5.3 ± 9.5% (k=2)	Alpha 0.43	
	ConvF Z	5.3 ± 9.5% (k=2)	Depth 2.80	

Page 7 of 10

©2003 SPORTON International Inc..SAR Testing Lab

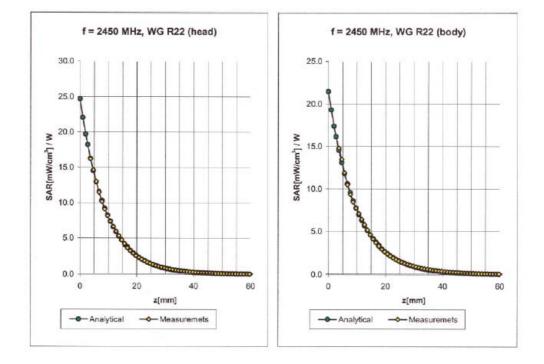
August 29, 2003

Conversion Factor Assessment

Body 900 MHz ε, = 55.0 ± 5% σ = 1.05 ± 5% mho/m

Valid for f=800-1000 MHz with Body Tissue Simulating Liquid according to OET 65 Suppl. C

	ConvF X	6.5 ± 9.5% (k=2)	Boundary effe	ect:
	ConvF Y	6.5 ± 9.5% (k=2)	Alpha	0.31
	ConvF Z	6.5 ± 9.5% (k=2)	Depth	2.92
Body	1800 M	Hz ε,= 53.3 ± 5%	σ= 1.52 ± 5% π	mho/m
Valid for	f=1710-1910 MHz with	h Body Tissue Simulating Liquid according t	o OET 65 Suppl. C	
	ConvF X	5.0 ± 9.5% (k=2)	Boundary effe	ect
	ConvF Y	5.0 ± 9.5% (k=2)	Alpha	0.51
	ConvF Z	5.0 ± 9.5% (k=2)	Depth	2.78


Page 8 of 10

August 29, 2003

1.74

Depth

Conversion Factor Assessment

Head 2450 MHz $\epsilon_r = 39.2 \pm 5\%$ $\sigma = 1.80 \pm 5\%$ mho/m

Valid for f=2400-2500 MHz with Head Tissue Simulating Liquid according to EN 50361, P1528-200X

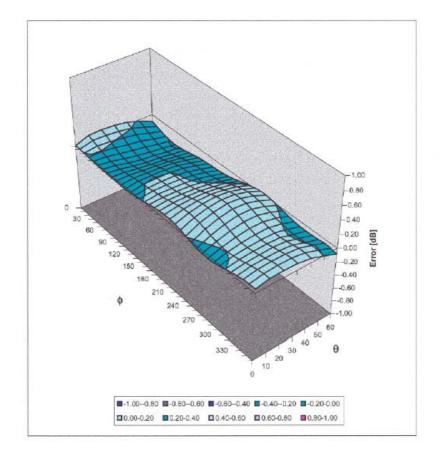
	ConvF X	4.7 ± 8.9% (k=2)	Boundary effect:		
	ConvF Y	4.7 ± 8.9% (k=2)	Alpha	0.99	
	ConvF Z	4.7 ± 8.9% (k=2)	Depth	1.81	
Body	2450 MHz	ε _r = 52.7 ± 5%	ε _r = 52.7 ± 5% σ= 1.95 ± 5% m		
Valid for t	=2400-2500 MHz with B	ody Tissue Simulating Liquid according t	to OET 65 Suppl. C		
	ConvF X	4.5 ± 8.9% (k=2)	Boundary effect:	Boundary effect:	
	ConvF Y	4.5 ± 8.9% (k=2)	Alpha	1.01	

4.5 ± 8.9% (k=2)

Page 9 of 10

©2003 SPORTON International Inc..SAR Testing Lab

ConvF Z



ET3DV6 SN:1788

August 29, 2003

Deviation from Isotropy in HSL

Error (θ,φ), f = 900 MHz

Page 10 of 10