The Measurement of Conducted Spurious Emissions

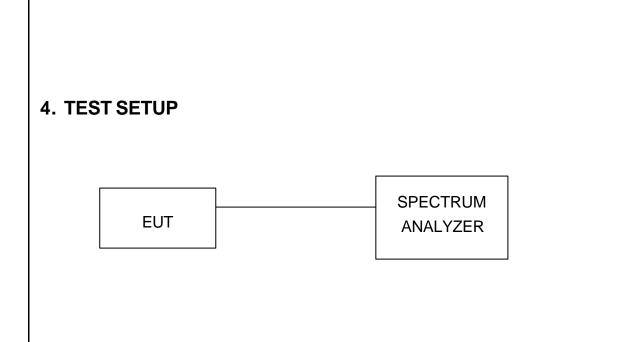
CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

1. LIMITS OF CONDUCTED SPURIOUS EMISSIONS EASUREMENT

Below 20dB of the highest emission level of operating band (in 100KHz Resolution Bandwidth, see Section 15.247(c)). Emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the limits specified in Section 15.209(a) (see Section 15.205(c)).

2. TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP	1093.4495.30	Dec. 19, 2003


NOTE:

1. The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.

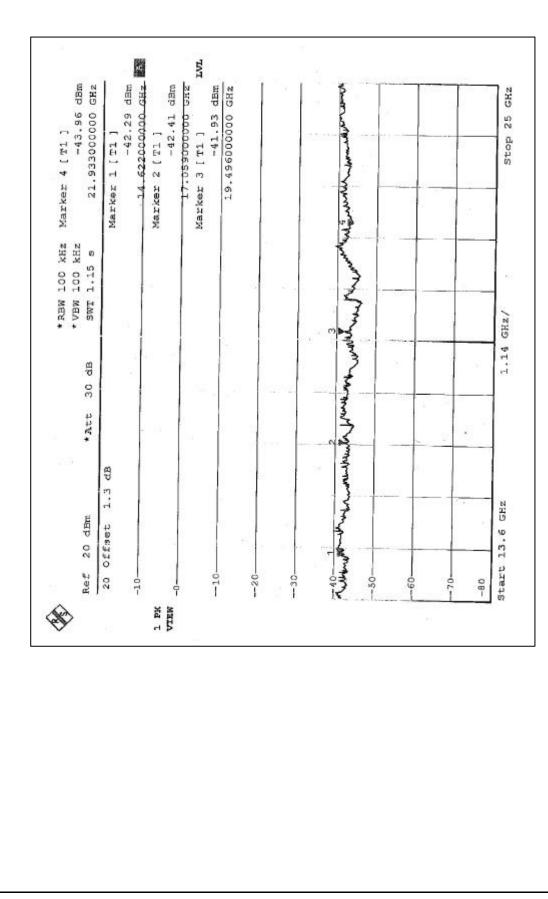
2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz with suitable frequency span including 100 kHz bandwidth from band edge. The band edges was measured and recorded.

5. EUT OPERATING CONDITIONS

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.


TEST RESULTS

The spectrum plots are attached on the following 2 pages. It shows compliance with the requirement in part 15.247(C),.15.205 and 15.209.

Ch1

	V	3 24100	TMT							
dBm GHz		r 2 [T1] -51.87 dBm 7.23600000 dHy		GHŁ		-	A vertile			GHz
er 4 [T1] -52.17 12.06000000	1 [T1] -51.47	T1] -51.87 dBm 000000 GMF	T1] -51.06	9.648000000 GHz						Stop 13.6
Marker 4 [T1] -52. 12.0600000	1 [T1 -51	2 [T1] -51. Z360000	3 [T1] -51.	64800	8.6		trut		621	Stop
rker 12.	Marker	Marker	Marker	б		100	photo		-	
	Ma	Ma	Maı		æ		and in white which we have a strain when a	-		
100 kHz 100 kHz 1.15 s			Ð,	÷			e e			2
*RBW 100 *VBW 100 SWT 1.15			0				HAM			
* RBW * VBW SWT							Prophysics - Strategy			1.11 GHz/
đB	8 5						1			1.11
000						1. ++ is	Contraction of the second			
* Att			ы				Muriture diam			
	dB	-			1		2 March			
24	1.3			1			- Auto			N
旧랍고	Offset		2				HTVM Company			.5 GHz
50 Э			0				AND I			Start 2.5
A Ref	20-10-		-10	-20	-30	-40		20 02	-80	Sta
Ś		1 PK VIEW		12				12		

Ch1

Ch11

я ,				e la	Ţ.	el.	81 X	e.	6 10					-
4 dBm		-50.53 dBm 924000000 GHz	4	7.386000000 GHZ		-50.26 dBm	5	0 72 1		-				6 GH4
er 4 [T1] -50.44 12.31000000	1 [11] 1	-50.5	2 [TL]		11	-50.26 9.848000000								Stop 13.6
4 [310				386.	ц т	848		38	14	- Al				Stot
Marker 12.	Marker	A	Marker		Marker	o				Part	0.0			
	1		Ч		,4					3 autor	(1221) . 3			
100 kHz 100 kHz 1.15 s							1			1				
* RBW 100 * VBW 100 \$WT 1.15										(Cherry Cherry)				GHz/
ц П										2 Contents				1.11
00						ł				and				
* Att										and a second second second second second second				
	3 dB									1 June				
g	1.3									A. A	1			ZH
20 dâm	Offset									through				2.5 GHZ
民命志	20	-07-		9		-10-	-20-	-30-	-40-		60	30	-80	Start
			X4 T							Ċ.				

Ch11

	N.		TAT .			
Marker 4 [Tl] -42.59 dBm 22 15800000 cm-		2 [T1] ~41.66 dBm .234000000 GHZ	Marker 3 [T1] -44.59 dBm 19.696000000 GH2	and have a		Stop 25 GHz
	Mar	Mar	Мак	- The second		
*RBW 100 kHz *VBW 100 kHz \$WT 1.15 s				the second		
RBW 1 VBW 1 SWT 1				12 Martin		12
				1 August		1.14 GHZ/
30 dB				terren		-
* Att				22		
3	ų	20		also from		1
20 d.Bm	Offset 1.3			mound and share and where we are a set of the second and the secon		13.6 GHz
Ref	20 0	9	-10	-30 	-10	H
Ś		Main Main			· · · · · · · · · · · · · · · · · · ·	