

Antenna Test Result of Tooling

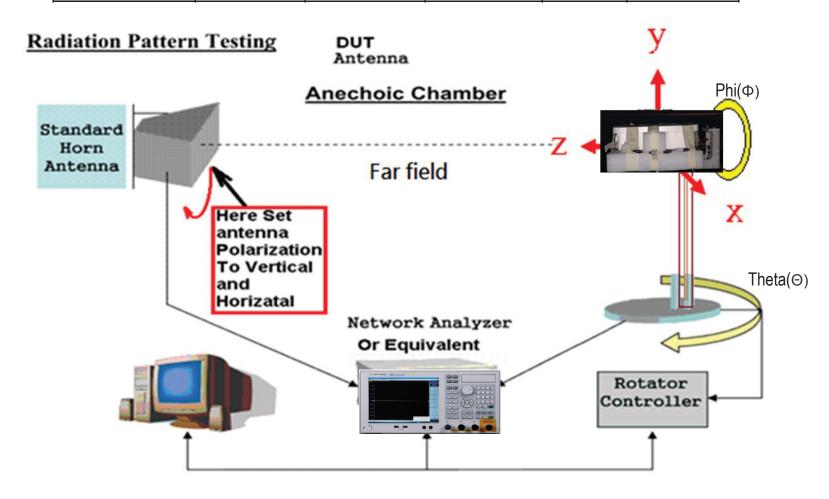
ACCTON

Contents

- Antenna Description
- Experimental Setup & Coordinate System
- Gain
- 2D Radiation Pattern Results

ACCTON Technology Corporation No.1, Creation Road 3, Hsinchu Science Park, Hsinchu 30077, Taiwan , R.O.C

Company name	Address	
ACCTON Technology Corporation	No.1, Creation Road3, Hsinchu Science Park, Hsinchu 30077,Taiwan, R.O.C	

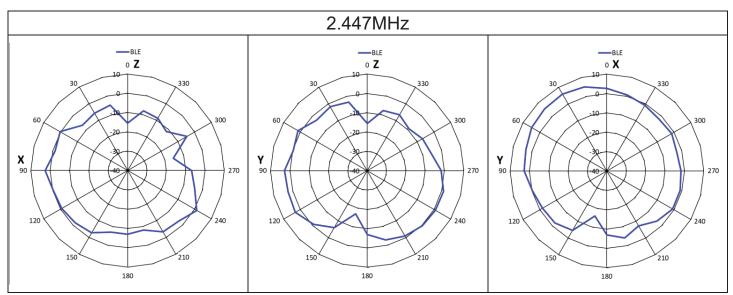

Location	Antenna model	Antenna application	Material	Antenna Type	Peak Gain
1	KG458-160Y17U7X	BLE ANT	FR-4	РСВ	5.91 dBi
2	KG458-150L17U7X	2.4G Single Band ANT	FR-4	РСВ	5.67dBi
3	KG458-250F17U7X	2.4G Single Band ANT	FR-4	РСВ	5.99 dBi
4	KG459-200G17U7X	5G Single Band ANT	FR-4	PCB	6.91 dBi
5	KG459-405W17U7X	5G Single Band ANT	FR-4	PCB	6.29 dBi

Experimental Setup & Coordinate System

Chamber name: ETS AMS-8500 Rectangular CTIA-Compliant Test Lab

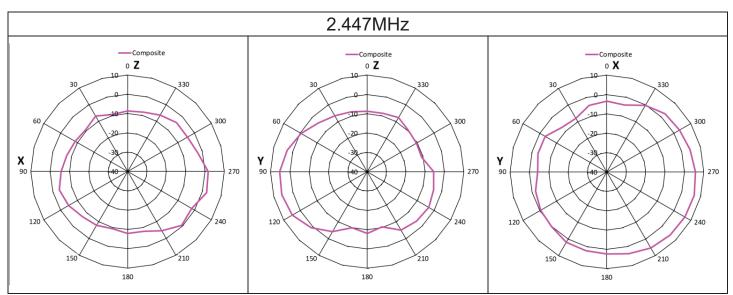
Describe	Manufacturer	Model Number	Serial Number	Cal.Date	Cal. Due Date
Network Analyzer	Agilent	E5071B	MY42402996	Dec2022	Dec2024

Efficiency & Gain

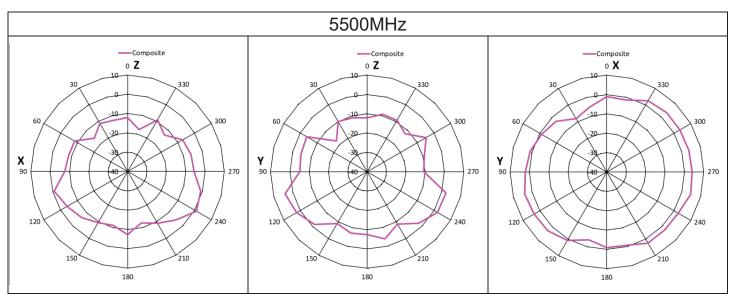

BLE ANT [1]						
Frequency	2400 MHz	2447 MHz z	24835 MHz			
Peak Gain	5.13 dBi	5.91 dBi	5.17 dBi			
Peak gain at polarization	(Φ)40.05°(θ)90°	(Φ)32.05°(θ)90°	(Φ)77.95°(<i>θ</i>)120°			
2.4G Single Band ANT [2]						
Frequency	2400 MHz	2447 MHz z	24835 MHz			
Peak Gain	5.45 dBi	5.31 dBi	5.67 dBi			
Peak gain at polarization	(Φ)105°(θ)105°	(Φ)105°(<i>θ</i>)105°	(Φ)105°(<i>θ</i>)105°			
2.4G Single Band ANT [3]						
Frequency	2400 MHz	2447 MHz z	24835 MHz			
Peak Gain	5.79 dBi	5.72 dBi	5.99 dBi			
Peak gain at polarization	(Φ)152°(θ)105°	(Φ)145°(<i>θ</i>)105°	(Φ)113°(<i>θ</i>)105°			
5G Single Band ANT [4]						
Frequency	5150 MHz	5500 MHz	5850MHz			
Peak Gain	6.81 dBi	6.91 dBi	6.18 dBi			
Peak gain at polarization	(Φ)43°(θ)105°	(Φ)54°(θ)105°	(Φ)44°(θ)120°			
5G Single Band ANT [5]						
Frequency	5150 MHz	5500 MHz	5850MHz			
Peak Gain	5.63 dBi	6.29 dBi	5.5 dBi			
Peak gain at polarization	(Φ)162°(θ)105°	(Φ)102°(<i>θ</i>)105°	(Φ)156°(θ)120°			

$\mathcal{M}\Phi(Phi)$; $\Theta(Theta)$

% Peak Gain (G) and directivity (D) are linked by the formula $G = k \times D$, where the antenna effective factor k ($0 \le k \le 1$) corresponds to the overall losses of the antenna. Accordingly antenna gain can be calculated by the following formula, where represents antenna losses comprising of all ohm and dielectric losses between the input connector and the outer surface of the radome and the loss due to the impedance mismatch.



2D Radiation Pattern


Test date: 2023/06/14

Test date: 2023/06/14

Test date: 2023/06/14