

4.5 PEAK POWER SPECTRAL DENSITY MEASUREMENT

4.5.1 LIMITS OF PEAK POWER SPECTRAL DENSITY MEASUREMENT

Frequency Band	Limit
5.15 ~ 5.25GHz	4dBm
5.25 ~ 5.35GHz	11dBm
5.725 ~ 5.825GHz	17dBm

4.5.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
ADVANTEST SPECTRUM ANALYZER	U3772	160100280	April. 10.2008

NOTE:

1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.5.3 TEST PROCEDURES

- 1. The transmitter output was connected to the spectrum analyzer.
- 2. Set RBW=1MHz, VBW=3MHz. The PPSD is the highest level found across the emission in any 1MHz band.

4.5.4 DEVIATION FROM TEST STANDARD

No deviation

4.5.5 TEST SETUP

4.5.6 EUT OPERATING CONDITIONS Same as 4.3.6

4.5.7 TEST RESULTS (ANTENNA A)

802.11a OFDM modulation – Normal mode

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg.C, 60%RH, 961hPa
TESTED BY	Rex Huang		

Antenna A (Gain : 6 dBi)

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 1MHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	5180	5180 -0.5		PASS
4	5240	3.59	4	PASS

Report No.: RF960507H01

802.11a OFDM modulation – Turbo mode

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg.C, 60%RH, 961hPa
TESTED BY	Rex Huang		

Antenna A (Gain : 6 dBi)

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 1MHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	5210	-0.85	4	PASS

CH1

4.5.8 TEST RESULTS (ANTENNA B)

802.11a OFDM modulation – Normal mode

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg.C, 60%RH, 961hPa
TESTED BY	Rex Huang		

Antenna A (Gain : 4.5 dBi)

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 1MHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	5180	0.69	4	PASS
4	5240 3.76		4	PASS

802.11a OFDM modulation – Turbo mode

MODULATION TYPE	BPSK	TRANSFER RATE	6Mbps
INPUT POWER (SYSTEM)	120Vac, 60 Hz	ENVIRONMENTAL CONDITIONS	25deg.C, 60%RH, 961hPa
TESTED BY	Rex Huang		

Antenna A (Gain : 4.5 dBi)

CHANNEL	CHANNEL FREQUENCY (MHz)	RF POWER LEVEL IN 1MHz BW (dBm)	MAXIMUM LIMIT (dBm)	PASS/FAIL
1	5210	-1.13	4	PASS

CH1

4.6 FREQUENCY STABILITY

4.6.1 LIMITS OF FREQUENCY STABILITY MEASUREMENT

The frequency tolerance of the carrier signal shall be maintained within +/- 0.02% of the operating frequency over a temperature variation of -30 degrees to 50 degrees C at normal supply voltage, and for a variation in the primary supply voltage from 85% to 115% of the rated supply voltage at a temperature of 20 degrees C.

4.6.2 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 07, 2007

NOTE:

- 1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.
- 2.The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.6.3 TEST PROCEDURE

- 1. The EUT was placed inside the environmental test chamber and powered by nominal DC voltage.
- 2. Turn the EUT on and couple its output to a spectrum analyzer.
- 3. Turn the EUT off and set the chamber to the highest temperature specified.
- 4. Allow sufficient time (approximately 30 min) for the temperature of the chamber to stabilize, turn the EUT on and measure the operating frequency after 2, 5, and 10 minutes.
- 5. Repeat step 2 and 3 with the temperature chamber set to the lowest temperature.
- The test chamber was allowed to stabilize at +20 degree C for a minimum of 30 minutes. The supply voltage was then adjusted on the EUT from 85% to 115% and the frequency record.

4.6.4 DEVIATION FROM TEST STANDARD

No deviation

4.6.5 TEST SETUP

4.6.6 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

4.6.7 TEST RESULTS

Operating frequency: 5180MHz				Limit : ± 0.02%			
Temp.	Power	2 mi	nute	5 mi	nute	10 m	inute
(°C)	(VAC)	(MHz)	(%)	(MHz)	(%)	(MHz)	(%)
50	126.5	5180.0045	0.000087	5180.0042	0.000081	5180.0039	0.000075
50	110	5180.0046	0.000089	5180.0046	0.000089	5180.0043	0.000083
	93.5	5180.0045	0.000087	5180.0042	0.000081	5180.0039	0.000075
10	126.5	5180.009	0.000174	5180.0085	0.000164	5180.0082	0.000158
40	110	5180.009	0.000174	5180.0087	0.000168	5180.0085	0.000164
	93.5	5180.009	0.000174	5180.0085	0.000164	5180.0082	0.000158
	126.5	5179.9855	0.000280	5179.995	0.000097	5179.9947	0.000102
30	110	5179.9856	0.000278	5179.995	0.000097	5179.9949	0.000098
	93.5	5179.9955	0.000087	5179.9953	0.000091	5179.9946	0.000104
	126.5	5180.028	0.000541	5180.0264	0.000510	5180.0244	0.000471
20	110	5180.0278	0.000537	5180.0284	0.000548	5180.0264	0.000510
	93.5	5180.0278	0.000537	5180.0254	0.000490	5180.0244	0.000471
10	126.5	5180.0338	0.000653	5180.0341	0.000658	5180.0342	0.000660
10	110	5180.0338	0.000653	5180.034	0.000656	5180.0342	0.000660
	93.5	5180.034	0.000656	5180.0338	0.000653	5180.0342	0.000660
	126.5	5180.0274	0.000529	5180.0224	0.000432	5180.0184	0.000355
0	110	5180.0274	0.000529	5180.0254	0.000490	5180.0214	0.000413
	93.5	5180.0274	0.000529	5180.0214	0.000413	5180.0194	0.000375
10	126.5	5180.0098	0.000189	5180.0096	0.000185	5180.0093	0.000180
-10	110	5180.0098	0.000189	5180.0096	0.000185	5180.0095	0.000183
	93.5	5180.0098	0.000189	5180.0095	0.000183	5180.0092	0.000178
	126.5	5179.9896	0.000201	5179.9893	0.000207	5179.9891	0.000210
-20	110	5179.9896	0.000201	5179.9895	0.000203	5179.9892	0.000208
	93.5	5179.9896	0.000201	5179.9893	0.000207	5179.9890	0.000212
	126.5	5180.0204	0.000394	5180.0154	0.000297	5180.0154	0.000297
-30	110	5180.0204	0.000394	5180.0184	0.000355	5180.0164	0.000317
	93.5	5180.0184	0.000355	5180.0154	0.000297	5180.0154	0.000297

4.7 BAND EDGES MEASUREMENT

4.7.1 TEST INSTRUMENTS

Description & Manufacturer	Model No.	Serial No.	Calibrated Until
R&S SPECTRUM ANALYZER	FSP40	100036	Dec. 07, 2007

NOTE:

1.The measurement uncertainty is less than +/- 2.6dB, which is calculated as per the NAMAS document NIS81. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

4.7.2 TEST PROCEDURE

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 1MHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.7.3 EUT OPERATING CONDITION

The software provided by client to enable the EUT under transmission condition continuously at specific channel frequencies individually.

4.7.4 TEST RESULTS (ANTENNA A)

For signals in the restricted bands above and below the 5.15 to 5.35GHz allocated band a measurement was made of the amplitude of the spurious emissions with respect to the intentional signals. The relative amplitude, in dBc, was applied to the average and peak filed strength of the intentional signal made on the OATS to calculate the field strength of the unintentional signals.

The spectrum plots (Peak RBW=1MHz, VBW=3MHz; Average RBW=1MHz, VBW=10Hz) are attached on the following pages.

802.11a OFDM modulation

802.11a Turbo OFDM modulation

Report No.: RF960507H01

4.7.5 TEST RESULTS (ANTENNA B)

For signals in the restricted bands above and below the 5.15 to 5.35GHz allocated band a measurement was made of the amplitude of the spurious emissions with respect to the intentional signals. The relative amplitude, in dBc, was applied to the average and peak filed strength of the intentional signal made on the OATS to calculate the field strength of the unintentional signals.

The spectrum plots (Peak RBW=1MHz, VBW=3MHz; Average RBW=1MHz, VBW=10Hz) are attached on the following pages.

802.11a OFDM modulation

802.11a Turbo OFDM modulation

Report No.: RF960507H01

4.8 ANTENNA REQUIREMENT

4.8.1 STANDARD APPLICABLE

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.407(a), if transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

4.8.2 ANTENNA CONNECTED CONSTRUCTION

No.	Model No.	Gain (dBi)	Cable lose (dB)	Net Gain (dBi)	Antenna Type	Connector
Α	MMO24580608	8	2	6	Omni Directional	N, female
В	FDS_2FED01+I3G FDS_2FED02+I3G	4.5	0	4.5	Dipole	UFL

The antennas used in this product are as following:

5.INFORMATION ON THE TESTING LABORATORIES

We, ADT Corp., were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are accredited and approved by the following approval agencies according to ISO/IEC 17025.

USA	FCC, UL, A2LA
Germany	TUV Rheinland
Japan	VCCI
Norway	NEMKO
Canada	INDUSTRY CANADA, CSA
R.O.C.	CNLA, BSMI, NCC
Netherlands	Telefication
Singapore	PSB , GOST-ASIA(MOU)
Russia	CERTIS(MOU)

Copies of accreditation certificates of our laboratories obtained from approval agencies can be downloaded from our web site: <u>www.adt.com.tw/index.5/phtml</u>. If you have any comments, please feel free to

contact us at the following:

Linko EMC/RF Lab:

Tel: 886-2-26052180 Fax: 886-2-26052943 Hsin Chu EMC/RF Lab: Tel: 886-3-5935343

Fax: 886-3-5935342

Hwa Ya EMC/RF/Safety Telecom Lab:

Tel: 886-3-3183232 Fax: 886-3-3185050

Web Site: www.adt.com.tw

The address and road map of all our labs can be found in our web site also

APPENDIX-A

MODIFICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT BY THE LAB

No any modifications are made to the EUT by the lab during the test.