

SPORTON International Inc.

No. 52, Hwa Ya 1st Rd., Hwa Ya Technology Park, Kwei-Shan Hsiang, Tao Yuan Hsien, Taiwan, R.O.C. Ph: 886-3-327-3456 / FAX: 886-3-327-0973 / www.sporton.com.tw

FCC RADIO TEST REPORT

Applicant's company	Accton Technology Corporation		
Applicant Addrec	No. 1, Creation Rd. III, Science-based Industrial Park Hsin Chu 30077,		
	Taiwan R.O.C.		
FCC ID	HED-ML6035G3		
Manufacturer's company	Accton Technology Corporation		
Manufacturer Address	No. 1, Creation Rd. III, Science-based Industrial Park Hsin Chu 30077,		
	Taiwan R.O.C.		

Product Name	Metroling Outdoor 60GHz PtMP + 5 GHz
Brand Name	IgniteNet
Model No.	ML-60-30-18
Test Rule Part(s)	47 CFR FCC Part 15 Subpart E § 15.407
Test Freq. Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz
Received Date	Mar. 10, 2016
Final Test Date	Sep. 02, 2016
Submission Type	Class II Change

Statement

Test result included is for the IEEE 802.11n and IEEE 802.11a/ac of the product.

The test result in this report refers exclusively to the presented test model / sample.

Without written approval of SPORTON International Inc., the test report shall not be reproduced except in full.

The measurements and test results shown in this test report were made in accordance with the procedures and found in compliance with the limit given in ANSI C63.10-2013, 47 CFR FCC Part 15 Subpart E, KDB789033 D02 v01r03, KDB662911 D01 v02r01, KDB644545 D03 v01, ET Docket No. 13–49; FCC 16–24. The test equipment used to perform the test is calibrated and traceable to NML/ROC.

Table of Contents

1.	VERIF	FICATION OF COMPLIANCE	1
2.	SUMN	MARY OF THE TEST RESULT	2
3.	GENE	ERAL INFORMATION	3
	3.1.	Product Details	
	3.2.	Accessories	4
	3.3.	Table for Filed Antenna	5
	3.4.	Table for Carrier Frequencies	5
	3.5.	Table for Test Modes	
	3.6.	Table for Testing Locations	7
	3.7.	Table for Class II Change	7
	3.8.	Table for Supporting Units	7
	3.9.	EUT Operation during Test	
	3.10.	Test Configurations	8
4.	TEST F	RESULT	10
	4.1.	Radiated Emissions Measurement	
	4.2.	Band Edge Emissions Measurement	
	4.3.	Antenna Requirements	
5.	list c	of measuring equipments	56
6.	MEAS	SUREMENT UNCERTAINTY	57
AP	PEND	DIX A. TEST PHOTOS	A1 ~ A3

History of This Test Report

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR5N2614-11	Rev. 01	Initial issue of report	Sep. 14, 2016
		Changing Equipment Name to "Metroling Outdoor	
FR5N2614-11	Rev. 02	60GHz PtMP + 5 GHz" from "Metroling Outdoor	Sep. 21, 2016
		60GHz PTP + 5 GHz"	

Project No: CB10509078

1. VERIFICATION OF COMPLIANCE

Product Name	:	Metroling Outdoor 60GHz PtMP + 5 GHz
Brand Name	:	IgniteNet
Model No.	:	ML-60-30-18
Applicant	:	Accton Technology Corporation
Test Rule Part(s)		47 CFR FCC Part 15 Subpart E § 15.407

Sporton International as requested by the applicant to evaluate the EMC performance of the product sample received on Mar. 10, 2016 would like to declare that the tested sample has been evaluated and found to be in compliance with the tested rule parts. The data recorded as well as the test configuration specified is true and accurate for showing the sample's EMC nature.

Sam Chen SPORTON INTERNATIONAL INC.

2. SUMMARY OF THE TEST RESULT

	Applied Standard: 47 CFR FCC Part 15 Subpart E						
Part Rule Section Description of Test Result							
4.1	15.407(b)	Radiated Emissions	Complies				
4.2	15.407(b)	Band Edge Emissions	Complies				
4.3	15.203	Antenna Requirements	Complies				

3. GENERAL INFORMATION

3.1. Product Details

Items	Description		
Product Type	WLAN (2TX, 2RX)		
Radio Type	Intentional Transceiver		
Power Type	From PoE		
Modulation	IEEE 802.11a: OFDM		
	IEEE 802.11n/ac: see the below table		
Data Modulation	IEEE 802.11a/n: OFDM (BPSK / QPSK / 16QAM / 64QAM)		
	IEEE 802.11ac: OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)		
Data Rate (Mbps)	IEEE 802.11a: OFDM (6/9/12/18/24/36/48/54)		
	IEEE 802.11n/ac: see the below table		
Frequency Range	5150 ~ 5250 MHz / 5725 ~ 5850 MHz		
Channel Number	9 for 20MHz bandwidth ; 4 for 40MHz bandwidth		
	2 for 80MHz bandwidth		
Carrier Frequencies	Please refer to section 3.4		
Antenna	Please refer to section 3.3		

Note 1: This device contains transmitter 60GHz module FCC ID: HED-ML60MDSB

Note 2: WLAN and 60G do not work at the same time.

Items	Description			
Communication Mode	\boxtimes	IP Based (Load Based)		Frame Based
Beamforming Function		With beamforming	\boxtimes	Without beamforming
Operate Condition		Indoor	\boxtimes	Outdoor

Antenna and Bandwidth

Antenna	Two (TX)					
Bandwidth Mode	20 MHz	40 MHz	80 MHz			
IEEE 802.11a	V	Х	Х			
IEEE 802.11n	V	V	Х			
IEEE 802.11ac	V	V	V			

IEEE 11n/ac Spec.

Protocol	Number of Transmit Chains (NTX)	Data Rate / MCS				
802.11n (HT20)	2	MCS 0-15				
802.11n (HT40)	2	MCS 0-15				
802.11ac (VHT20)	2	MCS 0-9/Nss1-2				
802.11ac (VHT40)	2	MCS 0-9/Nss1-2				
802.11ac (VHT80)	2	MCS 0-9/Nss1-2				
Note 1: IEEE Std. 802.11n modulat	ion consists of HT20 and HT40 (HT: Hi	igh Throughput).				
Then EUT supports HT20 ar	d HT40.					
Note 2: IEEE Std. 802.11ac module	Note 2: IEEE Std. 802.11ac modulation consists of VHT20, VHT40, VHT80 and VHT160 (VHT: Very High					
Throughput). Then EUT supports VHT20, VHT40 and VHT80.						
Note 3: Modulation modes consist of below configuration:						
HT20/HT40: IEEE 802.11n, \	/HT20/VHT40/VHT80: IEEE 802.11ac					

3.2. Accessories

N/A

3.3. Table for Filed Antenna


Ant.	Brand	P/N	Antenna Type Connector Gain (dBi		(dBi)	
<u> </u>	biana	F/IN	P/N Anienina type C	Connector	Band 1	Band 4
1	Accton	120G0000156A	Dish Ant.	N/A	9.7	12.4

Note:

For IEEE 802.11a/n/ac Mode (2TX/2RX)

Chain 1 and Chain 2 can be use as transmitting antenna

Chain 1 and Chain 2 can be used as receiving antennas.

3.4. Table for Carrier Frequencies

There are three bandwidth systems.

For 20MHz bandwidth systems, use Channel 36, 40, 44, 48, 149, 153, 157, 161, 165.

For 40MHz bandwidth systems, use Channel 38, 46, 151, 159.

For 80MHz bandwidth systems, use Channel 42, 155.

Frequency Band	Channel No.	Frequency	Channel No.	Frequency
	36	5180 MHz	44	5220 MHz
5150~5250 MHz	38	5190 MHz	46	5230 MHz
Band 1	40	5200 MHz	48	5240 MHz
	42	5210 MHz	-	-
	149	5745 MHz	157	5785 MHz
5725~5850 MHz	151	5755 MHz	159	5795 MHz
Band 4	153	5765 MHz	161	5805 MHz
	155	5775 MHz	165	5825 MHz

3.5. Table for Test Modes

Preliminary tests were performed in different data rate to find the worst radiated emission. The data rate shown in the table below is the worst-case rate with respect to the specific test item. Investigation has been done on all the possible configurations for searching the worst cases. The following table is a list of the test modes shown in this test report.

Test Items	Mode		Data Rate	Channel	Chain
Radiated Emission Below 1GHz	Normal Link		-	-	-
Radiated Emission Above 1GHz	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/1	1+2
				57/165	
	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/1	1+2
				57/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	1+2
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	1+2
Band Edge Emission	11a/BPSK	Band 1&4	6Mbps	36/40/48/149/1	1+2
				57/165	
	11ac VHT20	Band 1&4	MCS0/Nss1	36/40/48/149/1	1+2
				57/165	
	11ac VHT40	Band 1&4	MCS0/Nss1	38/46/151/159	1+2
	11ac VHT80	Band 1&4	MCS0/Nss1	42/155	1+2

Note 1: VHT20/VHT40 covers HT20/HT40, due to same modulation. The power setting for 802.11n HT20 and HT40 are the same or lower than 802.11ac VHT20 and VHT40.

Note 2: The EUT can used at Y-axis only.

Note 3: The power of EUT is supplied by PoE. But the PoE is for measurement only, and it would not be marketed.

Equipment	Brand Name	Model Name
PoE	GME	GME241DA-240100G

The following test modes were performed for all tests:

For Radiated Emission test<below 1GHz>:

Mode 1: Normal Link - Place EUT in Y axis - 5GHz

For Radiated Emission test<above 1GHz>:

Mode 1: CTX - Place EUT in Y axis - 5GHz

3.6. Table for Testing Locations

Test Site Location						
Address:	Address: No.8, Lane 724, Bo-ai St., Jhubei City, Hsinchu County 302, Taiwan, R.O.C.					
TEL:	EL: 886-3-656-9065					
FAX:	FAX: 886-3-656-9085					
Test Site N	Test Site No. Site Category Location FCC Designation No. IC File No. VCCI Reg. No					
03CH01-0	CB	SAC	Hsin Chu	TW0006	IC 4086D	-

Semi Anechoic Chamber (SAC).

3.7. Table for Class II Change

This product is an extension of original one reported under Sporton project number: FR5N2614-03 Below is the table for the change of the product with respect to the original one.

	Modifications		Performance Checking
1.	Adding a model no.: ML-60-30-18		
2.	Adding an antenna (P/N: 120G00000156A) for model no.:		
	ML-60-30-18 use.	1.	Radiated Emissions
3.	Changing Equipment Name to "Metroling Outdoor 60GHz	2.	Band Edge Emissions
	PtMP + 5 GHz" from "Metroling Outdoor 60GHz PTP + 5 GHz"		
	for model no.: ML-60-30-18 use.		

Note: Above tests will be based on original output power to re-test.

3.8. Table for Supporting Units

For Test Site No: 03CH01-CB

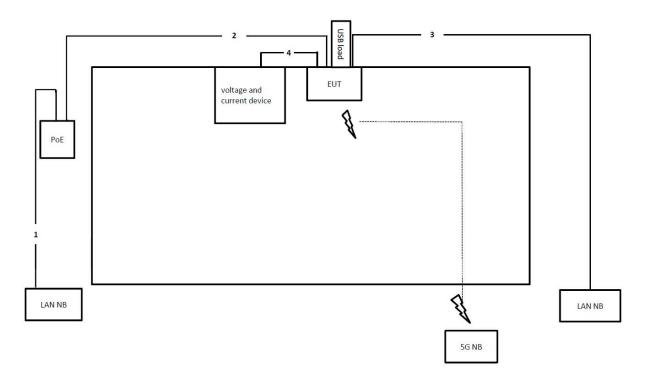
<below 1GHz>

Support Unit	Brand	Model	FCC ID
Notebook*3	DELL	E4300	DoC
Voltage and current device	HUA	85C1-50V	DoC
Flash disk3.0	Silicon Power	B06	DoC
PoE	GME	GME241DA-240100G	DoC

<above 1GHz>

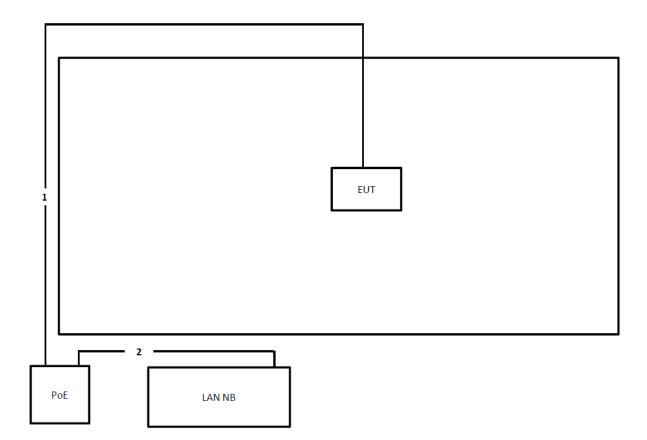
Support Unit	Brand	Model	FCC ID
Notebook	DELL	E4300	DoC
РоЕ	GME	GME241DA-240100G	DoC

3.9. EUT Operation during Test


The EUT was programmed to be in continuously transmitting mode.

3.10. Test Configurations

3.10.1. Radiation Emissions Test Configuration


Test Configuration: 30MHz $\sim\!1\text{GHz}$

Item	Connection	Shielded	Length
1	RJ-45 cable	No	1.5m
2	RJ-45 cable	No	10m
3	RJ-45 cable	No	10m
4	Console cable	No	0.4m

Test Configuration: above 1GHz

Item	Connection	Shielded	Length
1	RJ-45 cable	No	10m
2	RJ-45 cable	No	1.5m

4. TEST RESULT

4.1. Radiated Emissions Measurement

4.1.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

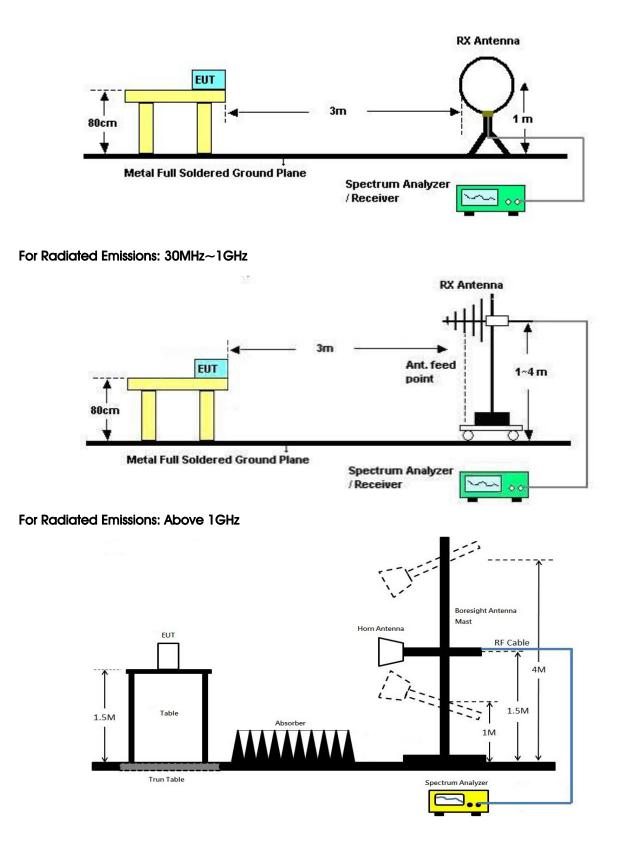
Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.1.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	40 GHz
RBW / VBW (Emission in restricted band)	1 MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1 MHz / 3MHz for peak

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RBW 200Hz for QP
Start \sim Stop Frequency	150kHz~30MHz / RBW 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RBW 120kHz for QP


4.1.3. Test Procedures

- 1. Configure the EUT according to ANSI C63.10. The EUT was placed on the top of the turntable 1.5 meter above ground. The phase center of the receiving antenna mounted on the top of a height-variable antenna tower was placed 1m & 3m far away from the turntable.
- 2. Power on the EUT and all the supporting units. The turntable was rotated by 360 degrees to determine the position of the highest radiation.
- 3. The height of the broadband receiving antenna was varied between one meter and four meters above ground to find the maximum emissions field strength of both horizontal and vertical polarization.
- 4. For each suspected emissions, the antenna tower was scan (from 1 M to 4 M) and then the turntable was rotated (from 0 degree to 360 degrees) to find the maximum reading.
- 5. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function with specified bandwidth under Maximum Hold Mode.
- 6. For emissions above 1GHz, use 1MHz VBW and 3MHz RBW for peak reading. Then 1MHz RBW and 1/T VBW for average reading in spectrum analyzer.
- 7. If the emissions level of the EUT in peak mode was 3 dB lower than the average limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method for below 1GHz.
- 8. For testing above 1GHz, the emissions level of the EUT in peak mode was lower than average limit (that means the emissions level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- 9. In case the emission is lower than 30MHz, loop antenna has to be used for measurement and the recorded data should be QP measured by receiver. High Low scan is not required in this case.

4.1.4. Test Setup Layout

For Radiated Emissions: 9kHz \sim 30MHz

4.1.5. Test Deviation

There is no deviation with the original standard.

4.1.6. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

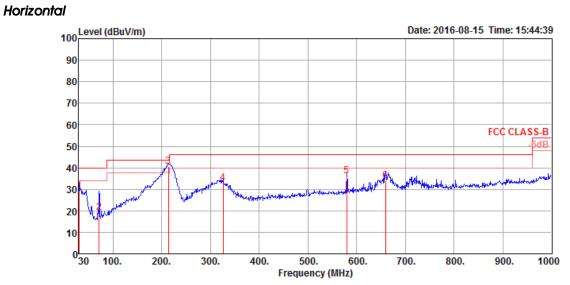
4.1.7. Results of Radiated Emissions (9kHz~30MHz)

Temperature	24 °C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	Normal Link
Test Date	Aug. 15, 2016		

Freq.	Level	Over Limit	Limit Line	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.


Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

4.1.8. Results of Radiated Emissions (30MHz~1GHz)

Temperature	24°C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	Normal Link

	Freq	Level		Over Limit						T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	30.97	29.33	40.00	-10.67	36.10	0.50	25.13	32.40	150	357	QP	HORIZONTAL
2	71.71	19.29	40.00	-20.71	37.93	0.73	13.03	32.40	100	130	QP	HORIZONTAL
3	214.30	40.47	43.50	-3.03	54.74	1.26	16.79	32.32	150	166	QP	HORIZONTAL
4	325.85	32.78	46.00	-13.22	42.79	1.55	20.73	32.29	100	342	QP	HORIZONTAL
5	579.99	36.00	46.00	-10.00	41.14	2.09	25.17	32.40	200	10	QP	HORIZONTAL
6	659.53	33.84	46.00	-12.16	37.95	2.21	26.06	32.38	150	347	QP	HORIZONTAL

Vertical

100 Level (dBuV/m) Date: 2016-08-15 Time: 15:39:30 90 80 70 60 FCC CLASS-B 50 40 LANN. MA 30 20 10 0<u>__</u> 30 100. 200. 300. 400. 500. 600. 700. 800. 900. 1000 Frequency (MHz)

	Freq	Level	Limit Line					Preamp Factor		T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	45.52	35.87	40.00	-4.13	50.80	0.60	16.88	32.41	100	3	QP	VERTICAL
2	56.19	36.59	40.00	-3.41	54.20	0.66	14.14	32.41	100	26	QP	VERTICAL
3	77.53	31.10	40.00	-8.90	49.30	0.77	13.43	32.40	150	167	QP	VERTICAL
4	173.56	35.91	43.50	-7.59	50.70	1.14	16.41	32.34	100	359	QP	VERTICAL
5	579.99	42.99	46.00	-3.01	48.13	2.09	25.17	32.40	100	350	QP	VERTICAL
6	709.97	32.06	46.00	-13.94	36.12	2.29	26.00	32.35	100	360	QP	VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.1.9. Results for Radiated Emissions (1GHz~40GHz)

Tem	perature	2	4°C		I	lumidity	,	55%				
Test	Engineer	K	enneth I	Huang		Configu	ations	IEEE 8	02.11a	CH 36	/ Chain 1	+ Chain 2
Test	Date	S	ep. 02, 2	2016								
Horiz	ontal											
	Freq	Level	Limit Line	Over Limit	Read Level	Cable/ Loss	Antenna Factor	Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/n	dBuV/m	dB	dBuV	dB	dB/m	dB	Cit	deg		
$^{1}_{2}$	15535.04 15536.04	44.90 44.21		-29.10 -9.79	33.68 32.99		38.16 38.16		135 135		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line						A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2	15535.00 15535.00								209 209		Peak Average	VERTICAL VERTICAL

٦

Tem	perature	2	4°C		ł	lumidity	,	55%				
Test	Engineer	к	enneth I	Huang	C	Configur	ations	IEEE 8	02.11a	CH 40	/ Chain 1	+ Chain 2
Test	Date	S	ep. 02, 2	2016								
Horiz	ontal											
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/π	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
1 2	15600.36 15605.68	44.16 57.51			32.88 46.17	7.73 7.73	38.23 38.29		116 116		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit					A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2	15590.92 15593.00								157 157		Peak Average	VERTICAL VERTICAL

Tem	nperature	2	4°C		H	lumidity	,	55%				
Test	Test Engineer Kenneth Huang					Configu	rations	IEEE 8	02.11a	CH 48	/ Chain 1	+ Chain 2
Test	Date	S	ep. 02, 2	2016								
Horiz	ontal											
	Freq	Level	Limit Line	Over Limit	Read Level			Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/π	dBuV/m	dB	dBuV	dB	dB/m	dB	Cit	deg		
$^{1}_{2}$	15716.48 15718.46	56.63 44.11			45.24 32.72		38.42 38.42		163 163		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
1 2	15716.08 15718.70								144 144		Average Peak	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 149 / Chain 1 + Chain 2
Test Date	Sep. 02, 2016		

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
$^{1}_{2}$	11490.00 11490.11								141 141		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line						A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2	11489.88 11490.00								107 107		Peak Average	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 157 / Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
Horizontal			

Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Citt	deg		
11525.13 11532.60										Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line						A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Citt	deg		
1 2	11525.30 11525.90								148 148		Peak Average	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 165 / Chain 1
	Kennen huung	Conligurations	+ Chain 2
Test Date	Sep. 02, 2016		
Horizoptal			

Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Citt	deg		
11565.67 11570.91								154 154		Peak Average	HORIZONTAL HORIZONTAL

Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
11573.75 11574.78								178 178		Average Peak	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Tost Engineer	Konnoth Hugng	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 36 /
Test Engineer	Kenneth Huang	Conligurations	Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
Horizontal	•		

Freq	Level	Limit Line						A/Pos	T/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Citt	deg		
15542.18 15543.49								132 132		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2	15539.46 15542.68								120 120		Average Peak	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 40 /
	Kennein nuung	Configurations	Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
Horizontal			

	Freq	Level	Limit Line						A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
$^{1}_{2}$	15599.05 15600.75								140 140		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line						A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2	15601.55 15604.73								142 142		Peak Average	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 48 / Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
	1 /		

Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
15718.24 15721.68								169 169		Average Peak	HORIZONTAL HORIZONTAL

Freq	Level	Limit Line						A/Pos	T/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
15715.10 15716.49								183 183		Peak Average	VERTICAL VERTICAL

Temperature	24 °C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 149
Test Engineer	Kennein nuong	Conligurations	/ Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
Horizontal	•		

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Сл	deg		
$^{1}_{2}$	11489.79 11489.95								139 139		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Citt	deg		
1 2	11490.03 11490.06								107 107		Peak Average	VERTICAL VERTICAL

Temperature	24 °C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 157
Test Engineer	Kennein nuong	Conligurations	/ Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
Horizontal	•		

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Си	deg		
$^{1}_{2}$	11569.90 11570.02								103 103		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
1 2	11569.98 11570.10								102 102		Average Peak	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 165
	Konnon nuang	Comgaranoni	/ Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
Horizoptal			

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
$^{1}_{2}$	11650.00 11650.03								100 100		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line						A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
$^{1}_{2}$	11649.86 11649.98								100 100		Peak Average	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 38 /
	Kennen naang	Comgaranona	Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
llerizentel			

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2	15567.55 15572.10								124 124		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/\mathfrak{m}}$	dB	dBuV	dB	dB/m	dB	Cin	deg		
1 2	15568.73 15573.73								135 135		Average Peak	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%
Test Engineer	Kappath Hugpa	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 46 /
Test Engineer	Kenneth Huang	Configurations	Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
Horizontal			

Freq	Level	Limit Line	Over Limit					A/Pos	T/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
15688.78 15691.11								156 156		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
1 2	15691.78 15694.87								143 143		Average Peak	VERTICAL VERTICAL

Temperature	24 °C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 151
	Kennen nading	Configurations	/ Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
Horizontal			

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Citt	deg		
1 2	11509.92 11510.03								140 140		Peak Average	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
1 2	11509.95 11510.05								101 101		Average Peak	VERTICAL VERTICAL

Temperature	24 °C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40 CH 159 / Chain 1 + Chain 2
Test Date	Sep. 02, 2016		

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
$^{1}_{2}$	11589.98 11590.26								102 102		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
1 2	11590.05 11590.19								100 100		Average Peak	VERTICAL VERTICAL

Temperature	24°C	Humidity	55%				
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 42 / Chain 1 + Chain 2				
Test Date	Sep. 02, 2016						

	Freq	Level	Limit Line			CableAntenna P Loss Factor F			A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
$^{1}_{2}$	16798.01 16798.81								161 161		Average Peak	HORIZONTAL HORIZONTAL

	Freq	Level	Limit Line						A/Pos	T/Pos	Rema rk	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2	16798.06 16804.04								138 138		Peak Average	VERTICAL VERTICAL

Temperature	24 °C	Humidity	55%
Test Engineer	Kenneth Huang	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80 CH 155 / Chain 1 + Chain 2
Test Date	Sep. 02, 2016		
l lorizontal			

Horizontal

Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cin	deg		
11542.05 11550.00								119 119		Peak Average	HORIZONTAL HORIZONTAL

Vertical

Freq	Level	Limit Line						A/Pos	T/Pos	Rema rk	Pol/Phase
MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
11549.87 11550.00								106 106		Peak Average	VERTICAL VERTICAL

Note:

The amplitude of spurious emissions that are attenuated by more than 20dB below the permissible value has no need to be reported.

Emission level (dBuV/m) = $20 \log Emission level (uV/m)$.

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level.

4.2. Band Edge Emissions Measurement

4.2.1. Limit

For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

For transmitters operating in the 5.725-5.85 GHz band: all emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

In addition, In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(kHz)	300
0.490~1.705	24000/F(kHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

4.2.2. Measuring Instruments and Setting

Please refer to section 5 of equipments list in this report. The following table is the setting of the spectrum analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	100 MHz
RBW / VBW (Emission in restricted band)	1MHz / 3MHz for Peak,
	1MHz / 1/T for Average
RBW / VBW (Emission in non-restricted band)	1MHz / 3MHz for Peak

4.2.3. Test Procedures

The test procedure is the same as section 4.1.3.

4.2.4. Test Setup Layout

This test setup layout is the same as that shown in section 4.1.4.

4.2.5. Test Deviation

There is no deviation with the original standard.

4.2.6. EUT Operation during Test

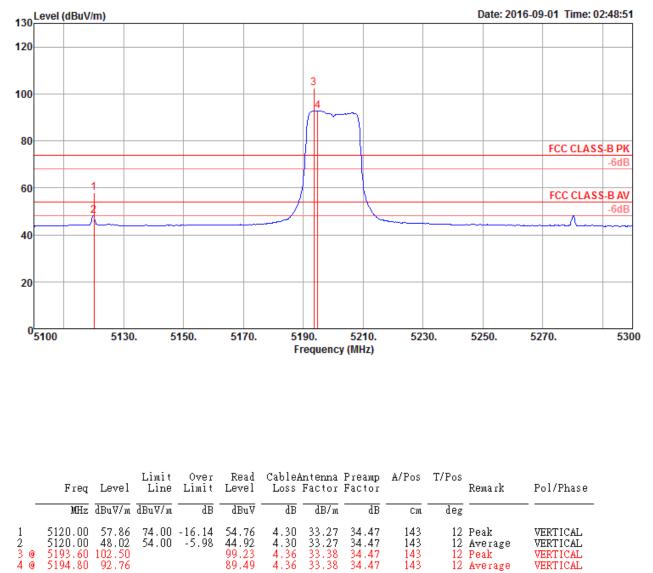
The EUT was programmed to be in continuously transmitting mode.

Temperature

IEEE 802.11a CH 36, 40, 48 / **Test Engineer** Configurations Kenneth Huang Chain 1 + Chain 2 Channel 36 130 Level (dBuV/m) Date: 2016-09-01 Time: 02:36:49 120 100 80 FCC CLASS-B PK -6dB 60 FCC CLASS-B AV -6dB 40 20 0 5080 5280 5110. 5130. 5150. 5170. 5190. 5210. 5230. 5250. Frequency (MHz)

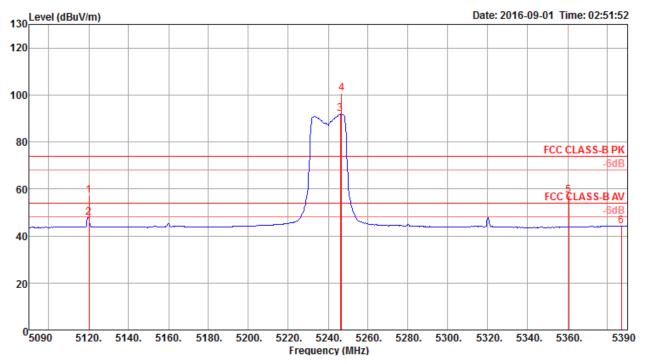
Humidity

55%


4.2.7. Test Result of Band Edge and Fundamental Emissions

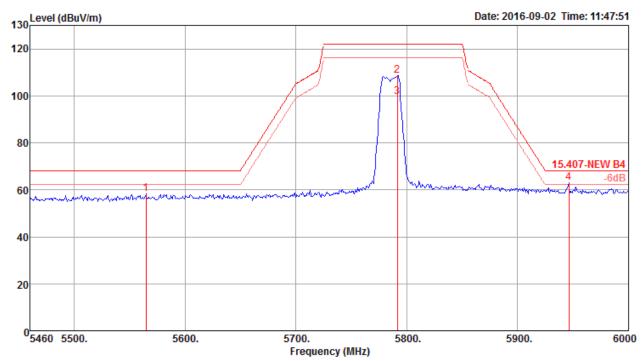
24°C

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 @ 4 @	5120.00 5120.00 5178.80 5179.20	47.49 89.91		-15.74 -6.51		4.30 4.34	33.27 33.35	34.47 34.47 34.47 34.47	149 149 149 149	354 354	Peak Average Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL


Item 3, 4 are the fundamental frequency at 5180 MHz.

Item 3, 4 are the fundamental frequency at 5200 MHz.

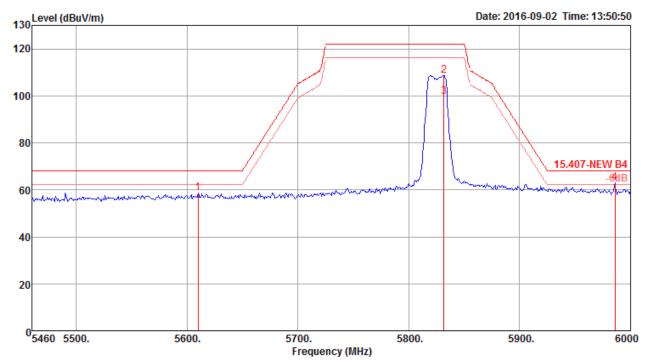
	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
_	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 @ 4 @ 5 6	5120.00 5120.00 5246.00 5246.60 5360.60 5387.00	57.25 47.94 91.83 100.80 57.39 44.32		-16.75 -6.06 -16.61 -9.68	54.15 44.84 88.48 97.45 53.81 40.69	4.30 4.30 4.38 4.38 4.44 4.45	33.27 33.27 33.44 33.44 33.61 33.65	34.47 34.47 34.47	153 153 153 153 153 153	359 359 359 359	Peak Average <mark>Average Peak</mark> Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL VERTICAL



nperature	24°C	Humidity	55%	
t Engineer	Kenneth Huang	Configurations	IEEE 802.11a CH 149, 152	7, 165 /
	Kennen naang	Comgaranons	Chain 1 + Chain 2	
nnel 149				
Level (dBuV/m)			Date: 2016-09-0	2 Time: 11:37:4
		2		
		- PM		
				15.407-NEW B4
		hand h	munan	4 -6dB
mm	man and a more than the second	and an and an		
5460 5500.	5600.	5700. Frequency (MHz)	5800. 5900.	60

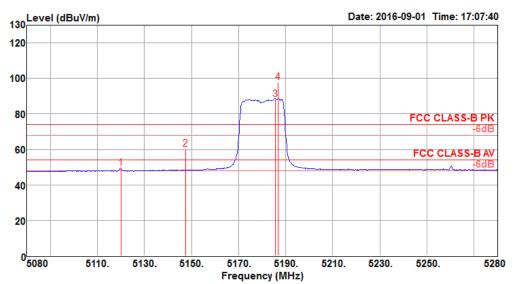
	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 4	5584.64 5752.20 5752.20 5948.08	107.90 98.78			54.57 103.29 94.17 56.16	4.58 4.58	34.05 34.55 34.55 35.15	34.52 34.52	190 190 190 190	353 353	Peak Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Item 2, 3 are the	fundamental frequency	1 at 5745 MHz.
-------------------	-----------------------	----------------



	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 4	5564.76 5791.56 5791.56 5946.00	108.61 99.61			54.28 103.79 94.79 57.77	4.65 4.65	34.70 34.70	34.48 34.53 34.53 34.56	185 185 185 185	2 2	Peak Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL

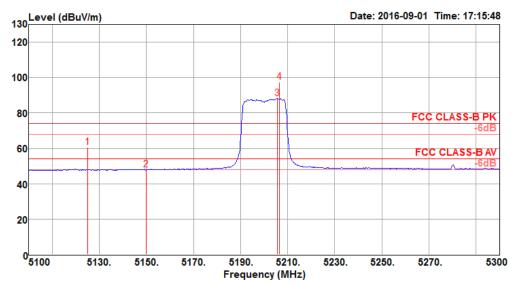
Item 2, 3	are the	fundamental	frequency	at 5785 MHz.
-----------	---------	-------------	-----------	--------------



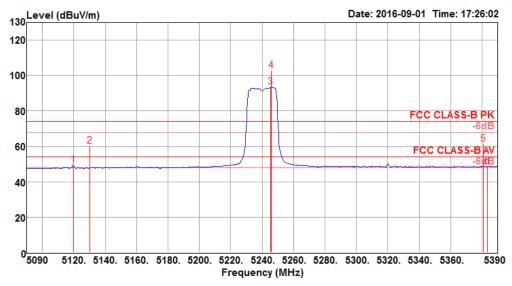
	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 4	5610.12 5831.52 5831.52 5985.96	108.62 99.63			103.69 94.70	4.67 4.67	34.15 34.80 34.80 35.25	34.54 34.54	184 184 184 184	22	Peak Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL

Item 2. 3 ar	e the fundamental	frequency	/ at 5825 MHz.

Temperature	24°C	Humidity	55%
Tost Engineer	Konnoth Huana	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 36,
Test Engineer	Kenneth Huang	Configurations	40, 48 / Chain 1 + Chain 2

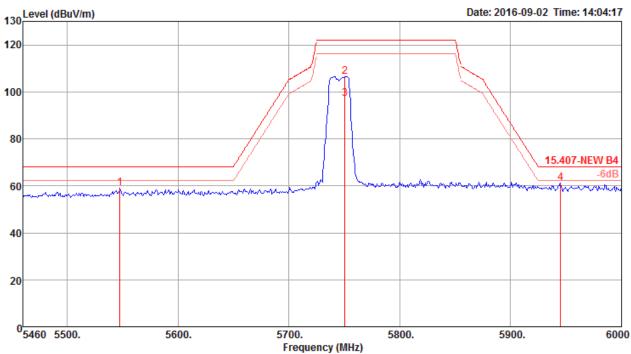


	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2 3@ 4@	5120.00 5147.60 5185.60 5186.80	60.31 <mark>88.0</mark> 5	74.00		52.89 <mark>80.60</mark>	7.48 7.48	34.85 34.88	34.91 34.91	122 122 122 122	353 353	Average Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL

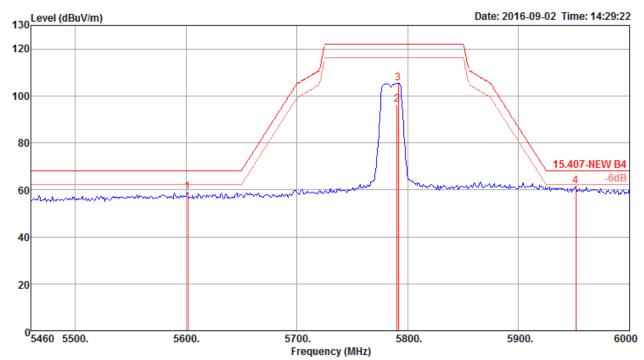


	Freq	Level		Over Limit				-	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	5125.20	60.60	74.00	-13.40	53.20	7.48	34.82	34.90	110	19	Peak	VERTICAL
2	5150.00	47.88	54.00	-6.12	40.46	7.48	34.85	34.91	110	19	Average	VERTICAL
3@	5205.60	88.12			80.63	7.49	34.91	34.91	110	19	Average	VERTICAL
4@	5206.40	97.36			89.87	7.49	34.91	34.91	110	19	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 5200 MHz.

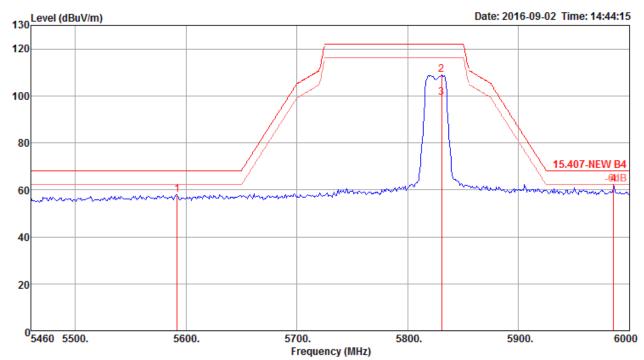

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	5120.00	49.56	54.00	-4.44	42.16	7.48	34.82	34.90	115	16	Average	VERTICAL
2	5130.20	60.25	74.00	-13.75	52.84	7.48	34.84	34.91	115	16	Peak	VERTICAL
3@	5245.40	93.47			85.94	7.50	34.94	34.91	115	16	Average	VERTICAL
4@	5246.00	102.64			95.11	7.50	34.94	34.91	115	16	Peak	VERTICAL
5	5381.00	61.45	74.00	-12.55	53.72	7.57	35.08	34.92	115	16	Peak	VERTICAL
6	5383.40	48.81	54.00	-5.19	41.08	7.57	35.08	34.92	115	16	Average	VERTICAL

Item 3, 4 are the fundamental frequency at 5240 MHz.


Temperature	24°C	Humidity	55%
Test Engineer	Konnoth Uuana	Configurations	IEEE 802.11ac MCS0/Nss1 VHT20 CH 149,
Test Engineer	Kenneth Huang	Configurations	157, 165 / Chain 1 + Chain 2

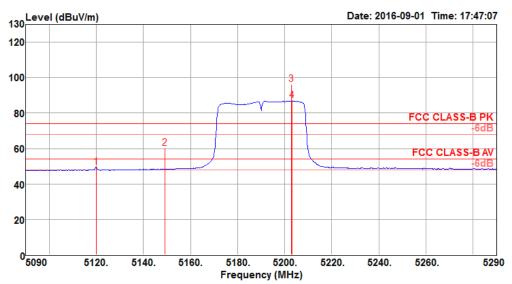
Date: 2016-09-02 Time: 14:04:17

	Freq	Level	Limit Line		Read Level					T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 4	5547.48 5750.52 5750.52 5944.92	106.50 97.19			55.16 101.89 92.58 55.94	4.58 4.58	34.55 34.55	34.48 34.52 34.52 34.56	179 179 179 179	Ŭ 0	Peak Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL



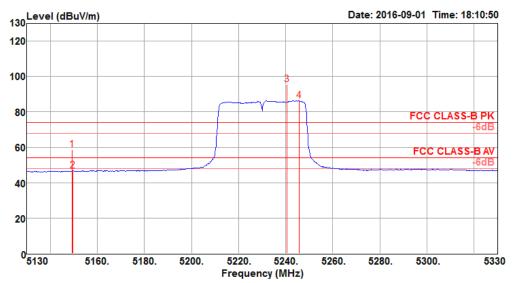
	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 4	5601.48 5790.48 5791.56 5951.40	96.35 105.50			55.01 91.53 100.68 56.16	4.65 4.65	34.70 34.70	34.49 34.53 34.53 34.56	180 180 180 180	352 352	Peak Average Peak Peak	HOR IZONTAL HOR IZONTAL HOR IZONTAL HOR IZONTAL

Item 2, 3	are the	fundamental	frequency	at 5785 MHz.
-----------	---------	-------------	-----------	--------------

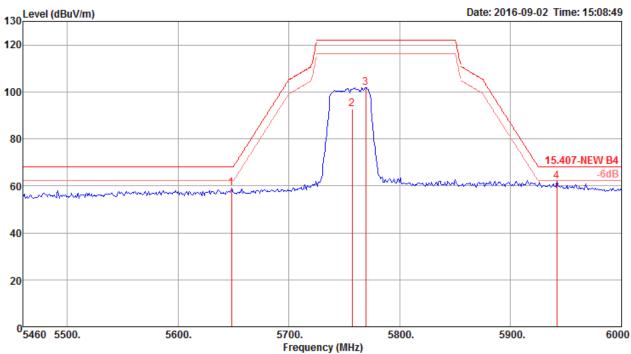


	Freq	Level	Limit Line		Read Level				A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 4	5591.90 5830.60 5830.60 5985.70	108.91 99.30			54.10 103.98 94.37 56.90	4.67 4.67	34.80 34.80	34.49 34.54 34.54 34.57	179 179 179 179	22	Peak Peak Average Peak	VERTICAL VERTICAL VERTICAL VERTICAL

Item 2.3	are the	fundamental	frequency	/ at 5825 MHz.


Temperature	24°C	Humidity	55%
Test Engineer	Konnoth Uuana	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40
	Kenneth Huang	Configurations	CH 38, 46 / Chain 1 + Chain 2

	Freq	Level		Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1 2 3 @ 4 @	5120.00 5149.20 5202.80 5203.20	60.21 96.29	74.00			7.48 7.49	34.85 34.91	34.90 34.91 34.91 34.91	114 114 114 114	14 14	Average Peak Peak Average	VERTICAL VERTICAL VERTICAL VERTICAL


	Freq	Level		Over Limit					A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	cm	deg		
1	5149.20	58.60	74.00	-15.40	51.18	7.48	34.85	34.91	114	16	Peak	VERTICAL
2	5149.60	46.92	54.00	-7.08	39.50	7.48	34.85	34.91	114	16	Average	VERTICAL
3@	5240.40	95.66			88.13	7.50	34.94	34.91	114	16	Peak	VERTICAL
4@	5245.60	86.29			78.76	7.50	34.94	34.91	114	16	Average	VERTICAL

Item 3, 4 are the fundamental frequency at 5230 MHz.

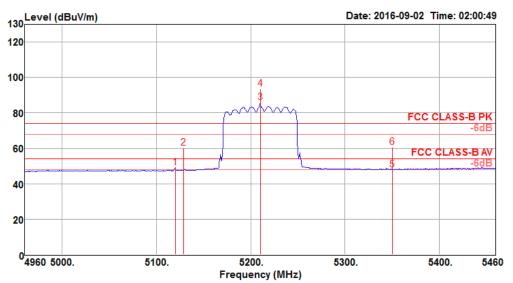
Temperature	24°C	Humidity	55%		
Test Engineer	Konnoth Uuana	Configurations	IEEE 802.11ac MCS0/Nss1 VHT40		
	Kenneth Huang	Configurations	CH 151, 159 / Chain 1 + Chain 2		

Date: 2016-09-02 Time: 15:08:49

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 4	5648.32 5756.96 5769.28 5941.76	92.70 101.92		-9.34 -6.15	88.03 97.24	4.59 4.61	34.25 34.60 34.60 35.15	34.52 34.53	182 182 182 182	356 356	Peak Average Peak Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

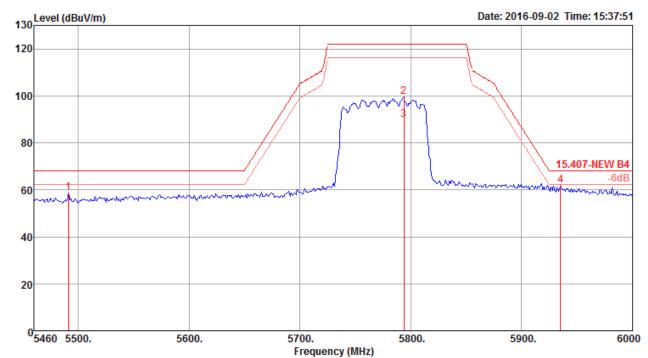
Hom 2 3	are the	fundamental	froquency	y at 5755 MHz.
lien z, s	ale me	lungamenia	nequence	

130 Level (dBuV/m) Date: 2016-09-02 Time: 15:16:09 120 3 100 80 15.407-NEW B4 -6dB 4 60 under m 40 20 ⁰5460 5500. 5700. Frequency (MHz) 5900. 5600. 5800. 6000


	Freq	Level	Limit Line		Read Level			Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 4	5597.16 5796.96 5809.92 5955.72	96.76 106.24			53.87 91.93 101.35 56.23	4.66 4.67	34.70 34.75	34.49 34.53 34.53 34.56	179 179 179 179	360 360	Peak Average Peak Peak	VERTICAL VERTICAL VERTICAL VERTICAL

Item 2.3	are the	fundamental	frequency	at 5795 MHz.

Temperature	24°C	Humidity	55%
Test Engineer	Konnoth Uuana	Configurations	IEEE 802.11ac MCS0/Nss1 VHT80
	Kenneth Huang	Configurations	CH 42, 155 / Chain 1 + Chain 2


Channel 42

	Freq	Level	Limit Line	Over Limit				Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
-	MHz	dBuV/m	dBuV/m	dB	dBuV	dB	dB/m	dB	ст	deg		
1	5120.00	49.06	54.00	-4.94	41.66	7.48	34.82	34.90	101	15	Average	VERTICAL
2	5129.00	60.39	74.00	-13.61	52.98	7.48	34.84	34.91	101	15	Peak	VERTICAL
3@	5210.00	86.09			78.60	7.49	34.91	34.91	101	15	Average	VERTICAL
4@	5210.00	93.70			86.21	7.49	34.91	34.91	101	15	Peak	VERTICAL
5	5350.00	48.05	54.00	-5.95	40.35	7.56	35.05	34.91	101	15	Average	VERTICAL
6	5350.00	60.66	74.00	-13.34	52.96	7.56	35.05	34.91	101	15	Peak	VERTICAL

Item 3, 4 are the fundamental frequency at 5210 MHz.

	Freq	Level	Limit Line					Preamp Factor	A/Pos	T/Pos	Remark	Pol/Phase
	MHz	dBuV/m	$\overline{dBuV/m}$	dB	dBuV	dB	dB/m	dB	Cm	deg		
1 2 3 4	5491.32 5793.72 5793.72 5935.20	99.55 89.68			94.72 84.85	4.66	34.70 34.70	34.47 34.53 34.53 34.56	182 182 182 182	352 352	Peak Peak Average Peak	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

Note:

Emission level (dBuV/m) = 20 log Emission level (uV/m)

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

4.3. Antenna Requirements

4.3.1. Limit

Except for special regulations, the Low-power Radio-frequency Devices must not be equipped with any jacket for installing an antenna with extension cable. An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

4.3.2. Antenna Connector Construction

Please refer to section 3.3 in this test report; antenna connector complied with the requirements.

5. LIST OF MEASURING EQUIPMENTS

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Remark
BILOG ANTENNA	TESEQ	CBL6112D	37880	20 MHz ~ 2 GHz	Sep. 03, 2015	Radiation (03CH01-CB)
Horn Antenna	EMCO	3115	00075790	$750 ext{MHz} \sim 18 ext{GHz}$	Oct. 22, 2015	Radiation (03CH01-CB)
Horn Antenna	Schwarzbeck	BBHA 9170	BBHA9170252	15GHz ~ 40GHz	Jul. 25, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8447D	2944A10991	0.1MHz ~ 1.3GHz	Mar. 15, 2016	Radiation (03CH01-CB)
Pre-Amplifier	Agilent	8449B	3008A02310	1GHz ~ 26.5GHz	Jan. 18, 2016	Radiation (03CH01-CB)
Pre-Amplifier	WM	TF-130N-R1	923365	26GHz ~ 40GHz	Nov. 13, 2015	Radiation (03CH01-CB)
Spectrum Analyzer	R&S	FSP40	100056	9kHz ~ 40GHz	Oct. 27, 2015	Radiation (03CH01-CB)
Loop Antenna	Teseq	HLA 6120	24155	9kHz - 30 MHz	Mar. 16, 2016*	Radiation (03CH01-CB)
EMI Test	R&S	ESCS	100355	9kHz ~ 2.75GHz	May 16, 2016	Radiation (03CH01-CB)
RF Cable-low	Woken	Low Cable-1	N/A	30 MHz ~ 1 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-16	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-17	N/A	1 GHz ~ 18 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-1	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
RF Cable-high	Woken	High Cable-40G-2	N/A	18GHz ~ 40 GHz	Nov. 02, 2015	Radiation (03CH01-CB)
Test Software	Audix	E3	6.2009-10-7	N/A	N/A	Radiation (03CH01-CB)

Note: Calibration Interval of instruments listed above is one year.

"*" Calibration Interval of instruments listed above is two years.

6. MEASUREMENT UNCERTAINTY

Test Items	Uncertainty	Remark
Radiated Emission (30MHz \sim 1,000MHz)	3.6 dB	Confidence levels of 95%
Radiated Emission (1GHz \sim 18GHz)	3.7 dB	Confidence levels of 95%
Radiated Emission (18GHz \sim 40GHz)	3.5 dB	Confidence levels of 95%