	BUREAU VERITAS		
	FCC Test Report (BT-LE)		
Report No.:	RF171201E01-3		
FCC ID:	HED-SPW2MAC1200		
Test Model:	SP-W2M-AC1200		
Received Date:	Dec. 01, 2017		
Test Date:	Dec. 02 to 06, 2017		
Issued Date:	Dec. 08, 2017		
Applicant:	Accton Technology Corporation		
Address:	No.1, Creation Rd. III, Science-based Industrial Park, Hsinchu, Taiwan, R.O.C.		
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory		
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.		
Test Location:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.		
FCC Registration / Designation Number:	723255 / TW2022		
	and an		
	Testing Laboratory		
	2022		
only with our prior written permission. The report are not indicative or representative unless specifically and expressly noted, provided to us. You have 60 days from however, that such notice shall be in writ shall constitute your unqualified acceptare mention, the uncertainty of measurement	copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted is report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this e of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product Our report includes all of the tests requested by you and the results thereof based upon the information that you date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, ing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time ice of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific thas been explicitly taken into account to declare the compliance or non-compliance to the specification. The report roduct certification, approval, or endorsement by TAF or any government agencies.		

Table of Contents

R	elease	e Control Record	4
1	C	Certificate of Conformity	5
2	S	Summary of Test Results	6
	2.1 2.2	Measurement Uncertainty Modification Record	
3	Ģ	General Information	7
-	3.1	General Description of EUT (BT-LE)	
	3.2	Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Duty Cycle of Test Signal	
	3.4	Description of Support Units	
	3.4.1	Configuration of System under Test	
	3.5	General Description of Applied Standards	
4	Т	est Types and Results	
	4.1	Radiated Emission and Bandedge Measurement	16
		Limits of Radiated Emission and Bandedge Measurement	
		Test Instruments	
		Test Procedures.	
		Deviation from Test Standard Test Setup	
		EUT Operating Conditions	
		Test Results	
	4.2	Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
		Test Results (Mode 1)	
		Test Results (Mode 2)	
	4.3 4.3.1	6dB Bandwidth Measurement Limits of 6dB Bandwidth Measurement	
		Test Setup	. 31
		Test Instruments	•••
		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Conditions	
	4.3.7	Test Result	
	4.4	Conducted Output Power Measurement	
		Limits of Conducted Output Power Measurement	
		Test Setup	
		Test Instruments	
		Test Procedures Deviation from Test Standard	
		EUT Operating Conditions	
		Test Results	
	4.5	Power Spectral Density Measurement	
	4.5.1		
		Test Setup	
		Test Instruments	
		Test Procedure	
	4.5.5	Deviation from Test Standard	35

4.5.6	EUT Operating Condition	35
4.5.7	Test Results	36
4.6	Conducted Out of Band Emission Measurement	37
4.6.1	Limits of Conducted Out of Band Emission Measurement	37
4.6.2	Test Setup	37
	Test Instruments	
4.6.4	Test Procedure	37
4.6.5	Deviation from Test Standard	37
	EUT Operating Condition	
4.6.7	Test Results	38
5 F	Pictures of Test Arrangements	39
Append	dix – Information on the Testing Laboratories	40

		Release Contro	ol Record	
Issue No.	Description			Date Issued
RF171201E01-3	Original release.			Dec. 08, 2017

Certificate of Conformity 1

Product:	Spark™ AC Wave2 Mini	
Brand:	IgniteNet	
Test Model:	SP-W2M-AC1200	
Sample Status:	ENGINEERING SAMPLE	
Applicant:	Accton Technology Corporation	
Test Date:	Dec. 02 to 06, 2017	
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)	
	ANSI C63.10: 2013	

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by :

Claire Kuan / Specialist

C _ _ _ _ , Date: _ _ _ Dec. 08, 2017

Date:

Dec. 08, 2017

Approved by :

May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)			
FCC Clause	Test Item Result Rema		Remarks
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -14.43dB at 0.17344MHz.
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -0.1dB at 7440.00MHz.
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.
15.247(a)(2)	6dB bandwidth	PASS	Meet the requirement of limit.
15.247(b)	Conducted power	PASS	Meet the requirement of limit.
15.247(e)	Power Spectral Density	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	No antenna connector is used.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.84 dB
Padiated Emissions up to 1 CHz	30MHz ~ 1GHz	5.30 dB
Radiated Emissions up to 1 GHz	1GHz ~ 6GHz	5.16 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.91 dB
	18GHz ~ 40GHz	5.30 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-LE)

Product	Spark™ AC Wave2 Mini
Brand	IgniteNet
Test Model	SP-W2M-AC1200
Status of EUT	ENGINEERING SAMPLE
Power Supply Rating	5Vdc from USB interface
Modulation Type	GFSK
Modulation Technology DTS	
Transfer Rate Up to 2Mbps	
Operating Frequency 2402MHz ~ 2480MHz	
Number of Channel 40	
Output Power	3.656mW
Antenna Type	Refer to Note
Antenna Connector Refer to Note	
Accessory Device	Adapter x 1
Data Cable Supplied	USB cable x 1 (1m, Shielded)

Note:

1. There are WLAN and Bluetooth technology used for the EUT.

2. Simultaneously transmission condition.

Condition	Technology		
1	WLAN 2.4GHz	Bluetooth	
2 WLAN 5GHz Bluetooth			
Nete: The emission of the simultaneous exerction has been evaluated and he has semplioned use found			

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found. 3. The EUT must be supplied with a power adapter as following table:

_					
	Brand	Model No.	Spec.		
	MASS POWER	NBS10B050200VUU	AC Input: 100-240Vac, 0.3A, 50/60Hz DC Output: 5.0V, 2.0A		

4. The antennas provided to the EUT, please refer to the following table:

Antenna No.	Antenna Net Gain (dBi)	Frequency range (GHz)	Antenna Type	Connector Type
MiEi Ant 1	3.9	3.9 2.4-2.4835		:
WiFi Ant 1	3.9	5.15-5.85	PCB	i-pex(MHF)
	4.1	2.4-2.4835	PCB	
WiFi Ant 2	3.8	5.15-5.85	РСВ	i-pex(MHF)
BT	2.4	2.4-2.4835	PCB	i-pex(MHF)

5. For the radiated emissions, the EUT was pre-tested under the following modes:

Test Mode	Description	
Mode A	Power from adapter	
Mode B	Power from laptop	

From the above modes, the worst case was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

6. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

40 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	10	2422	20	2442	30	2462
1	2404	11	2424	21	2444	31	2464
2	2406	12	2426	22	2446	32	2466
3	2408	13	2428	23	2448	33	2468
4	2410	14	2430	24	2450	34	2470
5	2412	15	2432	25	2452	35	2472
6	2414	16	2434	26	2454	36	2474
7	2416	17	2436	27	2456	37	2476
8	2418	18	2438	28	2458	38	2478
9	2420	19	2440	29	2460	39	2480

3.2.1	Test Mode Applicability and Tested Channel Detail	
-------	---	--

ON-FIGURE MODE RE≥1G RE<1G	ONFIGURE	APPLICABLE TO					CRIPTION	
2 - √ - Power from Laptop ere RE>1G: Radiated Emission above 1GHz RE<1G: Radiated Emission below 1GHz PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement TEE: 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane below 1GHz and Y-plane for above 1GHz. 2. "-"means no effect. Itadiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps) 0 to 39 0, 19, 39 GFSK 1 Itadiated Emission Test (Below 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Pre-Scan has been con		RE≥1G	RE<1G	PLC	APCM	DES	CRIPTION	
ere RE>1G: Radiated Emission above 1GHz PLC: Power Line Conducted Emission RE<1G: Radiated Emission below 1GHz APCM: Antenna Port Conducted Measurement TE: 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane below 1GHz and Y-plane for above 1GHz. 2. *-*means no effect. Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Following channel(s) was (were) selected for the final test as listed below. Image: Available Enducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Following channel(s) was (were) selected for the final test as listed below. Image: Available Enducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Following channel(s) was (were) selected for the final test as listed below. Image: Avail_ABLE CHANNEL MODULATION TYPE DATA RATE (Mbps) 0 to 39 39 Image: Avail_ABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps) 1 <	1	\checkmark			\checkmark	Power from Adapter		
PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement TE: 1. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on X-plane below 1GHz and Y-plane for above 1GHz. 2. *-'means no effect. adiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. <u>AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps)</u> <u>0 to 39 0, 19, 39 GFSK 1 </u> Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. <u>AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps)</u> <u>0 to 39 39 GFSK 1 </u> otro 39 39 GFSK 1 Otro 39 39 GFSK 1 Otro 39 39 GFSK 1 Otro 39 39 GFSK 1 Otro 39 39 GFSK 1 Otro 39 39 GFSK 1 	2	-	-	\checkmark	-	Power from Laptop		
adiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps) 0 to 39 0, 19, 39 GFSK 1 adiated Emission Test (Below 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. Mathematication Following channel(s) was (were) selected for the final test as listed below. Following channel(s) was (were) selected for the final test as listed below. Mathematications of thes	PLC TE: 1. The El below 10	Power Line C JT had been p GHz and Y-pla	Conducted Emission pre-tested on the pos	A sitioned of eac	PCM: Antenna P	ort Conducted Measuren		
AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps) 0 to 39 0, 19, 39 GFSK 1 adiated Emission Test (Below 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps) 0 to 39 39 GFSK 1 Ower Line Conducted Emission Test: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity)	Pre-Scar between architect	n has been available n ure).	conducted to de nodulations, dat	etermine th a rates and	d antenna por	ts (if EUT with anten		
0 to 39 0, 19, 39 GFSK 1 adiated Emission Test (Below 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps) 0 to 39 39 GFSK 1 ower Line Conducted Emission Test: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity		, I	, , ,]	
adiated Emission Test (Below 1GHz): Image: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Image: Following channel(s) was (were) selected for the final test as listed below. Image: AvaiLABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps) Image: 0 to 39 39 Image:	AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps)							
0 to 39 39 GFSK 1 ower Line Conducted Emission Test: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity	adiated Er	nission Te n has been available n	st (Below 1GHz	etermine th	e worst-case	mode from all possi		
 ower Line Conducted Emission Test: Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity 	adiated En Pre-Scal between architect Followin	nission Te n has been available n ure). g channel(s	st (Below 1GH: conducted to de nodulations, dat) was (were) se	etermine th a rates and lected for t	e worst-case d antenna por he final test a	mode from all possi ts (if EUT with anten s listed below.		
	adiated Er Pre-Scar between architect Followin AVAILABL	nission Te n has been available n ure). g channel(s E CHANNEL	st (Below 1GH conducted to de nodulations, dat) was (were) se TESTED CHANN	etermine th a rates and lected for t	e worst-case d antenna por he final test a JLATION TYPE	mode from all possi ts (if EUT with anten s listed below. DATA RATE (Mbps)		
	adiated Er adiated Er Pre-Scar between architect Followin AVAILABL 0 0 0 0 0 0 0 0 0 0 0 0 0	nission Te n has been available n ure). g channel(s c CHANNEL o 39 Conducted n has been available n ure).	st (Below 1GH2 conducted to de nodulations, dat) was (were) se TESTED CHANN 39 d Emission Tes conducted to de nodulations, dat	etermine th a rates and lected for t EL MODU	e worst-case d antenna por he final test a JLATION TYPE GFSK e worst-case d antenna por	mode from all possi ts (if EUT with anten s listed below. DATA RATE (Mbps) 1 1 mode from all possi ts (if EUT with anten	na diversity	
AVAILABLE CHANNEL TESTED CHANNEL MODULATION TYPE DATA RATE (Mbps)	adiated En adiated En between architect Followin AVAILABL 0 0 0 0 0 0 0 0 0 0 0 0 0	nission Te n has been available n ure). g channel(s c CHANNEL o 39 Conducted n has been available n ure). g channel(s	st (Below 1GH2 conducted to de nodulations, dat) was (were) se TESTED CHANN 39 d Emission Tes conducted to de nodulations, dat	etermine th a rates and lected for t EL MODU	e worst-case d antenna por he final test a JLATION TYPE GFSK e worst-case d antenna por	mode from all possi ts (if EUT with anten s listed below. DATA RATE (Mbps) 1 1 mode from all possi ts (if EUT with anten	na diversity	
0 to 39 39 GFSK 1	adiated En adiated En between architect Followin AVAILABL 0 0 0 0 0 0 0 0 0 0 0 0 0	nission Te n has been available n ure). g channel(s c CHANNEL o 39 Conducted n has been available n ure). g channel(s	st (Below 1GH2 conducted to de nodulations, dat) was (were) se TESTED CHANN 39 d Emission Tes conducted to de nodulations, dat	etermine th a rates and lected for t EL MODU	e worst-case d antenna por he final test a JLATION TYPE GFSK e worst-case d antenna por he final test a	mode from all possi ts (if EUT with anten s listed below. DATA RATE (Mbps) 1 mode from all possi ts (if EUT with anten s listed below.	na diversity	

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	VAILABLE CHANNEL TESTED CHANNEL		DATA RATE (Mbps)	
0 to 39	0, 19, 39	GFSK	1	

Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER	TESTED BY
RE≥1G	24deg. C, 67%RH	120Vac, 60Hz	Andy Ho
RE<1G	22deg. C, 68%RH	120Vac, 60Hz	Andy Ho
PLC	25deg. C, 75%RH	120Vac, 60Hz	Andy Ho
APCM	25deg. C, 60%RH	120Vac, 60Hz	Jyunchun Lin

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100 %, duty factor is not required.

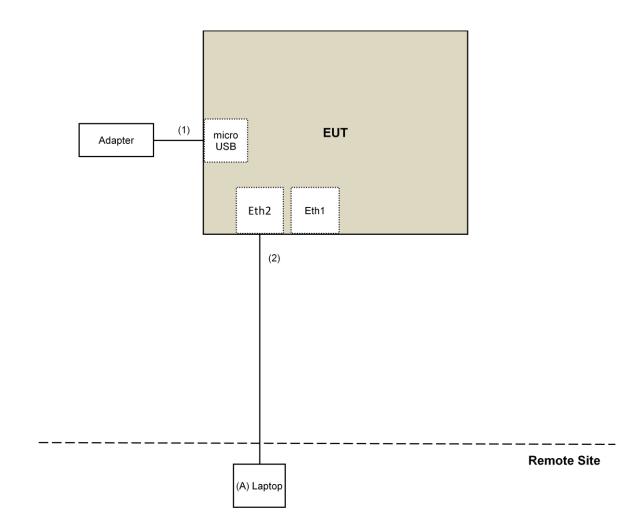
	Ref 31 dBm	Att 30 dB	RBW 10 MHz VBW 10 MHz SWT 100 ms	[T1] MP VIEW	
31 =	Offset 11 dB				
20 -					
10 -					
0 -					
-10 -					
-20 -					
-30 -					
-40 -					
-50 -					
-60 -					
-69 -	Center 2.48 GHz	1 I I I 10 ms/	1 1	I	BUREAU VERITAS

3.4 Description of Support Units

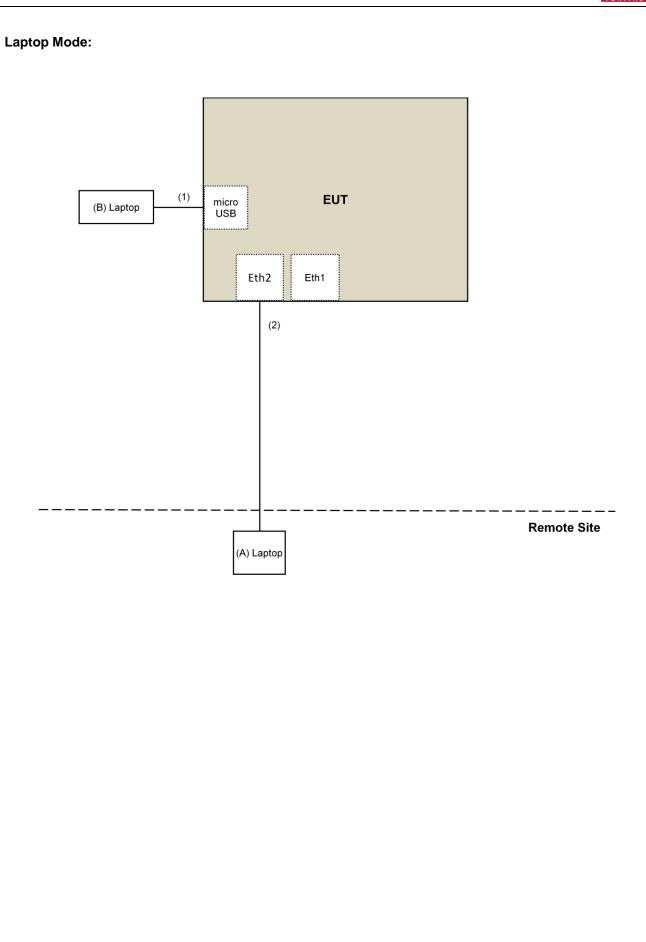
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	DELL	E6420	B92T3R1	FCC DoC	Provided by Lab
В.	Laptop	DELL	E6420	482T3R1	FCC DoC	Provided by Lab

Note:


1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	1	Yes	0	Supplied by client
2.	RJ-45 Cable	1	10	No	0	Provided by Lab



3.4.1 Configuration of System under Test

Adapter Mode:

3.5 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247) KDB 558074 D01 DTS Meas Guidance v04

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

NOTE: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

1. The lower limit shall apply at the transition frequencies.

- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

4.1.2 Test Instruments DESCRIPTION &			CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver Keysight	N9038A	MY54450088	July 08, 2017	July 07, 2018
Pre-Amplifier ^(*) EMCI	EMC001340	980142	Jan. 20, 2016	Jan. 19, 2018
Loop Antenna ^(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018
RF Cable	NA	LOOPCAB-001 LOOPCAB-002	Jan. 17, 2017	Jan. 16, 2018
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Nov. 09, 2017	Nov. 08, 2018
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Dec. 13, 2016	Dec. 12, 2017
RF Cable	8D	966-4-1 966-4-2 966-4-3	Apr. 01, 2017	Mar. 31, 2018
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Oct. 03, 2017	Oct. 02, 2018
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Dec. 27, 2016	Dec. 26, 2017
Pre-Amplifier EMCI	EMC12630SE	980385	Feb. 02, 2017	Feb. 01, 2018
RF Cable	EMC104-SM-SM-1200 EMC104-SM-SM-2000 EMC104-SM-SM-5000	160923 150318 150321	Feb. 02, 2017 Mar. 29, 2017 Mar. 29, 2017	Feb. 01, 2018 Mar. 28, 2018 Mar. 28, 2018
Pre-Amplifier EMCI	EMC184045SE	980387	Feb. 02, 2017	Feb. 01, 2018
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 15, 2016	Dec. 14, 2017
RF Cable	SUCOFLEX 102	36432/2 36433/2	Jan. 15, 2017	Jan. 14, 2018
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208410	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP02	NA	NA
Spectrum Analyzer Agilent	E4446A	MY48250253	Dec. 21, 2016	Dec. 20, 2017
Power meter Anritsu	ML2495A	1014008	May 11, 2017	May 10, 2018
Power sensor Anritsu	MA2411B	0917122	May 11, 2017	May 10, 2018

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 4.
- 4. The CANADA Site Registration No. is 20331-2
- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: Dec. 02 to 05, 2017

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

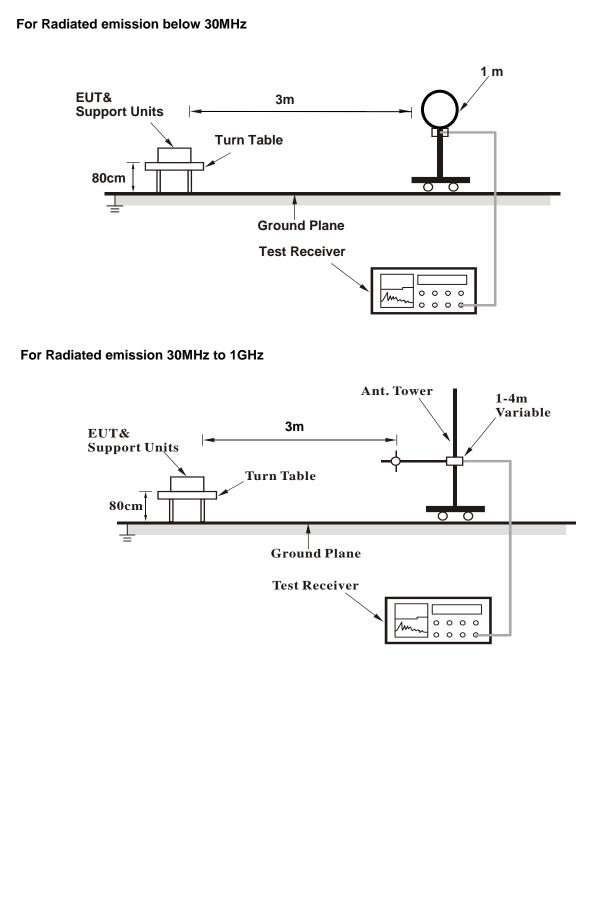
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

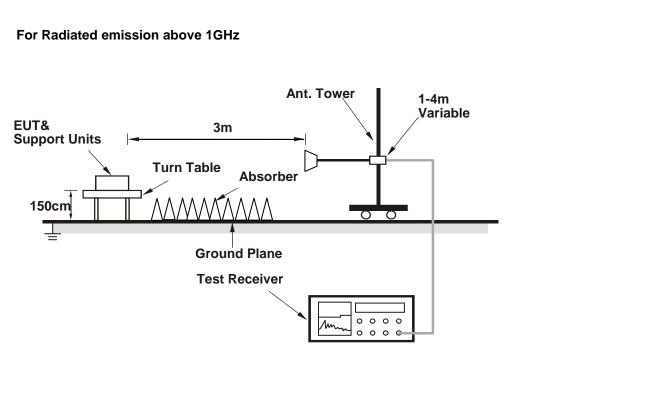
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

a. Connected the EUT with the Laptop.

b. Controlling software (RTL819x 3.4-2016) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data:

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	2390.00	51.9 PK	74.0	-22.1	1.24 H	68	53.2	-1.3			
2	2390.00	38.5 AV	54.0	-15.5	1.24 H	68	39.8	-1.3			
3	*2402.00	98.3 PK			1.25 H	82	99.4	-1.1			
4	*2402.00	97.1 AV			1.25 H	82	98.2	-1.1			
5	4804.00	54.6 PK	74.0	-19.4	3.50 H	242	51.4	3.2			
6	4804.00	51.2 AV	54.0	-2.8	3.50 H	242	48.0	3.2			
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	2390.00	53.8 PK	74.0	-20.2	1.07 V	192	55.1	-1.3			
2	2390.00	40.9 AV	54.0	-13.1	1.07 V	192	42.2	-1.3			
3	*2402.00	101.5 PK			1.07 V	192	102.6	-1.1			
4	*2402.00	99.7 AV			1.07 V	192	100.8	-1.1			
5	4804.00	56.0 PK	74.0	-18.0	1.55 V	221	52.8	3.2			
6	4804.00	53.8 AV	54.0	-0.2	1.55 V	221	50.6	3.2			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
 The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

CHANNEL	TX Channel 19	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	*2440.00	102.6 PK			1.21 H	86	103.8	-1.2				
2	*2440.00	101.5 AV			1.21 H	86	102.7	-1.2				
3	4880.00	54.3 PK	74.0	-19.7	1.02 H	124	50.9	3.4				
4	4880.00	51.3 AV	54.0	-2.7	1.02 H	124	47.9	3.4				
5	7320.00	47.5 PK	74.0	-26.5	1.03 H	140	37.7	9.8				
6	7320.00	44.8 AV	54.0	-9.2	1.03 H	140	35.0	9.8				
		ANTENNA		' & TEST DI	STANCE: V	ERTICAL A	Т 3 М					
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	*2440.00	104.1 PK			1.12 V	241	105.3	-1.2				
2	*2440.00	103.4 AV			1.12 V	241	104.6	-1.2				
3	4880.00	55.3 PK	74.0	-18.7	2.25 V	263	51.9	3.4				
4	4880.00	52.0 AV	54.0	-2.0	2.25 V	263	48.6	3.4				

REMARKS:

7320.00

7320.00

5

6

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

-14.8

-0.2

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

1.39 V

1.39 V

349

349

49.4

44.0

9.8

9.8

3. The other emission levels were very low against the limit.

74.0

54.0

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

59.2 PK

53.8 AV

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2480.00	102.5 PK			1.22 H	82	103.5	-1.0			
2	*2480.00	101.4 AV			1.22 H	82	102.4	-1.0			
3	2483.50	54.9 PK	74.0	-19.1	1.22 H	82	55.9	-1.0			
4	2483.50	41.8 AV	54.0	-12.2	1.22 H	82	42.8	-1.0			
5	4960.00	52.1 PK	74.0	-21.9	1.53 H	199	48.5	3.6			
6	4960.00	49.2 AV	54.0	-4.8	1.53 H	199	45.6	3.6			
7	7440.00	47.2 PK	74.0	-26.8	1.05 H	142	37.1	10.1			
8	7440.00	44.5 AV	54.0	-9.5	1.05 H	142	34.4	10.1			
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2480.00	105.2 PK			1.08 V	246	106.2	-1.0			
2	*2480.00	104.1 AV			1.08 V	246	105.1	-1.0			
3	2483.50	54.7 PK	74.0	-19.3	1.08 V	246	55.7	-1.0			
4	2483.50	42.2 AV	54.0	-11.8	1.08 V	246	43.2	-1.0			
5	4960.00	54.3 PK	74.0	-19.7	2.25 V	265	50.7	3.6			
6	4960.00	51.3 AV	54.0	-2.7	2.25 V	265	47.7	3.6			
7	7440.00	59.4 PK	74.0	-14.6	1.43 V	348	49.3	10.1			
8	7440.00	53.9 AV	54.0	-0.1	1.43 V	348	43.8	10.1			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

Below 1GHz Data:

CHANNEL	TX Channel 39	DETECTOR	
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
46.12	29.6 QP	40.0	-10.4	2.50 H	116	37.8	-8.2				
185.66	37.1 QP	43.5	-6.4	1.00 H	149	47.2	-10.1				
369.12	39.3 QP	46.0	-6.7	1.50 H	236	44.8	-5.5				
442.36	36.7 QP	46.0	-9.3	1.50 H	143	40.2	-3.5				
569.78	35.6 QP	46.0	-10.4	2.50 H	224	36.9	-1.3				
711.93	39.1 QP	46.0	-6.9	1.50 H	137	38.2	0.9				
	ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М					
FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
34.95	33.4 QP	40.0	-6.6	1.50 V	226	42.2	-8.8				
163.75	38.0 QP	43.5	-5.5	1.00 V	234	45.8	-7.8				
303.95	35.9 QP	46.0	-10.1	1.50 V	234	43.2	-7.3				
401.23	35.6 QP	46.0	-10.4	2.00 V	264	40.6	-5.0				
584.23	36.8 QP	46.0	-9.2	1.50 V	183	37.6	-0.8				
741.23	32.6 QP	46.0	-13.4	2.50 V	274	30.6	2.0				
	(MHz) 46.12 185.66 369.12 442.36 569.78 711.93 FREQ. (MHz) 34.95 163.75 303.95 401.23 584.23	FREQ. (MHz) EMISSION LEVEL (dBuV/m) 46.12 29.6 QP 185.66 37.1 QP 369.12 39.3 QP 442.36 36.7 QP 569.78 35.6 QP 711.93 39.1 QP ANTENNA FREQ. (MHz) EMISSION LEVEL (dBuV/m) 34.95 33.4 QP 163.75 38.0 QP 303.95 35.9 QP 401.23 36.8 QP	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 46.12 29.6 QP 40.0 185.66 37.1 QP 43.5 369.12 39.3 QP 46.0 442.36 36.7 QP 46.0 442.36 36.7 QP 46.0 569.78 35.6 QP 46.0 711.93 39.1 QP 46.0 FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) 34.95 33.4 QP 40.0 163.75 38.0 QP 43.5 303.95 35.9 QP 46.0 401.23 35.6 QP 46.0	FREQ. (MHz)EMISSION LEVEL (dBuV/m)LIMIT (dBuV/m)MARGIN (dB) 46.12 29.6 QP 40.0 -10.4 185.66 37.1 QP 43.5 -6.4 369.12 39.3 QP 46.0 -6.7 442.36 36.7 QP 46.0 -9.3 569.78 35.6 QP 46.0 -10.4 711.93 39.1 QP 46.0 -6.9 MARGIN 11.93 FREQ. (MHz)EMISSION LEVEL (dBuV/m)LIMIT (dBuV/m)MARGIN (dB) 34.95 33.4 QP 40.0 -6.6 163.75 38.0 QP 43.5 -5.5 303.95 35.9 QP 46.0 -10.1 401.23 35.6 QP 46.0 -10.4 584.23 36.8 QP 46.0 -9.2	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 46.12 29.6 QP 40.0 -10.4 2.50 H 185.66 37.1 QP 43.5 -6.4 1.00 H 369.12 39.3 QP 46.0 -6.7 1.50 H 442.36 36.7 QP 46.0 -9.3 1.50 H 569.78 35.6 QP 46.0 -10.4 2.50 H 711.93 39.1 QP 46.0 -6.9 1.50 H ANTENNA POLARITY & TEST DISTANCE: V FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) 34.95 33.4 QP 40.0 -6.6 1.50 V 163.75 38.0 QP 43.5 -5.5 1.00 V 303.95 35.9 QP 46.0 -10.1 1.50 V 401.23 35.6 QP 46.0 -10.4 2.00 V 584.23 36.8 QP 46.0 -9.2 1.50 V	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 46.12 29.6 QP 40.0 -10.4 2.50 H 116 185.66 37.1 QP 43.5 -6.4 1.00 H 149 369.12 39.3 QP 46.0 -6.7 1.50 H 236 442.36 36.7 QP 46.0 -9.3 1.50 H 143 569.78 35.6 QP 46.0 -10.4 2.50 H 224 711.93 39.1 QP 46.0 -6.9 1.50 H 137 ANTENNA POLARITY & TEST DISTANCE: VERTICAL A FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) 34.95 33.4 QP 40.0 -6.6 1.50 V 226 163.75 38.0 QP 43.5 -5.5 1.00 V 234 303.95 35.9 QP 46.0 -10.1 1.50 V 234 303.95 35.9 QP 46.0	FREQ. (MHz) EMISSION LEVEL (dBuV/m) LIMIT (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 46.12 29.6 QP 40.0 -10.4 2.50 H 116 37.8 185.66 37.1 QP 43.5 -6.4 1.00 H 149 47.2 369.12 39.3 QP 46.0 -6.7 1.50 H 236 44.8 442.36 36.7 QP 46.0 -9.3 1.50 H 143 40.2 569.78 35.6 QP 46.0 -10.4 2.50 H 137 38.2 711.93 39.1 QP 46.0 -6.9 1.50 H 137 38.2 ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M FREQ. (MHz) EMISSION LEVEL (dBuV/m) MARGIN (dB) ANTENNA HEIGHT (m) TABLE ANGLE (Degree) RAW VALUE (dBuV) 34.95 33.4 QP 40.0 -6.6 1.50 V 226 42.2 163.75 38.0 QP 43.5 -5.5 1.00 V 234 45.8 <				

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)					
Frequency (MHZ)	Quasi-peak	Average				
0.15 - 0.5	66 - 56	56 - 46				
0.50 - 5.0	56	46				
5.0 - 30.0	60	50				

Note: 1. The lower limit shall apply at the transition frequencies.

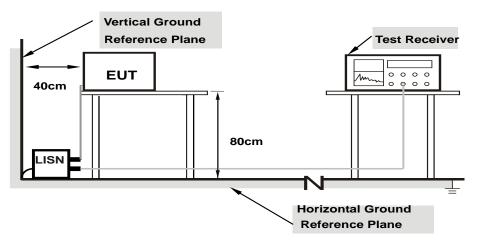
2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Nov. 01, 2017	Oct. 31, 2018
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Nov. 15, 20167	Nov. 14, 2018
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 03, 2017	June 02, 2018
50 ohms Terminator	N/A	EMC-02	Sep. 22, 2017	Sep. 21, 2018
RF Cable	5D-FB	COCCAB-001	Sep. 29, 2017	Sep. 28, 2018
10 dB PAD Mini-Circuits	HAT-10+	CONATT-004	June 18, 2017	June 17, 2018
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

- 1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. The test was performed in Shielded Room No. 1.
- 3. Tested Date: Dec. 05, 2017


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

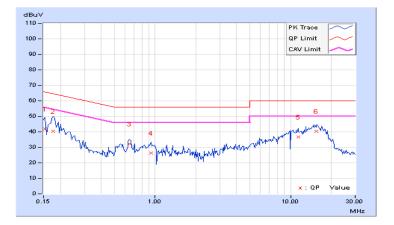
4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN. For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions


Controlling software (RTL819x 3.4-2016) has been activated to set the EUT on specific status.

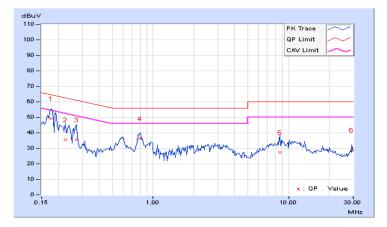
4.2.7 Test Results (Mode 1)

Phase	9	Lin		Detector Function Quasi-Peak (QP) / Average (AV)				/		
	Frag	Corr.	Readin	g Value	Emissio	on Level	Lir	nit	Mar	gin
No	Freq.	Factor	[dB	(uV)]	[dB	(uV)]	[dB ([uV)]	(dl	3)
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	10.08	31.92	18.08	42.00	28.16	65.79	55.79	-23.79	-27.63
2	0.17734	10.08	30.36	12.76	40.44	22.84	64.61	54.61	-24.17	-31.77
3	0.64609	10.14	21.92	16.54	32.06	26.68	56.00	46.00	-23.94	-19.32
4	0.93906	10.16	16.23	8.84	26.39	19.00	56.00	46.00	-29.61	-27.00
5	11.39453	10.90	25.72	18.02	36.62	28.92	60.00	50.00	-23.38	-21.08
6	15.52734	11.24	28.98	21.47	40.22	32.71	60.00	50.00	-19.78	-17.29

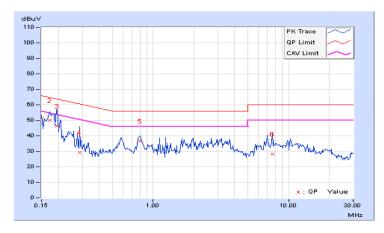
- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase Neutral (N)				Detector Function				Quasi-Peak (QP) / Average (AV)			
Frog		Corr.	Readin	g Value	Emissi	on Level	Lir	nit	t Margin		
No	Freq.	Factor	[dB ((uV)]	[dB (uV)]		[dB (uV)]		(dB)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.15391	10.07	31.82	18.45	41.89	28.52	65.79	55.79	-23.90	-27.27	
2	0.17734	10.06	29.11	11.69	39.17	21.75	64.61	54.61	-25.44	-32.86	
3	0.22031	10.05	23.88	7.75	33.93	17.80	62.81	52.81	-28.88	-35.01	
4	0.63047	10.12	20.72	14.00	30.84	24.12	56.00	46.00	-25.16	-21.88	
5	9.58984	10.68	23.46	14.77	34.14	25.45	60.00	50.00	-25.86	-24.55	
6	16.05859	11.07	27.70	18.28	38.77	29.35	60.00	50.00	-21.23	-20.65	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.



4.2.8 Test Results (Mode 2)


Phase	9	Lin	Line (L)			etector Fu	nction	Quasi- Averag	Peak (QP) / ge (AV)		
	Frag	Corr.	Readin	g Value	Emiss	on Level	Lir	nit	Mar	gin	
No Freq.		Factor	[dB	(uV)]	[dB	(uV)]	[dB ([uV)]	(dl	3)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	
1	0.17734	10.07	39.19	18.62	49.26	28.69	64.61	54.61	-15.35	-25.92	
2	0.22422	10.07	25.60	7.72	35.67	17.79	62.66	52.66	-26.99	-34.87	
3	0.27109	10.08	25.50	9.90	35.58	19.98	61.08	51.08	-25.50	-31.10	
4	0.79844	10.14	26.27	14.72	36.41	24.86	56.00	46.00	-19.59	-21.14	
5	8.59766	10.54	17.02	13.61	27.56	24.15	60.00	50.00	-32.44	-25.85	
6	29.23438	11.38	17.46	17.18	28.84	28.56	60.00	50.00	-31.16	-21.44	

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase Neutral (N)					D	etector Fu	nction	Quasi- Averag	Peak (QP) le (AV)	/
		Corr.	Readin	g Value	Emissi	on Level	Lir	nit	Mar	ain
No Freq.		Factor		[dB (uV)]		[dB (uV)]		uV)]	(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.07	41.22	17.34	51.29	27.41	66.00	56.00	-14.71	-28.59
2	0.17344	10.05	39.97	30.31	50.02	40.36	64.79	54.79	-14.77	-14.43
3	0.19687	10.03	36.27	20.10	46.30	30.13	63.74	53.74	-17.44	-23.61
4	0.28672	10.06	19.22	9.07	29.28	19.13	60.62	50.62	-31.34	-31.49
5	0.79844	10.11	26.69	13.76	36.80	23.87	56.00	46.00	-19.20	-22.13
6	7.58203	10.42	17.83	13.93	28.25	24.35	60.00	50.00	-31.75	-25.65

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
 - 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 6dB Bandwidth Measurement

4.3.1 Limits of 6dB Bandwidth Measurement

The minimum of 6dB Bandwidth Measurement is 0.5 MHz.

4.3.2 Test Setup

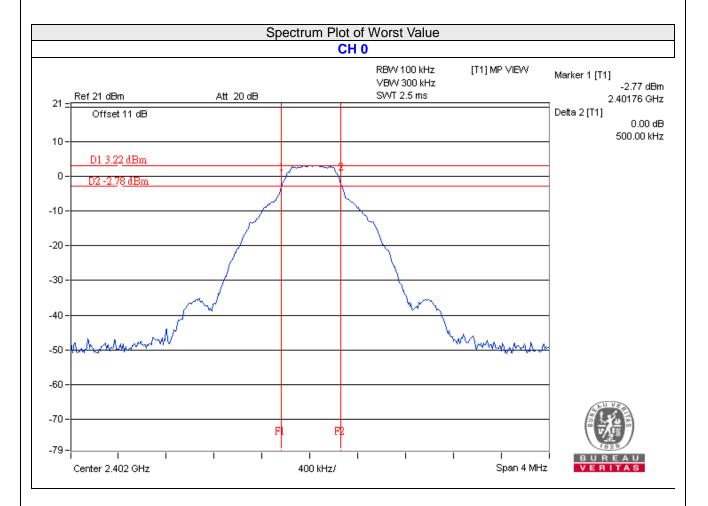
4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure

- a. Set resolution bandwidth (RBW) = 100kHz
- b. Set the video bandwidth (VBW) \ge 3 x RBW, Detector = Peak.
- c. Trace mode = max hold.
- d. Sweep = auto couple.
- e. Measure the maximum width of the emission that is constrained by the frequencies associated with the two amplitude points (upper and lower) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission
- 4.3.5 Deviation from Test Standard

No deviation.


4.3.6 EUT Operating Conditions

The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually.

4.3.7 Test Result

Channel	Frequency (MHz)	6dB Bandwidth (MHz)	Minimum Limit (MHz)	Pass / Fail
0	2402	0.5	0.5	Pass
19	2440	0.5	0.5	Pass
39	2480	0.5	0.5	Pass

4.4 Conducted Output Power Measurement

4.4.1 Limits of Conducted Output Power Measurement

For systems using digital modulation in the 2400–2483.5 MHz bands: 1 Watt (30dBm)

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

A peak / average power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak / average power sensor. Record the power level.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 EUT Operating Conditions

Same as Item 4.3.6.

4.4.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHz)	Peak Power (mW)	Peak Power (dBm)	Limit (dBm)	Pass/Fail
0	2402	2.143	3.31	30	Pass
19	2440	3.565	5.52	30	Pass
39	2480	3.656	5.63	30	Pass

FOR AVERAGE POWER

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	2402	2.07	3.16
19	2440	3.396	5.31
39	2480	3.475	5.41

4.5 **Power Spectral Density Measurement**

4.5.1 Limits of Power Spectral Density Measurement

The Maximum of Power Spectral Density Measurement is 8dBm in any 3kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

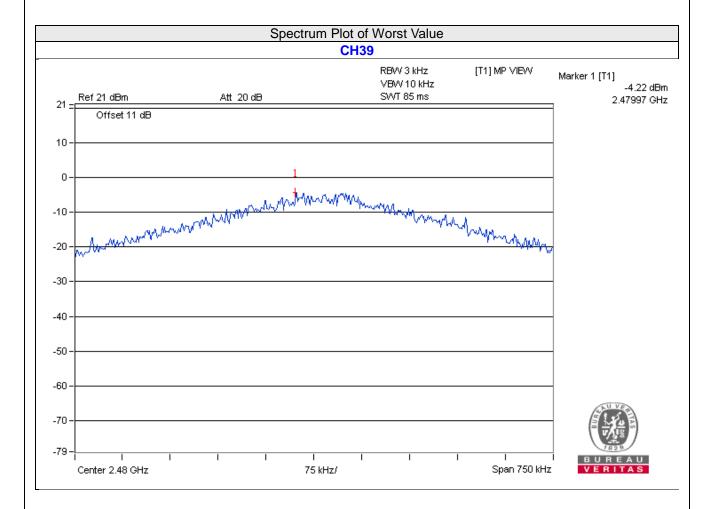
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Set analyzer center frequency to DTS channel center frequency.
- b. Set the span to 1.5 times the DTS bandwidth.
- c. Set the RBW to: $3 \text{ kHz} \le \text{RBW} \le 100 \text{ kHz}$.
- d. Set the VBW \geq 3 × RBW.
- e. Detector = peak.
- f. Sweep time = auto couple.
- g. Trace mode = max hold.
- h. Allow trace to fully stabilize.
- i. Use the peak marker function to determine the maximum amplitude level within the RBW.

4.5.5 Deviation from Test Standard

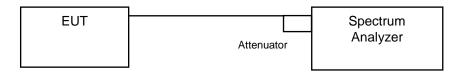
No deviation.


4.5.6 EUT Operating Condition

Same as Item 4.3.6

4.5.7 Test Results

Channel	Freq. (MHz)	PSD (dBm/3kHz)	Limit (dBm/3kHz)	Pass /Fail
0	2402	-6.63	8	Pass
19	2440	-4.80	8	Pass
39	2480	-4.22	8	Pass



4.6 Conducted Out of Band Emission Measurement

4.6.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth).

4.6.2 Test Setup

4.6.3 Test Instruments

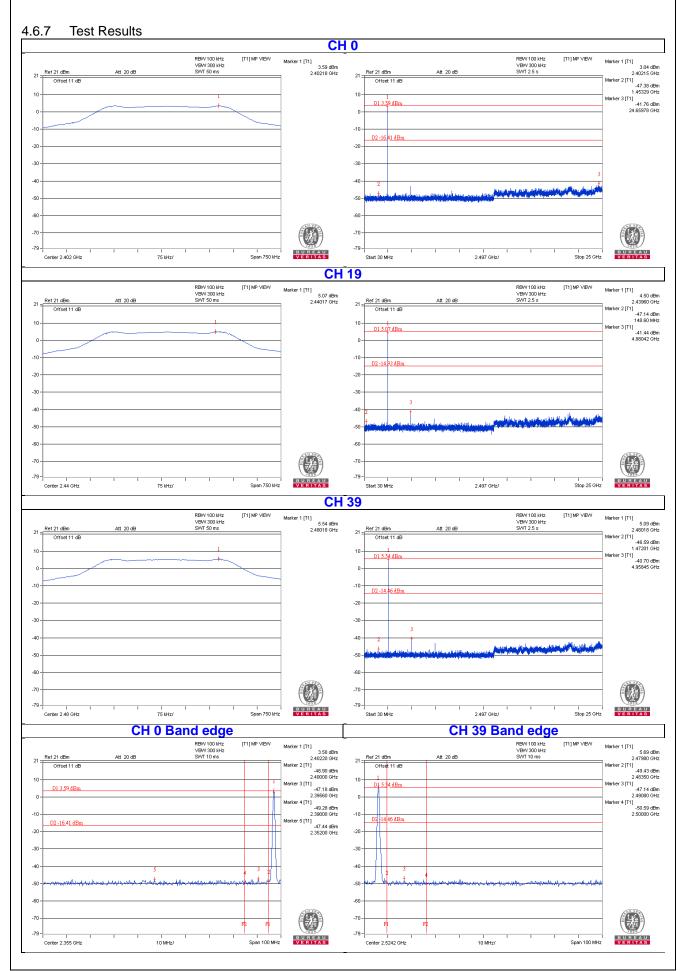
Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

MEASUREMENT PROCEDURE REF

- 1. Set the RBW = 100 kHz.
- 2. Set the VBW \geq 300 kHz.
- 3. Detector = peak.
- 4. Sweep time = auto couple.
- 5. Trace mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW.

MEASUREMENT PROCEDURE OOBE


- 1. Set RBW = 100 kHz.
- 2. Set VBW ≥ 300 kHz.
- 3. Detector = peak.
- 4. Sweep = auto couple.
- 5. Trace Mode = max hold.
- 6. Allow trace to fully stabilize.
- 7. Use the peak marker function to determine the maximum amplitude level.
- 4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition

Same as Item 4.3.6

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---