TEST REPORT

of

FCC PART 15 SUBPART E

☐ New Application;☐ Class I PC;☐ Class II PC

Product: IgniteNet Gateway AC1200, Dualband

Enterprise AP (802.11ac)

Brand: IgniteNet

Model: GW-AC1200

Model Difference: N/A

FCC ID: HED-KER25U

FCC Rule Part: §15.407, Cat:NII

Applicant: Accton Technology Corporation

Address: No.1, Creation RD III, Science-based Industrial

Park, Hsinchu 30077, Taiwan, R.O.C.

Test Performed by:

International Standards Laboratory

<Lung-Tan LAB>
*Side Registration No.

BSMI: SL2-IN-E-0013; MRA TW1036; TAF: 0997; IC: IC4067B-3;

*Address

No. 120, Lane 180, Hsin Ho Rd.

Lung-Tan Dist., Tao Yuan City 325, Taiwan *Tel: 886-3-407-1718; Fax: 886-3-407-1738 Report No.: **ISL-14LR267FENII-R3**

Issue Date : 2016/07/26

Test results given in this report apply only to the specific sample(s) tested and are traceable to national or international standard through calibration of the equipment and evaluating measurement uncertainty herein.

This report MUST not be used to claim product endorsement by TAF, NVLAP or any agency of the Government.

This test report shall not be reproduced except in full, without the written approval of International Standards Laboratory.

-2 of 40- FCC ID: HED-KER25U

Report Number: ISL-14LR267FENII-R3

VERIFICATION OF COMPLIANCE

Applicant: Accton Technology Corporation

Product Description: IgniteNet Gateway AC1200, Dualband Enterprise AP

(802.11ac)

Brand Name: IgniteNet

Model No.: GW-AC1200

Model Difference: N/A

FCC ID: HED-KER25U

FCC Rule Part: §15.407, Cat: NII

Date of test: $2016/07/06 \sim 2016/07/24$

Date of EUT Received: 2016/07/06

We hereby certify that:

All the tests in this report have been performed and recorded in accordance with the standards described above and performed by an independent electromagnetic compatibility consultant, International Standards Laboratory.

The test results contained in this report accurately represent the measurements of the characteristics and the energy generated by sample equipment under test at the time of the test. The sample equipment tested as described in this report is in compliance with the limits of above standards.

Test By:	Dino Chen	Date:	2016/07/26
Prepared By:	Dion Chang / Engineer	Date:	2016/07/26
Approved By:	Eva Kao / Technical Supervisor Vincent Su / Technical Manager	Date:	2016/07/26

Version

Version No.	Date	Description
00	2014/11/17	Initial creation of document
01	2016/07/26	new type of Dipole antenna and new AC/DC power adaptor

Table of Contents

1.	GEN	ERAL INFORMATION	6
	1.1.	Product Description	6
	1.2.	Related Submittal(s) / Grant (s)	8
	1.3.	Test Methodology	8
	1.4.	Test Facility	8
	1.5.	Special Accessories	8
	1.6.	Equipment Modifications	8
2.	SYST	TEM TEST CONFIGURATION	9
	2.1.	EUT Configuration	9
	2.2.	EUT Exercise	9
	2.3.	Test Procedure	9
	2.4.	Configuration of Tested System	10
3.	SUM	MARY OF TEST RESULT	11
4.	DES	CRIPTION OF TEST MODES	12
5.	AC P	OWER LINE CONDUCTED EMISSION TEST	13
	5.1	Standard Applicable	13
	5.2	Measurement Equipment Used:	13
	5.3	EUT Setup:	14
	5.4	Measurement Procedure:	14
	5.5	Measurement Result:	14
6.	AVE	RAGE OUTPUT POWER / SPECTRAL DENSITY MEASUREMENT	17
	6.1	Standard Applicable	17
	6.2	Measurement Procedure	19
	6.3	Measurement Equipment Used:	20
	5.1	Measurement Equipment Used:	20
	6.4	Measurement Result	21
7.	UND	ESIRABLE EMISSION - RADICTED MEASUREMENT	23
	7.1	Standard Applicable	23
	7.2	EUT Setup	25
	7.3	Measurement Procedure	26
	7.4	Test SET-UP (Block Diagram of Configuration)	27
	7.5	Measurement Equipment Used:	28
	7.6	Field Strength Calculation	29
	7.7	Measurement Result	29

8.	ANTI	ENNA REQUIREMENT	.40
		Standard Applicable	
	8.2	Antenna Connected Construction	.40

1. GENERAL INFORMATION

1.1. Product Description

General:

General:					
Product Name:	IgniteNet Ga	teway AC1200, Dualband Enterprise AP (802.11ac)			
Brand:	IgniteNet				
Model:	GW-AC1200)			
Model different:	N/A				
Adhoc Mode	No	No			
DFS Mode	N/A				
TPC	No	No			
Operation Environment	Indoor used				
USB port	one provided for Data link				
WAN port	one provided				
Gigabit LAN	four provided	d			
D C 1	12Vdc from	12Vdc from AC/DC adapter			
Power Supply:	Adapter:	Model: NBS18C120150VA			
Antenna Designation:	Dipole Antenn P/N: AOA160 WiFi 2.4G An WiFi 5G Ante	-221040-000000 tenna: 3.5 dBi nna: 4.5 dBi (Max) KDB662911 D01 SM-MIMO signals could be con- elated for purposes of directional gain computation.			

2.4GHz WLAN: 2TX/2RX / 5GHz WLAN: 2TX/2RX, SM-MIMO

Wi-Fi	Frequency Range (MHz)	Channels	Peak / Average Rated Power	Modulation Technology	
802.11b	2412 – 2462(DTS)	11	22.14dBm (PK)	DSSS	
802.11g	2412 – 2462(DTS)	11	24.85dBm (PK)		
802.11n	HT20 2412 – 2462(DTS)	11	27.65dBm (PK)		
(2.4G)	HT40 2422 – 2452(DTS)	7	27.29dBm (PK)		
802.11a	5180 – 5240(NII)	4	19.83dBm (AV)		
802.11a	5745 – 5825(NII)	5	17.29dBm (AV)		
	HT20 5180 – 5240(NII)	4	20.25dBm (AV)	OFDM	
802.11n	HT20 5745 – 5825(NII)	5	19.83 dBm (AV)		
(5G)	HT40 5190 – 5230(NII)	3	19.90dBm (AV)		
	HT40 5755 – 5815(NII)	4	17.58dBm (AV)		
802.11ac	HT80 5210(NII)	1	19.86dBm (AV)		
802.11ac	HT80 5775(NII)	1	16.84dBm (AV)		
		CCK, DQPSK, DBPSK for DSSS			
Modulation type	υ. 	256QAM.64QAM. 16QAM, QPSK, BPSK for OFDM			

The EUT is compliance with IEEE 802.11 a/b/g/n/ac Standard.

This is a Class II Permission Change project applies for new type of Dipole antenna and new AC/DC power adaptor

Remark: The above DUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.

1.2. Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for <u>FCC ID: HED-KER25U</u> filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules. The composide system (digital device) is compliance with Subpart B is authorized under a DoC procedure.

FCC ID: HED-KER25U

1.3. Test Methodology

Both conducted and radiated testing were performed according to the procedures in ANSI C63.10: 2013. Radiated testing was performed at an antenna to EUT distance 3 meters.

789033 D02 General UNII Test Procedures New Rules v01r02r02

KDB 644545 D03 GUIDANCE FOR IEEE Std 802.11ac New Rules v01

KDB 662911 D01 Multiple Transmitter Output v02r01

FCC 14-30 Revision UNII

594280 D02 U-NII Device Security v01r02

1.4. Test Facility

The measurement facilities used to collect the 3m Radiated Emission and AC power line conducted data are located on the address of International Standards Laboratory <Lung-Tan LAB> No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan which are constructed and calibrated to meet the FCC requirements in documents ANSI C63.4: 2014, ANSI C63.10: 2013. FCC Registration Number is: 872200; Designation Number is: TW1036, Canada Registration Number: 4067B-3.

1.5. Special Accessories

Not available for this EUT intended for grant.

1.6. Equipment Modifications

Not available for this EUT intended for grant.

2. SYSTEM TEST CONFIGURATION

2.1. EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner which intends to maximize its emission characteristics in a continuous normal application.

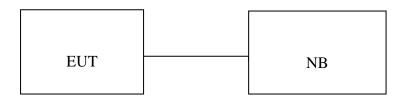
2.2. EUT Exercise

The EUT (Transmitter) was operated in the engineering mode to fix the Tx frequency that was for the purpose of the measurements.

2.3. Test Procedure

2.3.1 Conducted Emissions

The EUT is a placed on as turn table which is 0.8 m above ground plane. According to the requirements in Section Section 5 and 7 of ANSI C63.10: 2013. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30 MHz using CISPR Quasi-Peak and Average detector mode.


2.3.2 Radiated Emissions

The EUT is a placed on as turn table which is 0.8 m/1.5m(Frequency above 1GHz) above ground plane. The turn table shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the max. emission, the relative positions of this hand-held transmitter (EUT) was rotated through three orthogonal axes and measurement procedures for electric field radiated emissions above 1 GHz the EUT measurement is to be made "while keeping the antenna in the 'cone of radiation' from that area and pointed at the area both in azimuth and elevation, with polarization oriented for maximum response." Is still within the 3Db illumination BW of the measurement antenna. According to the requirements in Section 6 and 11 of ANSI C63.10: 2013.

2.4. Configuration of Tested System

Fig. 2-1 Configuration of Tested System

Table 1-1 Equipment Used in Tested System

Item	Equipment	Mfr/Brand	Model/ Type No.	Series No.	Data Cable	Power Cord	
1	NB	HP	440	N/A	N/A	No- Shielding	

3. SUMMARY OF TEST RESULT

FCC Rules	Description Of Test	Result
§15.207(a)	AC Power Line Conducted Emission	Compliant
§15.407(a)(2)	Average Output Power/ Spectral Density Measurement	Compliant
§15.407(a)	26dB/99% Emission Bandwidth	N/A
§15.407(b)	Undesirable Emission – Radiated Measurement	Compliant
§15.407(c)	Transmission in case of Absence of Information	N/A
§15.407(g)	Frequency Stability	N/A
§15.407(a)	Antenna Requirement	Compliant
§15.407(h)	TPC and DFS Measurement	N/A
§15.407(i)	Device Security	N/A

4. DESCRIPTION OF TEST MODES

The EUT has been tested under operating condition.

Test program used to control the EUT for staying in continuous transmitting mode is programmed.

5150MHz-5250MHz:

a mode: Channel lowest (5180MHz) · Mid (5200MHz) and Highest (5240MHz) with lowest data rate is chosen for Average output power/Spectral Density, Radiated Undesirable Emission, band edge

testing.

n HT 20 mode: Channel lowest (5180MHz) · Mid (5200MHz) and Highest (5240MHz) with lowest data

rate is chosen for Average output power/Spectral Density, Radiated Undesirable Emission, band

edge testing.

n HT 40 mode: Channel lowest (5190MHz) · Mid (5210MHz) and Highest (5230MHz) with lowest

data rate is chosen for Average output power/Spectral Density, Radiated Undesirable Emission,

band edge testing.

802.11 AC HT80: Channel (5210MHz) with lowest data rate is chosen for Average output pow-

er/Spectral Density, Radiated Undesirable Emission, band edge testing.

The worst case 802.11 HT20 was reported for Radiated Emission.

5725MHz-5850MHz:

802.11a mode: Channel low (5745MHz) mid (5785MHz) and high (5825MHz) with lowest data rate is

chosen for Average output power/Spectral Density, Radiated Undesirable Emission, band edge testing.

802.11 n HT20: Channel low (5745MHz) · mid (5785MHz) and high (5825MHz) with lowest data rate

is chosen for Average output power/Spectral Density, Radiated Undesirable Emission, band edge test-

ing.

802.11 n HT40: Channel low (5755MHz) · mid (5775MHz) and high (5815MHz) with lowest data rate

is chosen for Average output power/Spectral Density, Radiated Undesirable Emission, band edge test-

ing.

802.11 AC HT80: Channel (5755MHz) with lowest data rate is chosen for Average output pow-

er/Spectral Density, Radiated Undesirable Emission, band edge testing.

The worst case 802.11 HT20 was reported for Radiated Emission.

5. AC POWER LINE CONDUCTED EMISSION TEST

5.1 Standard Applicable

According to §15.207, frequency range within 150 KHz to 30 MHz shall not exceed the Limit table as below.

Frequency range	Limits dB(uV)			
MHz	Quasi-peak	Average		
0.15 to 0.50	66 to 56	56 to 46		
0.50 to 5	56	46		
5 to 30	60	50		

Note

5.2 Measurement Equipment Used:

Conducted Emission Test Site								
EQUIPMENT MFR		MODEL	SERIAL	LAST	CAL DUE.			
TYPE		NUMBER	NUMBER	CAL.				
Conduction 04-3 Cable	WOKEN	CFD 300-NL	Conduction 04 -3	07/28/2015	07/27/2016			
EMI Receiver 17	Rohde & Schwarz	ESCI 7	100887	09/08/2015	09/07/2016			
LISN 18	ROHDE & SCHWARZ	ENV216	101424	02/11/2016	02/10/2017			
LISN 19	LISN 19 ROHDE & SCHWARZ		101425	03/12/2016	03/11/2017			
Test Software	Farad	EZEMC Ver:ISL-03A2	N/A	N/A	N/A			

^{1.} The lower limit shall apply at the transition frequencies

^{2.} The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.50 MHz.

5.3 EUT Setup:

- 1. The conducted emission tests were performed in the test site, using the setup in accordance with the ANSI C63.4-2009.
- 2. The AC/DC Power adaptor of EUT was plug-in LISN. The EUT was placed flushed with the rear of the table.
- 3. The LISN was connected with 120Vac/60Hz power source.

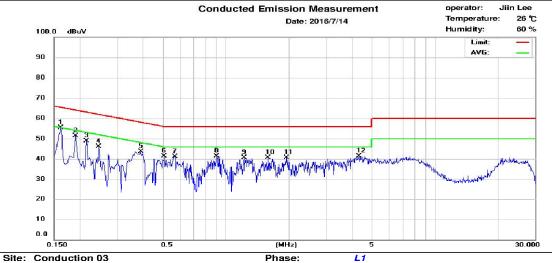
5.4 Measurement Procedure:

- 1. The EUT was placed on a table which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

5.5 Measurement Result:

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

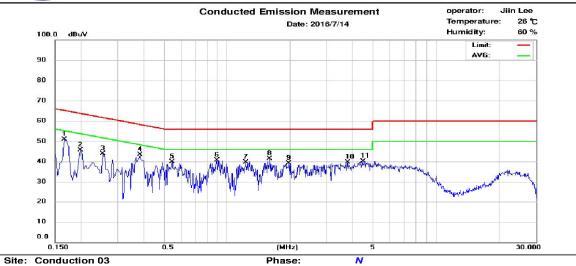
Note: Refer to next page for measurement data and plots.



AC POWER LINE CONDUCTED EMISSION TEST DATA

Operation Mode:	Operation Mode	Test Date:	2016/07/14
Test By:	Dino		

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718


Limit: CISPR22 Class B Conduction

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.162	40.70	25.29	9.69	50.39	65.36	-14.97	34.98	55.36	-20.38
2	0.190	38.01	21.68	9.69	47.70	64.04	-16.34	31.37	54.04	-22.67
3	0.214	34.61	21.31	9.70	44.31	63.05	-18.74	31.01	53.05	-22.04
4	0.246	32.83	19.01	9.70	42.53	61.89	-19.36	28.71	51.89	-23.18
5	0.390	32.45	23.70	9.69	42.14	58.06	-15.92	33.39	48.06	-14.67
6	0.506	28.23	19.45	9.70	37.93	56.00	-18.07	29.15	46.00	-16.85
7	0.570	28.90	19.42	9.70	38.60	56.00	-17.40	29.12	46.00	-16.88
8	0.902	28.41	19.74	9.72	38.13	56.00	-17.87	29.46	46.00	-16.54
9	1.218	27.74	19.74	9.73	37.47	56.00	-18.53	29.47	46.00	-16.53
10	1.590	26.73	19.21	9.75	36.48	56.00	-19.52	28.96	46.00	-17.04
11	1.946	25.88	18.19	9.76	35.64	56.00	-20.36	27.95	46.00	-18.05
12	4.318	26.94	20.00	9.81	36.75	56.00	-19.25	29.81	46.00	-16.19

ISL

Address:No. 120, Lane 180, Hsin Ho Rd., Lung-Tan Dist., Tao Yuan City 325, Taiwan. Tel:03-4071718

Limit: CISPR22 Class B Conduction

No.	Frequency (MHz)	QP_R (dBuV)	AVG_R (dBuV)	Correct Factor (dB)	QP Emission (dBuV)	QP Limit (dBuV)	QP Margin (dB)	AVG Emission (dBuV)	AVG Limit (dBuV)	AVG Margin (dB)
1	0.166	39.97	22.36	9.67	49.64	65.16	-15.52	32.03	55.16	-23.13
2	0.198	35.85	20.98	9.67	45.52	63.69	-18.17	30.65	53.69	-23.04
3	0.254	27.85	16.82	9.68	37.53	61.63	-24.10	26.50	51.63	-25.13
4	0.382	31.79	22.58	9.67	41.46	58.24	-16.78	32.25	48.24	-15.99
5	0.546	27.43	18.54	9.68	37.11	56.00	-18.89	28.22	46.00	-17.78
6	0.890	27.52	18.99	9.70	37.22	56.00	-18.78	28.69	46.00	-17.31
7	1.230	27.10	19.58	9.71	36.81	56.00	-19.19	29.29	46.00	-16.71
8	1.594	26.72	19.73	9.73	36.45	56.00	-19.55	29.46	46.00	-16.54
9	1.978	26.12	18.54	9.74	35.86	56.00	-20.14	28.28	46.00	-17.72
10	3.766	23.84	15.28	9.79	33.63	56.00	-22.37	25.07	46.00	-20.93
11	4.462	25.42	17.43	9.81	35.23	56.00	-20.77	27.24	46.00	-18.76

6. AVERAGE OUTPUT POWER / SPECTRAL DENSITY MEASUREMENT

6.1 Standard Applicable

According to §15.407(a) Power limits:

- (1) For the band 5.15-5.25 GHz.
- (i) For an outdoor access point operating in the band 5.15 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. The maximum e.i.r.p. at any elevation angle above 30 degrees as measured from the horizon must not exceed 125 mW (21 dBm).
- (ii) For an indoor access point operating in the band 5.15 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (iii) For fixed point-to-point access points operating in the band 5.15 5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. Fixed point-to-point U-NII devices may employ antennas with directional gain up to 23 dBi without any corresponding reduction in the maximum conducted output power or maximum power spectral density. For fixed pointto-point transmitters that employ a directional antenna gain greater than 23 dBi, a 1 dB reduction in maximum conducted output power and maximum power spectral density is required for each 1 dB of antenna gain in excess of 23 dBi. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

- (iv) For mobile and portable client devices in the 5.15 5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm +10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.
- (3) For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500 kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

NOTE TO PARAGRAPH (a)(3): The Commission strongly recommends that parties employing U-NII devices to provide critical communications services should determine if there are any nearby Government radar systems that could affect their operation.

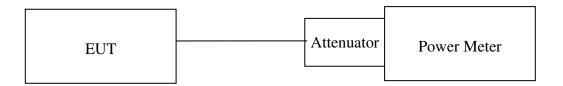
6.2 Measurement Procedure

For Average Power

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power meter
- 3. Record the max. reading.
- 4. Repeat above procedures until all frequency measured were complete.

For Peak Power Spectral Density

- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to Spectrum.
- 3. Set RBW=1MHz,VBW=3MHz, Span=50MHz (Base Mode), Sweep time = Auto, traces 100 sweeps of video averaging for 5150-5725MHz;
- 4. Set RBW=500KHz,VBW=1.5MHz, Span=60MHz (Base Mode), Sweep time = Auto, traces 100 sweeps of video averaging for 5725-5850MHz;
- 5. Record the max. reading.
- 6. Repeat above procedures until all frequency measured were complete.


Refer to section E3 of KDB Document: 789033 D02 General UNII Test Procedures New Rules v01r02

6.3 Measurement Equipment Used:

	Conducted Emission Test Site								
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.				
TYPE		NUMBER	NUMBER	CAL.					
Power Meter 05	Anritsu	ML2495A	1116010	07/29/2015	07/28/2016				
Power Sensor 05	Anritsu	MA2411B	34NKF50	07/29/2015	07/28/2016				
Power Sensor 06	DARE	RPR3006W	13I00030SNO3 3	11/03/2015	11/02/2016				
Power Sensor 07	DARE	RPR3006W	13I00030SNO3 4	11/03/2015	11/02/2016				
Temperature Chamber	KSON	THS-B4H100	2287	06/04/2016	06/03/2017				
DC Power supply	ABM	8185D	N/A	09/05/2015	09/04/2016				
AC Power supply	EXTECH	CFC105W	NA	12/26/2015	12/25/2016				
Attenuator	Woken	Watt-65m3502	11051601	NA	NA				
Splitter	MCLI	PS4-199	12465	12/26/2015	12/25/2017				
Spectrum analyzer	Agilent	N9030A	MY51360021	10/02/2015	10/01/2016				
Test Sofware	DARE	Radimation Ver:2013.1.23	NA	NA	NA				

5.1 Measurement Equipment Used:

6.4 Measurement Result

Band: 5150-5250 MHz

Average Power Measurement:

Mode	Freq (MHz)	channel	power (dBm)	Limit (dBm)	result
	5180	36	18.32	30	pass
802.11a	5200	40	19.47	30	pass
	5240	48	19.61	30	pass

	Г		Output Chain (dBm)		Combine	T ' '/	
Mode	Freq (MHz)	channel	Chain A	chain B	Output Power (dBm)	Limit (dBm)	Result
	5180	36	16.03	16.25	19.15	30	Pass
N HT20	5200	40	15.74	16.63	19.22	30	Pass
	5240	48	17.31	16.87	20.11	30	Pass

			Output Chain (dBm) Combine				
Mode	Freq (MHz)	channel	Chain A	chain B	Output Power (dBm)	Limit (dBm)	Result
	5190	38	16.64	16.97	19.82	30	Pass
N HT40	5230	42	15.42	16.65	19.09	30	Pass
	5270	46	16.51	16.38	19.46	30	Pass

			Output Chain (dBm)		Combine		
Mode	Freq (MHz)	channel	Chain A	chain B	Output Power (dBm)	Limit (dBm)	Result
AC HT80	5210	42	17.03	16.52	19.79	30	Pass

Band: 5725-5850 MHz

Average Power Measurement:

Mode	Freq (MHz)	channel	power (dBm)	limit(dBm)	result
	5745	149	16.64	30	pass
802.11a	5785	157	17.14	30	pass
	5825	165	17.12	30	pass

Mode	Freq (MHz)		Output Chain (dBm)		Combine Output	Limit	D 1.
		channel	Chain A	chain B	Power (dBm)	(dBm)	Result
	5745	149	16.13	17.27	19.75	30	Pass
N HT20	5785	157	16.02	17.04	19.57	30	Pass
	5825	165	16.02	16.31	19.18	30	Pass

			Output Chain (dBm)		Combine		
Mode	Freq (MHz)	channel	Chain A	chain B	Output Power (dBm)	Limit (dBm)	Result
	5755	151	13.02	15.01	17.14	30	Pass
N HT40	5775	155	13.64	14.97	17.37	30	Pass
	5815	163	13.73	15.03	17.44	30	Pass

			Output Chain (dBm)		Combine		
Mode	Freq (MHz)	channel	Chain A	chain B	Output Power (dBm)	Limit (dBm)	Result
AC HT80	5775	155	13.45	14.02	16.75	30	Pass

7. UNDESIRABLE EMISSION - RADICTED MEASUREMENT

7.1 Standard Applicable

According to §15.407(b),

According to §15.407(b), Undesirable Emission Limits: Except as shown in Paragraph (b)(7) of this section, the peak emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

- (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: all emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band: all emissions within the frequency range from the band edge to 10 MHz above or below the band edge shall not exceed an e.i.r.p. of -17dBm/MHz; for frequencies 10 MHz or greater above or below the band edge, emissions shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (5) The above emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.
- (6) Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in Section 15.209. Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in Section 15.207.
- (7) The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
- (8) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency band edges as the design of the equipment permits.

§15.205- RESTRICTED BANDS OF OPERATIONS

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

-24 of 40-

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	(²)
13.36 - 13.41	322 - 335.4		

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

⁽b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

§15.209- RADIATED EMISSION LIMITS: GENERAL REQUIREMENTS

FCC PART 15.209

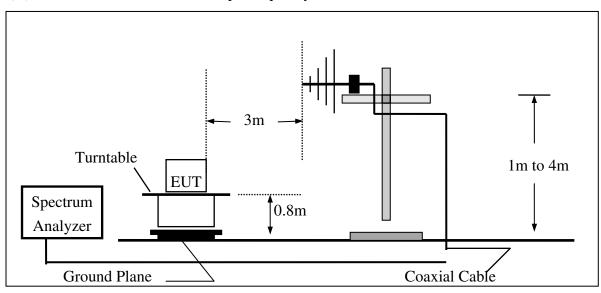
MEASURING DISTANCE OF 3 METER						
FREQUENCY RANGE	FIELD STRENGTH	FIELD STRENGTH				
(MHz)	(Microvolts/m)	(dBuV/m)				
30-88	100	40				
88-216	150	43.5				
216-960	200	46				
Above 960	500	54				

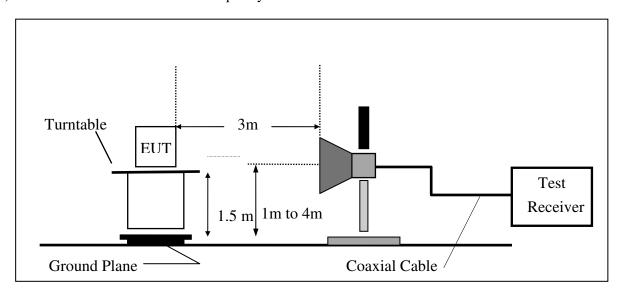
7.2 EUT Setup

- 1. The radiated emission tests were performed in the 3 meter open-test side, using the setup in accordance with the ANSI C63.10:2013.
- 2. The EUT was put in the front of the test table. The host PC system was placed on the center of the back edge on the test table. The peripherals like modem, monitor printer, K/B, and mouse were placed on the side of the host PC system. The rear of the EUT and peripherals were placed flushed with the rear of the tabletop.
- 3. The keyboard was placed directly in the front of the monitor, flushed with the front tabletop. The mouse was placed next to the Keyboard, flushed with the back of keyboard.
- 4. The spacing between the peripherals was 10 centimeters.
- 5. External I/O cables were draped along the edge of the test table and bundle when necessary.
- 6. The host PC system was connected with 120Vac/60Hz power source.

7.3 Measurement Procedure

- 1. The EUT was placed on a turn table which is 0.8/1.5m above ground plane.
- 2. The turn table shall rotate 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna which varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until all frequency measured were complete.


Refer to section G of KDB Document: 789033 D02 General UNII Test Procedures New Rules v01r02



7.4 Test SET-UP (Block Diagram of Configuration)

(A) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(B) Radiated Emission Test Set-UP Frequency Over 1 GHz

7.5 Measurement Equipment Used:

	Ch	amber 14(966))		
EQUIPMENT	MFR	MODEL	SERIAL	LAST	CAL DUE.
ТҮРЕ		NUMBER	NUMBER	CAL.	
Spectrum Analyzer 21(26.5GHz)	Agilent	N9010A	MY49060537	07/30/2015	07/29/2016
Spectrum Analyzer 20(6.5GHz)	Agilent	E4443A	MY48250315	05/20/2016	05/19/2017
Spectrum Analyzer 22(43GHz)	R&S	FSU43	100143	05/22/2016	05/21/2017
Dipole antenna	SCHWARZBECK	VHAP,30-300	919	12/28/2015	12/27/2017
Dipole antenna	SCHWARZBECK	UHAP,300-100 0	1195	12/28/2015	12/27/2017
Loop Antenna9K-30M	A.H.SYSTEM	SAS-564	294	06/17/2015	06/16/2017
Bilog Antenna30-1G	SCHWARZBECK	VULB9168	644	03/02/2016	03/01/2017
Horn antenna1-18G	ETS	3117	00066665	11/30/2015	11/29/2016
Horn antenna26-40G(05)	Com-power	AH-640	100A	01/21/2015	01/20/2017
Horn antenna18-26G(04)	Com-power	AH-826	081001	07/24/2015	07/23/2017
Preamplifier9-1000M	HP	8447D	NA	03/11/2016	03/10/2017
Preamplifier1-18G	MITEQ	AFS44-001018 00-25-10P-44	1329256	07/28/2015	07/27/2016
Preamplifier1-26G	EM	EM01M26G	NA	03/10/2016	03/09/2017
Preamplifier26-40G	MITEQ	JS-26004000-2 7-5A	818471	07/23/2015	07/22/2017
Cable1-18G	HUBER SUHNER	Sucoflex 106	NA	11/25/2015	11/24/2016
Cable UP to 1G	HUBER SUHNER	RG 214/U	NA	10/02/2015	10/01/2016
SUCOFLEX 1GHz~40GHz cable	HUBER SUHNER	Sucoflex 102	27963/2&3742 1/2	11/03/2015	11/02/2017
Signal Generator	R&S	SMU200A	102330	03/28/2016	03/27/2017
Signal Generator	Anritsu	MG3692A	20311	11/04/2015	11/03/2016
2.4G Filter	Micro-Tronics	Brm50702	76	12/26/2015	12/25/2016
5G Filter	Micro-Tronics	Brm50716	005	12/26/2015	12/25/2016
Test Software	Audix	E3 Ver:6.12023	N/A	N/A	N/A

7.6 Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

$$FS = RA + AF + CL - AG$$

Where	FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)
	RA = Reading Amplitude	AG = Amplifier Gain
	AF = Antenna Factor	

7.7 Measurement Result

Refer to attach tabular data sheets.

NOTE:

The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 100kHz for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1GHz. And RBW 1MHz for frequency above1GHz.

Radiated Spurious Emission Measurement Result (below 1GHz)

(worst case: Band 1, 802.11n_HT20)

Operation Mode TX mode Test Date 2016/07/18

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	43.58	41.37	-12.45	28.92	40.00	-11.08	Peak	VERTICAL
2	104.69	47.80	-16.31	31.49	43.50	-12.01	Peak	VERTICAL
3	174.48	52.94	-12.99	39.95	43.50	-3.55	Peak	VERTICAL
4	399.57	40.28	-9.03	31.25	46.00	-14.75	Peak	VERTICAL
5	668.26	28.67	-4.52	24.15	46.00	-21.85	Peak	VERTICAL
6	965.08	27.68	0.60	28.28	54.00	-25.72	Peak	VERTICAL
1	45.52	42.63	-12.34	30.29	40.00	-9.71	Peak	HORIZONTAL
2	155.24	47.70	-11.97	35.73	43.50	-7.77	Peak	HORIZONTAL
3	199.29	53.89	-14.78	39.11	43.50	-4.39	Peak	HORIZONTAL
4	480.08	37.22	-7.59	29.63	46.00	-16.37	Peak	HORIZONTAL
5	591.63	29.72	-5.57	24.15	46.00	-21.85	Peak	HORIZONTAL
6	742.95	27.55	-2.99	24.56	46.00	-21.44	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Radiated Spurious Emission Measurement Result (below 1GHz)

-31 of 40-

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	104.69	48.58	-16.31	32.27	43.50	-11.23	Peak	VERTICAL
2	155.13	49.21	-11.97	37.24	43.50	-6.26	Peak	VERTICAL
3	174.22	52.60	-12.96	39.64	43.50	-3.86	Peak	VERTICAL
4	366.59	38.95	-9.71	29.24	46.00	-16.76	Peak	VERTICAL
5	480.08	34.23	-7.59	26.64	46.00	-19.36	Peak	VERTICAL
6	850.62	28.67	-1.33	27.34	46.00	-18.66	Peak	VERTICAL
1	125.06	47.22	-14.03	33.19	43.50	-10.31	Peak	HORIZONTAL
2	199.23	54.29	-14.78	39.51	43.50	-3.99	Peak	HORIZONTAL
3	366.59	41.48	-9.71	31.77	46.00	-14.23	Peak	HORIZONTAL
4	399.57	42.46	-9.03	33.43	46.00	-12.57	Peak	HORIZONTAL
5	594.54	31.43	-5.51	25.92	46.00	-20.08	Peak	HORIZONTAL
6	935.98	27.98	0.19	28.17	46.00	-17.83	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Radiated Spurious Emission Measurement Result (below 1GHz)

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	45.52	41.21	-12.34	28.87	40.00	-11.13	Peak	VERTICAL
2	104.69	48.43	-16.31	32.12	43.50	-11.38	Peak	VERTICAL
3	174.24	52.33	-12.96	39.37	43.50	-4.13	Peak	VERTICAL
4	250.19	45.81	-12.84	32.97	46.00	-13.03	Peak	VERTICAL
5	480.08	34.14	-7.59	26.55	46.00	-19.45	Peak	VERTICAL
6	742.95	30.68	-2.99	27.69	46.00	-18.31	Peak	VERTICAL
1	44.55	43.53	-12.39	31.14	40.00	-8.86	Peak	HORIZONTAL
2	125.06	46.59	-14.03	32.56	43.50	-10.94	Peak	HORIZONTAL
3	199.64	54.12	-14.80	39.32	43.50	-4.18	Peak	HORIZONTAL
4	365.62	40.43	-9.74	30.69	46.00	-15.31	Peak	HORIZONTAL
5	480.08	37.33	-7.59	29.74	46.00	-16.26	Peak	HORIZONTAL
6	777.87	30.62	-2.48	28.14	46.00	-17.86	Peak	HORIZONTAL

- 1 No further spurious emissions detected from the lowest internal frequency and 30MHz.
- 2 Measuring frequencies from the lowest internal frequency to the 1GHz.
- 3 Radiated emissions measured in frequency range from 9MHz to 1000MHz were made with an instrument detector setting 9-90KHz/110-490KHz using PK/AV and other Frequency Band using PK/QP
- 4 Measurement result within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5 The IF bandwidth of SPA between 9kHz to 30MHz was 10kHz, VBW= 30kHz; between 30MHz to 1GHz was 100KHz, VBW=300KHz.

Radiated Spurious Emission Measurement Result (above 1GHz)

(worst case: Band 1, 802.11n_HT20)

Operation Mode TX mode Test Date 2016/07/18
Channel Number CH Low Test By Dino

Temperature 25 °C Pol Ver./Hor

Humidity 60 %

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	1994.24	59.26	-12.22	47.04	74.00	-26.96	Peak	VERTICAL
2	2141.81	55.23	-11.66	43.57	74.00	-30.43	Peak	VERTICAL
3	10360.00	33.19	7.59	40.78	74.00	-33.22	Average	VERTICAL
1	1112.23	59.04	-16.15	42.89	74.00	-31.11	Peak	HORIZONTAL
2	1994.16	57.65	-12.22	45.43	74.00	-28.57	Peak	HORIZONTAL
3	10360.00	34.84	7.59	42.43	74.00	-31.57	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting: 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Radiated Spurious Emission Measurement Result (above 1GHz) (worst case)

Humidity 60 %

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	1994.54	59.40	-12.21	47.19	74.00	-26.81	Peak	VERTICAL
2	2078.37	58.21	-11.89	46.32	74.00	-27.68	Peak	VERTICAL
3	10400.00	32.87	7.66	40.53	74.00	-33.47	Peak	VERTICAL
1	1994.35	58.34	-12.22	46.12	74.00	-27.88	Peak	HORIZONTAL
2	2729.00	53.33	-10.02	43.31	74.00	-30.69	Peak	HORIZONTAL
3	10400.00	33.87	7.66	41.53	74.00	-32.47	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting: 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting: 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Radiated Spurious Emission Measurement Result (above 1GHz) (worst case)

Operation Mode TX High Test Date 2016/07/18 Channel Number CH Low Test By Dino Temperature 25 $^{\circ}$ Pol Ver./Hor

Humidity 60 %

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	1994.67	57.35	-12.21	45.14	74.00	-28.86	Peak	VERTICAL
2	2596.54	52.40	-10.13	42.27	74.00	-31.73	Peak	VERTICAL
3	10480.00	33.96	7.80	41.76	74.00	-32.24	Peak	VERTICAL
1	1112.32	58.27	-16.15	42.12	74.00	-31.88	Peak	HORIZONTAL
2	1994.38	54.14	-12.21	41.93	74.00	-32.07	Peak	HORIZONTAL
3	10480.00	34.33	7.80	42.13	74.00	-31.87	Peak	HORIZONTAL

- Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- $_{\rm 4}$ Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting: 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Band Edges test: Band 1, 802.11a mode

Operation Mode TX CH Low Test Date 2016/07/14 Fundamental Frequency 5180 MHz Temperature Test By Dino Humidity 65 %

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5150.00	43.51	-2.50	41.01	54.00	-12.99	Average	VERTICAL
2	5150.00	56.07	-2.50	53.57	74.00	-20.43	Peak	VERTICAL
1	5150.00	47.96	-2.50	45.46	54.00	-8.54	Average	HORIZONTAL
2	5150.00	68.23	-2.50	65.73	74.00	-8.27	Peak	HORIZONTAL

Operation Mode TX CH High Test Date 2016/07/14 Fundamental Frequency 5240MHz Test By Dino Temperature 25 $^{\circ}\text{C}$ Humidity 65 $^{\circ}\text{M}$

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5350.00	51.11	-0.21	50.90	74.00	-23.10	Peak	VERTICAL
2	5384.54	54.34	-1.97	52.37	74.00	-21.63	Peak	VERTICAL
1	5350.00	52.29	-2.05	50.24	74.00	-23.76	Peak	HORIZONTAL
2	5401.67	42.17	-1.93	40.24	54.00	-13.76	Average	HORIZONTAL
3	5401.67	54.51	-1.93	52.58	74.00	-21.42	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting: 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Band Edges test: Band 1, 802.11n HT20 mode

Operation Mode TX CH Low Test Date 2016/07/14 Fundamental Frequency 5180 MHz Test By Dino Temperature 25 $^{\circ}$ Humidity 65 $^{\circ}$

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5150.00	50.13	-2.50	47.63	54.00	-6.37	Average	VERTICAL
2	5150.00	69.82	-2.50	67.32	74.00	-6.68	Peak	VERTICAL
1	5150.00	50.76	-2.50	48.26	54.00	-5.74	Average	HORIZONTAL
2	5150.00	71.33	-2.50	68.83	74.00	-5.17	Peak	HORIZONTAL

Operation Mode TX CH High Test Date 2016/07/14 Fundamental Frequency 5240MHz Test By Dino Temperature 25 $^{\circ}$ C Humidity 65 %

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5350.00	52.08	-2.05	50.03	74.00	-23.97	Peak	VERTICAL
2	5406.57	54.14	-1.93	52.21	74.00	-21.79	Peak	VERTICAL
1	5350.00	52.89	-2.05	50.84	74.00	-23.16	Peak	HORIZONTAL
2	5420.77	42.21	-1.89	40.32	54.00	-13.68	Average	HORIZONTAL
3	5420.77	54.50	-1.89	52.61	74.00	-21.39	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- ² Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Spectrum Peak mode IF bandwidth Setting: 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- Spectrum AV mode if bandwidth Setting: 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Band Edges test: Band 1, 802.11n HT40 mode

Operation Mode TX CH Low Test Date 2016/07/14 Fundamental Frequency 5190 MHz Test By Dino Temperature 25 $^{\circ}$ C Humidity 65 %

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5148.59	49.28	-2.50	46.78	54.00	-7.22	Average	VERTICAL
2	5148.59	71.51	-2.50	69.01	74.00	-4.99	Peak	VERTICAL
3	5150.00	49.93	-2.50	47.43	54.00	-6.57	Average	VERTICAL
4	5150.00	71.04	-2.50	68.54	74.00	-5.46	Peak	VERTICAL
1	5150.00	51.62	-2.50	49.12	54.00	-4.88	Average	HORIZONTAL
2	5150.00	73.63	-2.50	71.13	74.00	-2.87	Peak	HORIZONTAL

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5350.00	52.47	-2.05	50.42	74.00	-23.58	Peak	VERTICAL
2	5454.91	41.94	-1.82	40.12	54.00	-13.88	Average	VERTICAL
3	5454.91	54.44	-1.82	52.62	74.00	-21.38	Peak	VERTICAL
1	5350.00	52.81	-2.05	50.76	74.00	-23.24	Peak	HORIZONTAL
2	5362.41	41.94	-2.02	39.92	54.00	-14.08	Average	HORIZONTAL
3	5362.41	55.24	-2.02	53.22	74.00	-20.78	Peak	HORIZONTAL

- Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- 2 Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 4 Spectrum Peak mode IF bandwidth Setting : 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting: 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

Band Edges test: Band 1, 802.11AC HT80 mode

Operation Mode TX CH Low Test Date 2016/07/14 Fundamental Frequency 5210 MHz Test By Dino Temperature 25 $^{\circ}\text{C}$ Humidity 65 $^{\circ}\text{C}$

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5146.51	49.36	-2.51	46.85	54.00	-7.15	Average	VERTICAL
2	5146.51	71.15	-2.51	68.64	74.00	-5.36	Peak	VERTICAL
3	5150.00	49.78	-2.50	47.28	54.00	-6.72	Average	VERTICAL
4	5150.00	70.96	-2.50	68.46	74.00	-5.54	Peak	VERTICAL
1	5148.62	50.32	-2.50	47.82	54.00	-6.18	Average	HORIZONTAL
2	5148.62	74.63	-2.50	72.13	74.00	-1.87	Peak	HORIZONTAL
3	5150.00	52.07	-2.50	49.57	54.00	-4.43	Average	HORIZONTAL
4	5150.00	72.73	-2.50	70.23	74.00	-3.77	Peak	HORIZONTAL

Operation Mode TX CH High Test Date 2016/07/14 Fundamental Frequency 5210MHz Test By Dino Temperature 25 $^{\circ}$ Humidity 65 $^{\circ}$

No	Freq	Reading	Factor	Level	Limit	Over Limit	Remark	Pol
	MHz	dBuV	dB	dBuV/m	dBuV/m	dB		V/H
1	5350.00	52.62	-2.05	50.57	74.00	-23.43	Peak	VERTICAL
2	5364.76	41.92	-2.01	39.91	54.00	-14.09	Average	VERTICAL
3	5364.76	54.82	-2.01	52.81	74.00	-21.19	Peak	VERTICAL
1	5350.00	41.93	-2.05	39.88	54.00	-14.12	Average	HORIZONTAL
2	5350.00	54.99	-2.05	52.94	74.00	-21.06	Peak	HORIZONTAL
3	5378.72	42.04	-1.98	40.06	54.00	-13.94	Average	HORIZONTAL
4	5378.72	55.63	-1.98	53.65	74.00	-20.35	Peak	HORIZONTAL

- 1 Measuring frequencies from the lowest internal frequency to the 10th of fundamental frequency
- Field strength limits for frequency above 1000MHz are based on average limits. However, Peak mode field strength shall not exceed the average limits specified plus 20dB.
- 3 Measurement of data within this frequency range shown "-" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- Spectrum Peak mode IF bandwidth Setting: 1GHz- 40GHz, RBW= 1MHz, Sweep time= 200 ms., the VBW setting was 3 MHz.
- 5 Spectrum AV mode if bandwidth Setting: 1GHz- 40GHz, RBW= 1MHz, VBW= 10Hz, Sweep time= 200 ms.

8. ANTENNA REQUIREMENT

8.1 Standard Applicable

According to §15.203, Antenna requirement.

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of Sections 15.211, 15.213, 15.217, 15.219, or 15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with Section 15.31(d), must be measured at the installation side. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this Part are not exceeded.

8.2 Antenna Connected Construction

The directional gins of antenna used for transmitting is below table, and the antenna connector is designed with unique type RF connector and no consideration of replacement. Please see EUT photo and antenna spec. for details.

Antenna Designation:

	P/N	Type	Gain (2.4GHz)	Gain (5GHz)
Ant	AOA160-221040-000000	Detachable revised SMA type, Dipole Antenna	3.5dBi	4.5dBi

According to KDB662911 D01 MU-MIMO signals could be considered uncorrelated for purposes of directional gain computation.

2Tx SM-MIMO, Directional gain = G_{ANT} = 4.5dBi