

DFS PORTION of FCC 47 CFR PART 15 SUBPART E DFS PORTION of INDUSTRY CANADA RSS-210 ISSUE 8

CERTIFICATION TEST REPORT

FOR

802.11n 3x3 ACCESS POINT

MODEL NUMBER: BSAP 1940

FCC ID: HDCWLAN194XF1 and HDCWLAN194XF2 IC: 2250A-WLAN194XF1 and 2250A-WLAN194XF2

REPORT NUMBER: 14U19445-2, Revision A

ISSUE DATE: June 4, 2015, 2015

Prepared for ADTRAN, INC. 901 EXPLORER BLVD HUNTSVILLE, AL 35806 U.S.A.

Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888

NVLAP LAB CODE 200065-0

Revision History

Rev.	Issue Date	Revisions	Revised By
	05/20/15	Initial Issue	C. Cheung
А	06/04/15	Revised customers address	G. Rincand

.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 2 of 78

TABLE OF CONTENTS

1.	ATTESTATION OF TEST RESULTS	4
2.	TEST METHODOLOGY	5
3.	FACILITIES AND ACCREDITATION	5
4.	CALIBRATION AND UNCERTAINTY	5
4	1.1. MEASURING INSTRUMENT CALIBRATION	5
4	1.2. SAMPLE CALCULATION	5
4	1.3. MEASUREMENT UNCERTAINTY	5
5.	IN-SERVICE TYPE 5 DETECTION BW EDGE DEVIATION	6
6.	DYNAMIC FREQUENCY SELECTION	7
E	6.1. OVERVIEW 6.1.1. LIMITS 6.1.2. TEST AND MEASUREMENT SYSTEM 6.1.3. SETUP OF EUT 6.1.4. DESCRIPTION OF EUT	7 1 4
e	5.2. RESULTS FOR 20 MHz BANDWIDTH 1 6.2.1. TEST CHANNEL 1 6.2.2. RADAR WAVEFORMS AND TRAFFIC 1 6.2.3. CHANNEL AVAILABILITY CHECK TIME 2 6.2.4. OVERLAPPING CHANNEL TESTS 3 6.2.5. MOVE AND CLOSING TIME 3 6.2.6. DETECTION BANDWIDTH. 3 6.2.7. IN-SERVICE MONITORING 3	16 25 30 30
e	6.3. RESULTS FOR 40 MHz BANDWIDTH 4 6.3.1. TEST CHANNEL 4 6.3.2. RADAR WAVEFORMS AND TRAFFIC 4 6.3.3. CHANNEL AVAILABILITY CHECK TIME 5 6.3.1. OVERLAPPING CHANNEL TESTS 6 6.3.2. MOVE AND CLOSING TIME 6 6.3.3. NON-OCCUPANCY PERIOD 6 6.3.4. DETECTION BANDWIDTH. 6 6.3.5. IN-SERVICE MONITORING 6	46 46 55 50 50 55 56
7.	SETUP PHOTOS	77

1. ATTESTATION OF TEST RESULTS

COMPANY NAME:	ADTRAN, INC. 901 EXPLORER BLVD HUNTSVILLE, AL 35806 U.S.A		
EUT DESCRIPTION:	802.11n 3x3 ACCESS POINT		
MODEL:	BSAP 1940		
SERIAL NUMBER:	194001014050496		
DATE TESTED:	APRIL 15 to 16 and MAY 11 to 12, 2	015	
	APPLICABLE STANDARDS		
ST	ANDARD	TEST RESULTS	
DFS Portion of C	FR 47 Part 15 Subpart E	Pass	
INDUSTRY CAN	IADA RSS-GEN Issue 8	Pass	

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL Verification Services Inc. By:

CONAN CHEUNG PROJECT LEAD UL Verification Services Inc.

Tested By:

Douglas Combinen

DOUG ANDERSON EMC ENGINEER UL Verification Services Inc.

Page 4 of 78

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the DFS portion of FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, KDB 905462 D02 and D03, ANSI C63.10-2013, RSS-GEN Issue 8.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services, Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at <u>http://ts.nist.gov/standards/scopes/2000650.htm</u>.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.52 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.94 dB
Radiated Disturbance, 1 to 6 GHz	± 3.86 dB
Radiated Disturbance, 6 to 18 GHz	± 4.23 dB
Radiated Disturbance, 18 to 26 GHz	± 5.30 dB
Radiated Disturbance, 26 to 40 GHz	± 5.23 dB

Uncertainty figures are valid to a confidence level of 95%.

Page 5 of 78

5. IN-SERVICE TYPE 5 DETECTION BW EDGE DEVIATION

The Type 5 detection bandwidth edges selection are chosen at + 5 MHz & - 5 MHz in reference to the center frequencies of the test channel.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 6 of 78

6. DYNAMIC FREQUENCY SELECTION

6.1. OVERVIEW

6.1.1. LIMITS

INDUSTRY CANADA

IC RSS-210 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-210 Issue 8 A9.3

Note: For the band 5600–5650 MHz, no operation is permitted.

Until further notice, devices subject to this annex shall not be capable of transmitting in the band 5600–5650 MHz. This restriction is for the protection of Environment Canada weather radars operating in this band.

FCC

§15.407 (h), FCC KDB 905462 D02 "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION" and KDB 905462 D03 "U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY".

Page 7 of 78

Table 1: Applicability of DFS requirements prior to use of a channel

Requirement	Operational Mode		
	Master	Client (without radar detection)	Client (with radar detection)
Non-Occupancy Period	Yes	Not required	Yes
DFS Detection Threshold	Yes	Not required	Yes
Channel Availability Check Time	Yes	Not required	Not required
U-NII Detection Bandwidth	Yes	Not required	Yes

Table 2: Applicability of DFS requirements during normal operation

Requirement	Operational Mode			
	Master	Client (without DFS)	Client (with DFS)	
		· · · ·		
DFS Detection Threshold	Yes	Not required	Yes	
Channel Closing Transmission Time	Yes	Yes	Yes	
Channel Move Time	Yes	Yes	Yes	
U-NII Detection Bandwidth	Yes	Not required	Yes	

Additional requirements for	Master Device or Client with	Client					
devices with multiple bandwidth	Radar DFS	(without DFS)					
modes							
U-NII Detection Bandwidth and	All BW modes must be	Not required					
Statistical Performance Check	tested						
Channel Move Time and Channel	Test using widest BW mode	Test using the					
Closing Transmission Time	available	widest BW mode					
		available for the link					
All other tests	Any single BW mode	Not required					
	Note: Frequencies selected for statistical performance check (Section 7.8.4) should include						
several frequencies within the radar detection bandwidth and frequencies near the edge of the							
	radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20						
MHz channel blocks and a null freque	ency between the bonded 20 MHz	channel blocks.					

Page 8 of 78

Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

J J						
Maximum Transmit Power	Value					
	(see notes)					
E.I.R.P. ≥ 200 mill watt	-64 dBm					
E.I.R.P. < 200 mill watt and	-62 dBm					
power spectral density < 10 dBm/MHz						
E.I.R.P. < 200 mill watt that do not meet power spectral	-64 dBm					
density requirement						
Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna						
Note 2: Throughout these test procedures an additional 1 dB h	as been added to the amplitude					
af the standard man is a second frame of the second frame is the second second second The						

of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Note 3: E.I.R.P. is based on the highest antenna gain. For MIMO devices refer to KDB publication 662911 D01.

Table 4: DFS Response requirement values

Parameter	Value
Non-occupancy period	30 minutes
Channel Availability Check Time	60 seconds
Channel Move Time	10 seconds (See Note 1)
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period. (See Notes 1 and 2)
U-NII Detection Bandwidth	Minimum 100% of the U- NII 99% transmission power bandwidth. (See Note 3)

Note 1: *Channel Move Time* and the *Channel Closing Transmission Time* should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

Note 2: The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

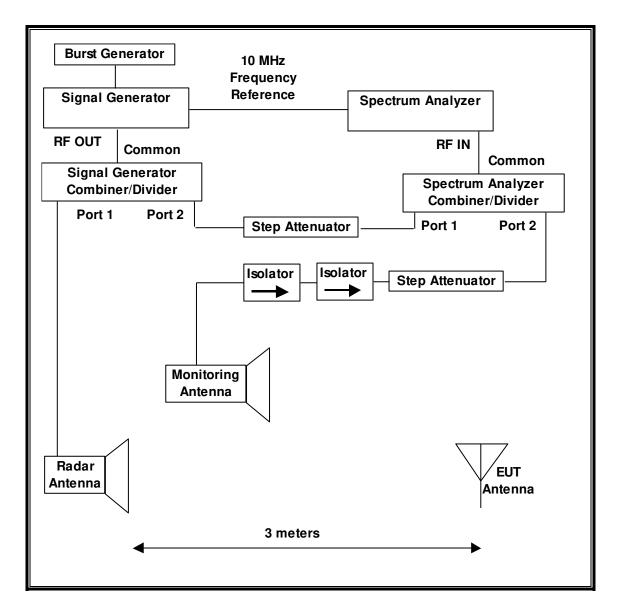
Note 3: During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 3	– Short	Pulse Radar Test wav	eionns					
Radar	Pulse	PRI	Pulses	Minimum	Minimum			
Туре	Width	(usec)		Percentage	Trials			
	(usec)			of Successful				
				Detection				
0	1	1428	18	See Note 1	See Note			
					1			
1	1	Test A: 15 unique		60%	30			
		PRI values randomly						
		selected from the list	Roundup:					
		of 23 PRI values in	{(1/360) x (19 x 10 ⁶ PRI _{usec})}					
		table 5a						
		Test B: 15 unique						
		PRI values randomly						
		selected within the						
		range of 518-3066						
		usec. With a						
		minimum increment						
		of 1 usec, excluding						
		PRI values selected						
		in Test A						
2	1-5	150-230	23-29	60%	30			
3	6-10	200-500	16-18	60%	30			
4	11-20	200-500	12-16	60%	30			
		Aggregate (Radar T	ypes 1-4)	80%	120			
Note 1	: Short P	ulse Radar Type 0 shou	ld be used for the Detection Bai	ndwidth test, Ch	annel			
Move 7	<i>ime</i> , and	Channel Closing Time to	ests.					

Table 5 – Short Pulse Radar Test Waveforms

Table 6 – Long Pulse Radar Test Signal

		10010 0	Longi			, i ai	
Radar	Pulse	Chirp	PRI	Pulses	Number	Minimum	Minimum
Waveform	Width	Width	(µsec)	per	of	Percentage	Trials
Туре	(µsec)	(MHz)		Burst	Bursts	of Successful	
	. ,					Detection	
5	50-100	5-20	1000-	1-3	8-20	80%	30
			2000				


Table 7 – Frequency Hopping Radar Test Signal

Radar	Pulse	PRI	Pulses	Hopping	Hopping	Minimum	Minimum
Waveform	Width	(µsec)	per	Rate	Sequence	Percentage of	Trials
Type	(µsec)		Нор	(kHz)	Length	Successful	
			-		(msec)	Detection	
6	1	333	9	0.333	300	70%	30

Page 10 of 78

6.1.2. TEST AND MEASUREMENT SYSTEM

RADIATED METHOD SYSTEM BLOCK DIAGRAM

Page 11 of 78

SYSTEM OVERVIEW

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 1, 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of KDB 905462 D02. The frequency of the signal generator is incremented in 1 MHz steps from $F_{\rm H}$ to $F_{\rm H}$ for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of -64 dBm as measured on the spectrum analyzer.

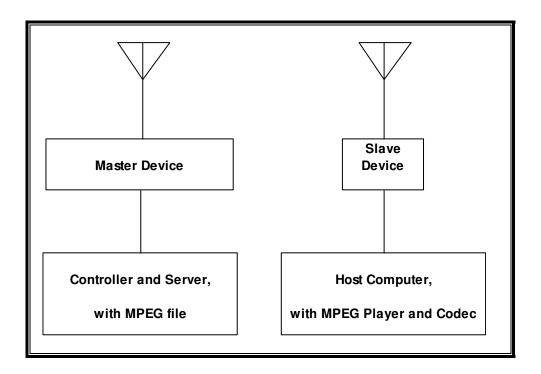
Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is -64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. The video test file is streamed to generate WLAN traffic. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

TEST AND MEASUREMENT EQUIPMENT


The following test and measurement equipment was utilized for the DFS tests documented in this report:

TEST EQUIPMENT LIST				
Description	Manufacturer	Model	Asset Number	Cal Due
Spectrum Analyzer, 26.5 GHz	Agilent / HP	E4440A	C01178	09/05/15
Vector Signal Generator, 20GHz	Agilent / HP	E8267C	C01066	09/03/15
Arbitrary Waveform Generator	Agilent / HP	33220A	C01146	04/08/16

Page 13 of 78

6.1.3. SETUP OF EUT

RADIATED METHOD EUT TEST SETUP

SUPPORT EQUIPMENT

The following support equipment was utilized for the DFS tests documented in this report:

	PERIPHERAL	SUPPORT EQUI	PMENT LIST	
Description	Manufacturer	Model	Serial Number	FCC ID
P.O.E. Injector (EUT)	Phihong	POE36U-1AT-R	P21301089D1	DoC
Notebook PC (Slave Device)	HP	Elitebook 8460p	CNU2359KXV	PD962205ANHU
AC Adapter (Slave PC)	Chicony Power Technology	PPP12H-S	F12941226036826	DoC
Notebook PC (Console/Server)	Dell	P05G	J9VBWM1	DoC
AC Adapter (Console PC)	HP	PA-1900-18H2	597950ALLUDC4B	DoC
Controller	Adtran	Bluesocket	A9100000000021	DoC
AC Adapter (Controller)	Wearnes Global Co. Ltd.	WDS060122	1408Y0008732	DoC
Gigabit Switch	Netgear	GS105	GS12154DB047636	DoC
AC Adapter (Switch)	Netgear	DSA-0131F-12	No Serial Number	DoC

Page 14 of 78

6.1.4. DESCRIPTION OF EUT

For FCC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

For IC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding the 5600-5650 MHz range.

The EUT is a Master Device.

The highest power level within these bands is 24 dBm EIRP in the 5250-5350 MHz band and 36 dBm EIRP in the 5470-5725 MHz band.

The only antenna assembly utilized with the EUT has a gain of 7.0 dBi.

Three identical antennas are utilized to meet the diversity and MIMO operational requirements.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to –64 dBm. The tested level is lower than the required level hence it provides a margin to the limit.

The EUT uses three transmitter/receiver chains, each connected to an antenna to perform radiated tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic that meets or exceeds the minimum required loading was generated by transferring a data stream from the controller/server PC to the EUT using iPerf version 2.0.5 software package.

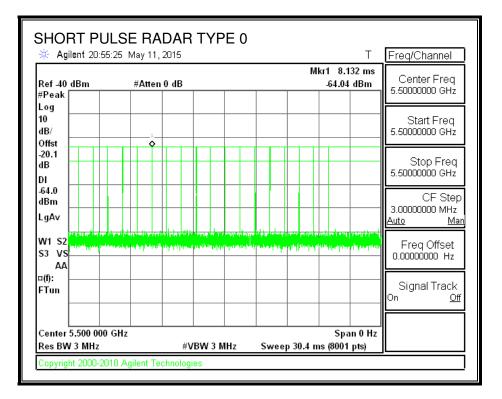
TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

The software installed in the access point is revision 7.0.

UNIFORM CHANNEL SPREADING

This function is not required per KDB 905462.

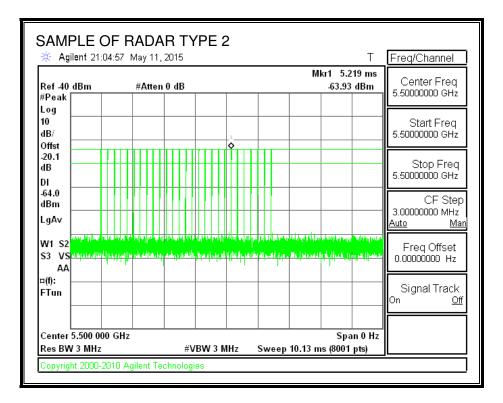
Page 15 of 78

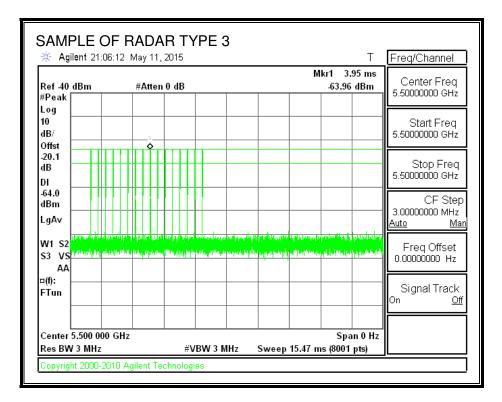

6.2. RESULTS FOR 20 MHz BANDWIDTH

6.2.1. TEST CHANNEL

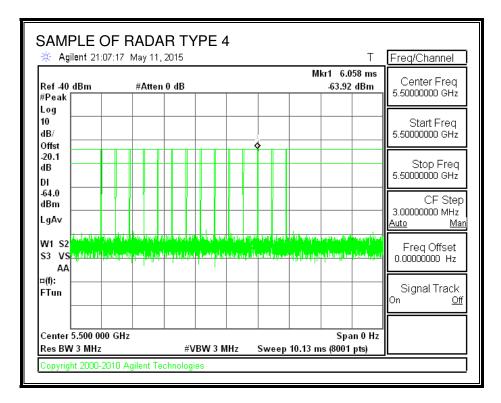
All tests were performed at a channel center frequency of 5500 MHz.

6.2.2. RADAR WAVEFORMS AND TRAFFIC


RADAR WAVEFORMS

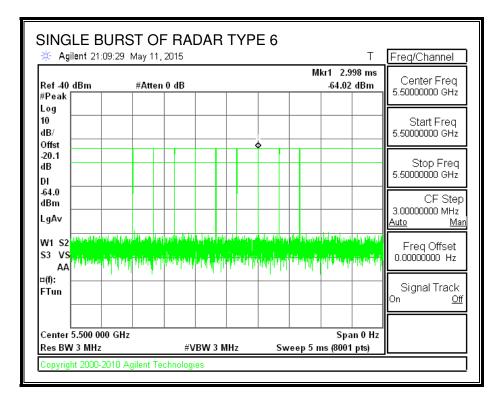

Page 16 of 78

🔆 Agilent										1										Т	_	Freq/Cha	annel
Ref -40 dBı #Peak ∏	n			#A	tten	0 d	В						Т				M		12 -64.(-	Center 5.5000000	
Log 10 dB/ Offst					_1_																_	Start 5.5000000	Freq 10 GHz
-20.1 dB					v																	Stop 5.5000000) Freq 10 GHz
-64.0 dBm LgA∨																						C 3.0000000 <u>Auto</u>	F Step 10 MHz <u>Mar</u>
W1 S2 S3 VS AA			4 - 1 2 4 - 1	- 11 11 14	ni se na pre		- 1- 1- 1- - 1- 1- 1-1-					laiba na sal										Freq (0.000000	
¤(f): FTun																					_	Signal ^{On}	Track <u>Off</u>
Center 5.50 Res BW 3 I) G	Hz				#\	/ви	V 3	м	Hz			s	we	ер	80 1	ms	S (80(0 H ots)	lz		


Page 17 of 78

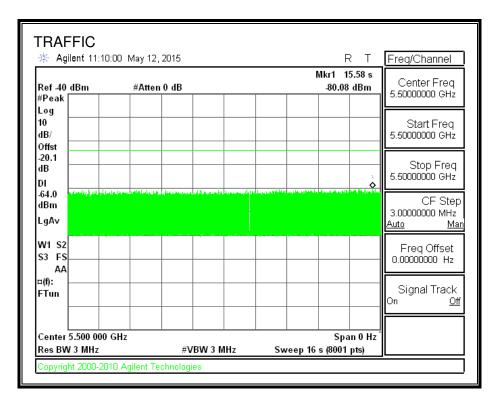
Page 18 of 78

Page 19 of 78



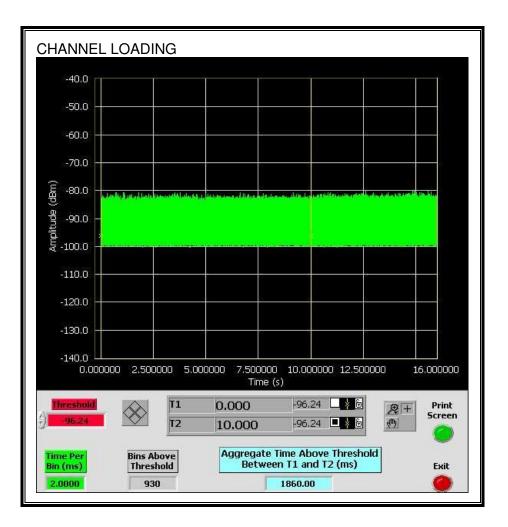
Page 20 of 78

🔆 Agilent 21:0			ST OF R		Τ 2 3	Freq/Channel
Ref -40 dBm #Peak	#Atten	0 dB		Mk	r1 1.011 ms _63.99 dBm	Center Freq 5.50000000 GHz
Log 10 dB/ Offst	1					Start Freq 5.5000000 GHz
-20.1 dB DI						Stop Freq 5.5000000 GHz
-64.0 dBm LgAv						CF Step 3.00000000 MHz <u>Auto Ma</u>
W1 S2 S3 VS <mark>eligiteter (</mark> AA						
¤(f): FTun						Signal Track On <u>Off</u>
Center 5.500 000 Res BW 3 MHz	GHz	#VBW	3 MHz	Sweep 8 m	Span 0 Hz s (8001 pts)	


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 21 of 78

Page 22 of 78


TRAFFIC

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 23 of 78

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 18.6%

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 24 of 78

6.2.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

Page 25 of 78

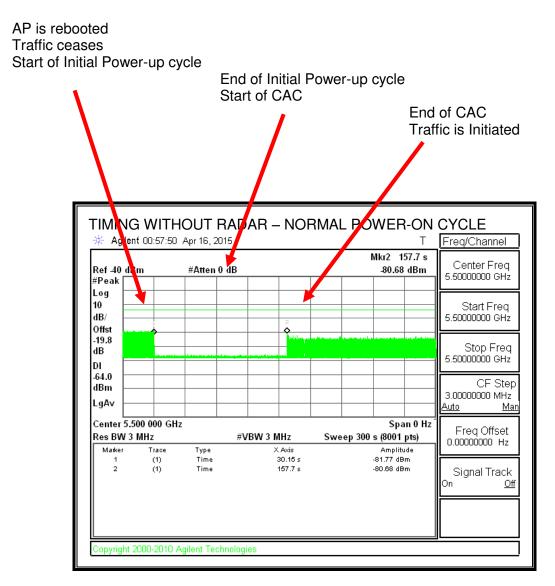
QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
30.15	157.7	127.6	67.6

Radar Near Beginning of CAC

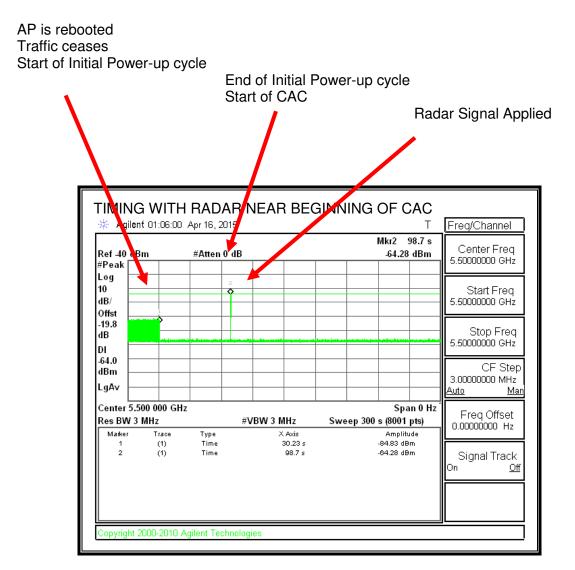
Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.23	98.7	68.5	0.9


Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.00	155.9	125.9	58.4

QUALITATIVE RESULTS

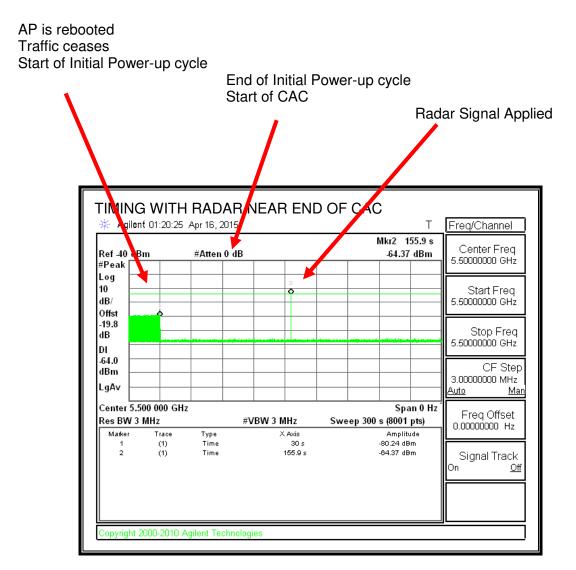
Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel


TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Page 27 of 78

TIMING WITH RADAR NEAR BEGINNING OF CAC



No EUT transmissions were observed after the radar signal.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 28 of 78

TIMING WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 29 of 78

6.2.4. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

6.2.5. MOVE AND CLOSING TIME

REPORTING NOTES

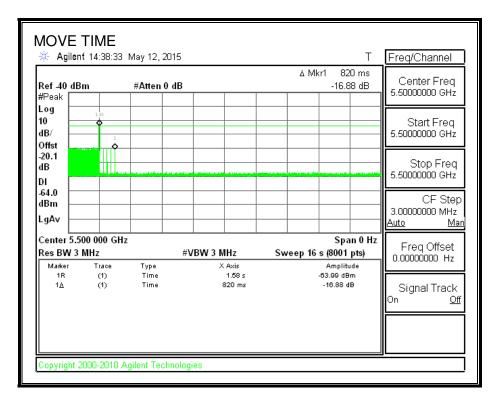
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

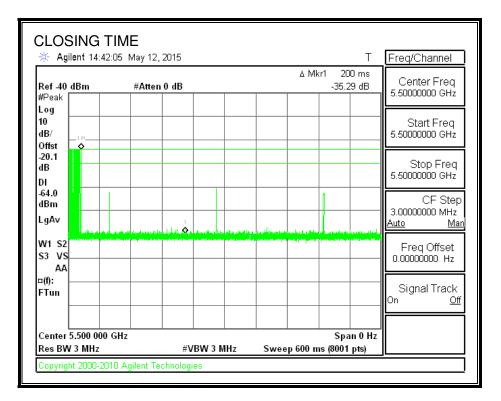
The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.820	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
10.0	60

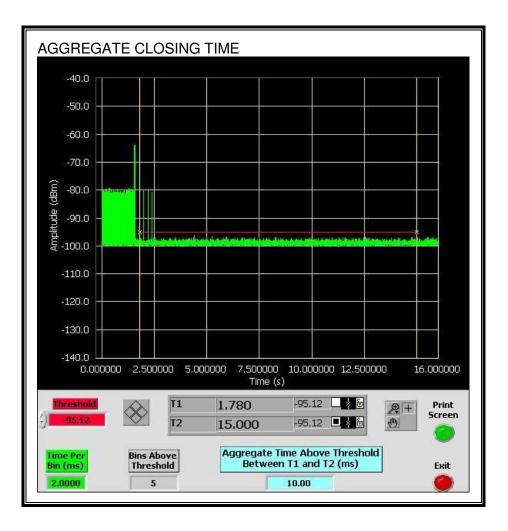
Page 30 of 78


MOVE TIME

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 31 of 78

CHANNEL CLOSING TIME

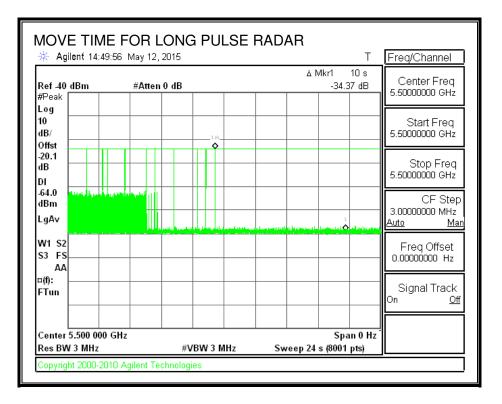


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 32 of 78

AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

Only intermittent transmissions are observed during the aggregate monitoring period.

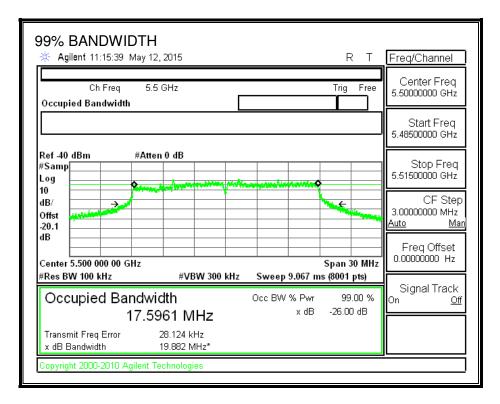


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 33 of 78

LONG PULSE CHANNEL MOVE TIME

The traffic ceases prior to 10 seconds after the end of the radar waveform.



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 34 of 78

6.2.6. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5491	5509	18	17.596	102.3	100

DETECTION BANDWIDTH PROBABILITY

D	ETECTION BAN	DWIDTH PROBAB	ILITY RESULTS							
	Detection Bandy	width Test Results								
	FCC Type 0 Waveform: 1 us Pulse Width, 1428 us PRI, 18 Pulses per Burst									
	Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Mark					
	5491	10	10	100	FL					
	5492	10	10	100						
	5493	10	10	100						
	5494	10	10	100						
	5495	10	10	100						
	5500	10	10	100						
	5505	10	10	100						
	5506	10	10	100						
	5507	10	10	100						
	5508	10	10	100						
	5509	10	10	100	FH					

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 36 of 78

6.2.7. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summary				
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Long Pulse Type 5	30	93.33	80	Pass
(5 MHz Below Center Frequency)				
FCC Long Pulse Type 5	30	100.00	80	Pass
(5 MHz Above Center Frequency)				
FCC Hopping Type 6	38	100.00	70	Pass

Page 37 of 78

TYPE 1 DETECTION PROBABILITY

us Pulse W	idth			
Waveform	PRI	Pulses Per Burst	Test	Successful Detection
	(us)		(A/B)	(Yes/No)
1001	3066	18	Α	Yes
1002	678	78	Α	Yes
1003	538	99	Α	Yes
1004	698	76	Α	Yes
1005	798	67	Α	Yes
1006	598	89	Α	Yes
1007	578	92	Α	Yes
1008	858	62	Α	Yes
1009	618	86	Α	Yes
1010	558	95	Α	Yes
1011	758	70	Α	Yes
1012	518	102	Α	Yes
1013	778	68	Α	Yes
1014	718	74	Α	Yes
1015	878	61	Α	Yes
1016	898	59	В	Yes
1017	1224	44	В	Yes
1018	2886	19	В	Yes
1019	2802	19	В	Yes
1020	652	81	В	Yes
1021	2206	24	В	Yes
1022	1712	31	В	Yes
1023	1205	44	В	Yes
1024	1210	44	В	Yes
1025	1658	32	В	Yes
1026	784	68	В	Yes
1027	1407	38	В	Yes
1028	2642	20	В	Yes
1029	969	55	В	Yes
1030	2508	22	В	Yes

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc.

Page 38 of 78

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
2001	1.6	211.00	27	Yes
2002	4.7	154.00	26	Yes
2003	1	163.00	27	Yes
2004	4	225.00	28	Yes
2005	2.3	155.00	28	Yes
2006	3	193.00	25	Yes
2007	3.5	222.00	25	Yes
2008	2.9	160.00	29	Yes
2009	4.7	230.00	29	Yes
2010	2.5	207.00	29	Yes
2011	1.7	227.00	29	Yes
2012	2.3	218.00	24	Yes
2013	1.9	200.00	27	Yes
2014	1.3	196.00	23	Yes
2015	4.9	151.00	26	Yes
2016	2	205.00	27	Yes
2017	3.7	176.00	29	Yes
2018	2.8	184.00	28	Yes
2019	2	155.00	29	Yes
2020	1.6	156.00	27	Yes
2021	2	214.00	28	Yes
2022	2.8	228.00	27	Yes
2023	1.4	164.00	29	Yes
2024	3.8	157.00	25	Yes
2025	5	222.00	27	Yes
2026	3.3	164.00	26	Yes
2027	4.4	201.00	27	Yes
2028	2.5	151.00	28	Yes
2029	4.2	186.00	23	Yes
2030	1.7	230.00	23	Yes

Page 39 of 78

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	7.3	369.00	16	Yes
3002	7.1	444.00	16	Yes
3003	5.5	329.00	18	Yes
3004	7.1	259.00	16	Yes
3005	9.5	272.00	17	Yes
3006	9.4	495.00	17	Yes
3007	7.5	317.00	18	Yes
3008	9.8	439.00	16	Yes
3009	9.5	350.00	16	Yes
3010	5.9	491.00	16	Yes
3011	6.4	406.00	17	Yes
3012	9.1	283.00	18	Yes
3013	6.8	314.00	17	Yes
3014	6.8	377.00	18	Yes
3015	9.8	457.00	16	Yes
3016	9.1	484.00	18	Yes
3017	9.1	461.00	16	Yes
3018	10	265.00	16	Yes
3019	7.2	268.00	16	Yes
3020	8.2	305.00	16	Yes
3021	6.1	472.00	18	Yes
3022	6.5	500.00	18	Yes
3023	5	448.00	18	Yes
3024	8.3	334.00	18	Yes
3025	7.4	457.00	18	Yes
3026	9.9	488.00	18	Yes
3027	6.8	453.00	18	Yes
3028	9.1	333.00	18	Yes
3029	7.9	399	18	Yes
3030	6.6	303	16	Yes

Page 40 of 78

TYPE 4 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	10.3	460.00	14	Yes
4002	15.3	403.00	14	Yes
4003	17.1	286.00	16	Yes
4004	10.6	374.00	12	Yes
4005	14.6	408.00	15	Yes
4006	11.8	340.00	13	Yes
4007	14.8	470.00	13	Yes
4008	13.5	454.00	14	Yes
4009	10.2	440.00	16	Yes
4010	12.4	327.00	15	Yes
4011	19.1	258.00	14	Yes
4012	13.8	347.00	14	Yes
4013	17.7	319.00	15	Yes
4014	15.6	472.00	15	Yes
4015	15.7	419.00	12	Yes
4016	11.3	431.00	12	Yes
4017	16.3	480.00	14	Yes
4018	19.6	422.00	12	Yes
4019	12.7	330.00	13	Yes
4020	13.2	446.00	14	Yes
4021	12.3	276.00	15	Yes
4022	15.6	467.00	15	Yes
4023	18.9	495.00	13	Yes
4024	19.3	407.00	15	Yes
4025	10.8	341.00	14	Yes
4026	10.6	251.00	13	Yes
4027	10.4	463.00	12	Yes
4028	13.4	402.00	12	Yes
4029	16.3	376.00	12	Yes
4030	16.6	384.00	14	Yes

Page 41 of 78

TYPE 5 DETECTION PROBABILITY AT THE CHANNEL CENTER FREQUENCY

Trial	Long Pulse Radar Type 5 Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

TYPE 5 DETECTION PROBABILITY AT 5 MHz BELOW THE CHANNEL CENTER FREQUENCY

Trial	Successful Detection
	(Yes/No)
1	No
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	No
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

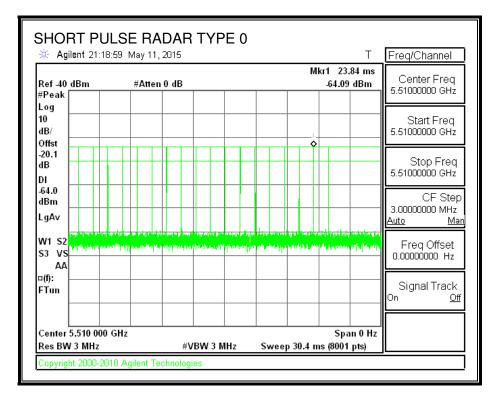
TYPE 5 DETECTION PROBABILITY AT 5 MHz ABOVE THE CHANNEL CENTER FREQUENCY

	ong Pulse Radar Type 5
Trial	Successful Detection
	(Yes/No)
1	Yes
2	Yes
3	Yes
4	Yes
5	Yes
6	Yes
7	Yes
8	Yes
9	Yes
10	Yes
11	Yes
12	Yes
13	Yes
14	Yes
15	Yes
16	Yes
17	Yes
18	Yes
19	Yes
20	Yes
21	Yes
22	Yes
23	Yes
24	Yes
25	Yes
26	Yes
27	Yes
28	Yes
29	Yes
30	Yes

TYPE 6 DETECTION PROBABILITY

TIA A	e Width, 333 us PRI, ust 2005 Hopping Se		· · ·	·
Trial	Starting Index Within Sequence	guence Signal Generator Frequency (MHz)	Hops within Detection BW	Successful Detection (Yes/No)
1	121	5491	1	Yes
2	596	5492	6	Yes
3	1071	5493	3	Yes
4	1546	5494	2	Yes
5	2021	5495	3	Yes
6	2496	5496	5	Yes
7	2971	5497	5	Yes
8	3446	5498	2	Yes
9	3921	5499	2	Yes
10	4396	5500	3	Yes
11	4871	5501	7	Yes
12	5346	5502	5	Yes
13	5821	5503	4	Yes
14	6296	5504	4	Yes
15	6771	5505	5	Yes
16	7246	5506	1	Yes
17	7721	5507	5	Yes
18	8196	5508	5	Yes
19	8671	5509	3	Yes
20	9146	5491	6	Yes
21	9621	5492	7	Yes
22	10096	5493	4	Yes
23	10571	5494	3	Yes
24	11046	5495	4	Yes
25	11521	5496	5	Yes
26	11996	5497	7	Yes
27	12471	5498	6	Yes
28	12946	5499	8	Yes
29	13421	5500	7	Yes
30	13896	5501	3	Yes
31	14371	5502	3	Yes
32	14846	5503	2	Yes
33	15321	5504	5	Yes
34	15796	5505	3	Yes
35	16271	5506	2	Yes
36	16746	5507	5	Yes
37	17221	5508	4	Yes
38	17696	5509	4	Yes

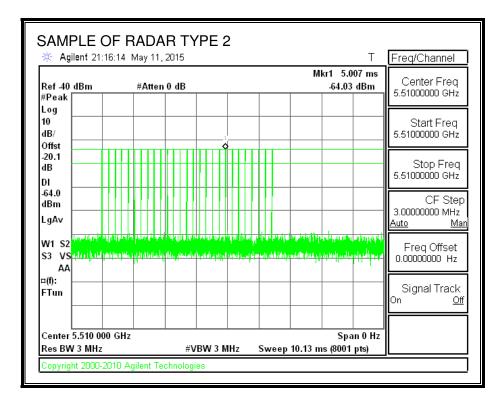
Page 45 of 78

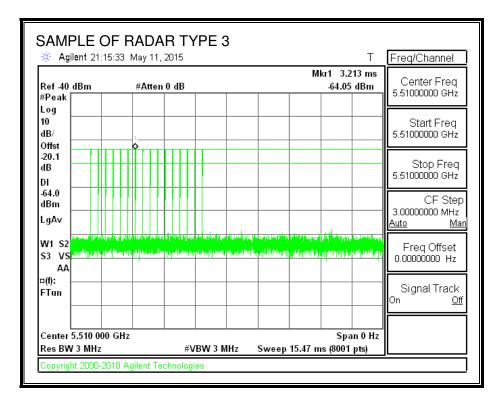

6.3. RESULTS FOR 40 MHz BANDWIDTH

6.3.1. TEST CHANNEL

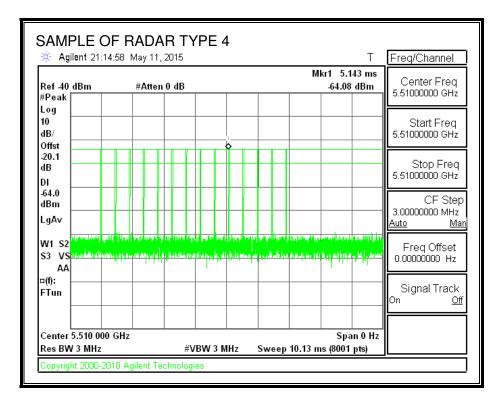
All tests were performed at a channel center frequency of 5510 MHz.

6.3.2. RADAR WAVEFORMS AND TRAFFIC


RADAR WAVEFORMS

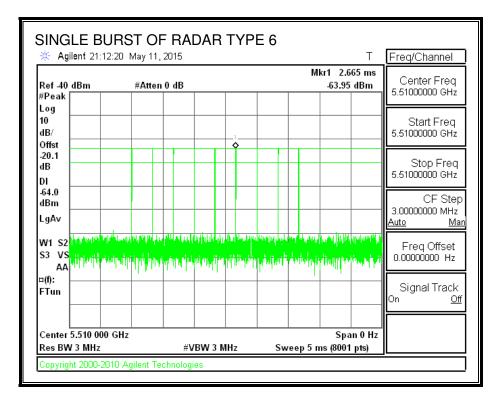

Page 46 of 78

🔆 Agilent 21:1				YPE						Т	Freq/Channel
Ref -40 dBm #Peak		#Atten	0 dB					Mk		.38 ms dBm	Center Freq 5.51000000 GHz
Log 10 dB/ Offst			1								Start Freq 5.51000000 GHz
20.1 dB DI											Stop Freq 5.51000000 GHz
-64.0 dBm LgA∨											CF Step 3.00000000 MHz <u>Auto Mar</u>
W1 S2 S3 VS AA		itili aya ee Aya ayaana	a dia 1944 amin'ny fanisa dia mampika Ny kaodim-paositra dia mampika dia mampi Ny kaodim-paositra dia mampika dia mampi	ini (i mure - dalegi ade	and a state						Freq Offset 0.00000000 Hz
=(f): FTun											Signal Track On <u>Off</u>
Center 5.510 00 Res BW 3 MHz	0 GHz		#\	/BW 3	MHz	Swe	ep 80) ms	Spa s (8001	an 0 Hz pts)	


Page 47 of 78

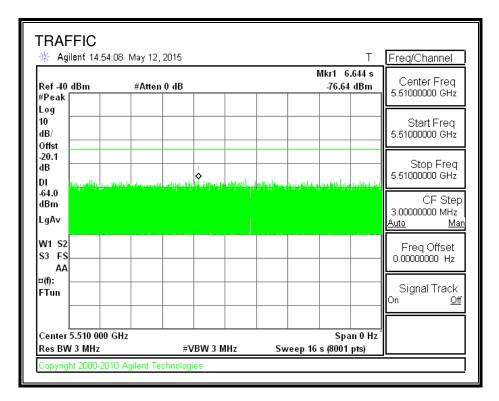
Page 48 of 78

Page 49 of 78



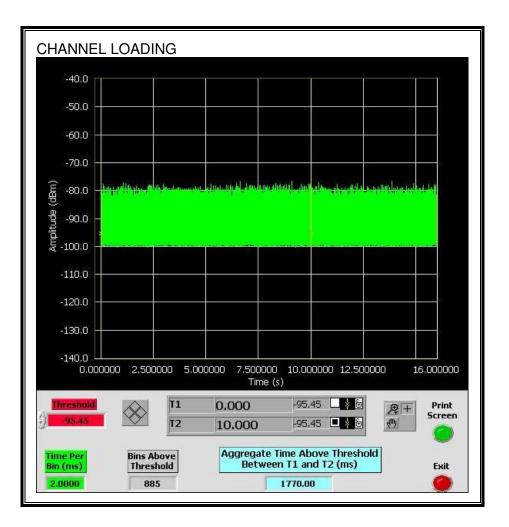
Page 50 of 78

🔆 Agilent 21:	13:56 May	11,2015						Т	Freq/Channel
Ref -40 dBm #Peak	#At	ten 0 dB				M	ur1 2.5 -63.96	26 ms dBm	Center Freq 5.51000000 GHz
Log 10 dB/ Offst									Start Freq 5.51000000 GHz
-20.1 dB DI									Stop Freq 5.51000000 GHz
-64.0 dBm LgA∨									CF Step 3.00000000 MHz <u>Auto Ma</u>
VVI 32									Freq Offset 0.00000000 Hz
¤(f): FTun									Signal Track On <u>Of</u>
Center 5.510 00 Res BW 3 MHz	0 GHz	#\	/BW 3 M	Hz	Sw	eep 8 m		n 0 Hz pts)	


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 51 of 78

Page 52 of 78


TRAFFIC

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 53 of 78

CHANNEL LOADING

The level of traffic loading on the channel by the EUT is 17.7%

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 54 of 78

6.3.3. CHANNEL AVAILABILITY CHECK TIME

PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

Page 55 of 78

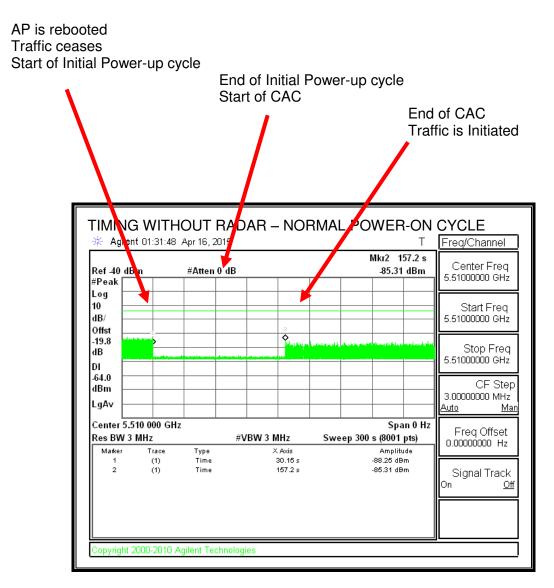
QUANTITATIVE RESULTS

No Radar Triggered

Timing of	Timing of	Total Power-up	Initial Power-up
Reboot	Start of Traffic	Cycle Time	Cycle Time
(sec)	(sec)	(sec)	(sec)
30.15	157.2	127.1	67.1

Radar Near Beginning of CAC

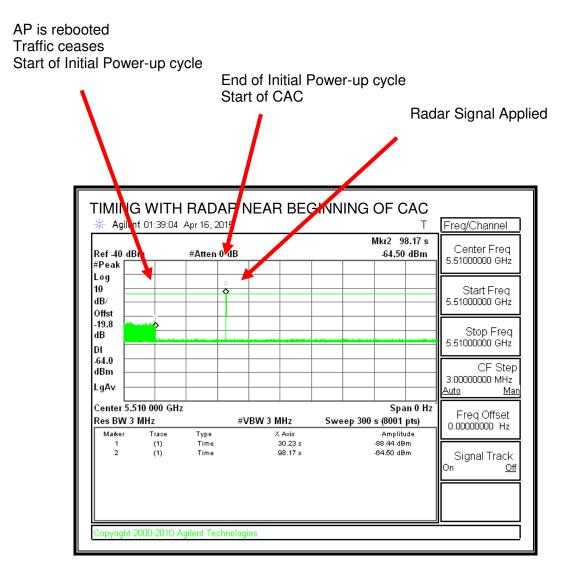
Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
30.225	98.3	68.1	1.0


Radar Near End of CAC

Timing of	Timing of	Radar Relative	Radar Relative
Reboot	Radar Burst	to Reboot	to Start of CAC
(sec)	(sec)	(sec)	(sec)
29.93	156.1	126.2	59.1

QUALITATIVE RESULTS

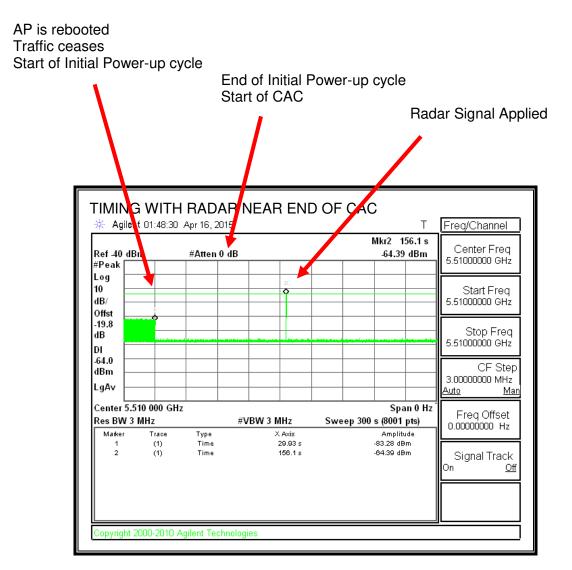
Timing of Radar Burst	Display on Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT marks Channel as active	Transmissions begin on channel after completion of the initial power-up cycle and the CAC
Within 0 to 6 second window	EUT indicates radar detected	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected	No transmissions on channel


TIMING WITHOUT RADAR DURING CAC

Transmissions begin on channel after completion of the initial power-up cycle and the CAC.

Page 57 of 78

TIMING WITH RADAR NEAR BEGINNING OF CAC



No EUT transmissions were observed after the radar signal.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 58 of 78

TIMING WITH RADAR NEAR END OF CAC

No EUT transmissions were observed after the radar signal.

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 59 of 78

6.3.1. OVERLAPPING CHANNEL TESTS

RESULTS

The channel spacing is not less than the channel bandwidth therefore the EUT does not have an overlapping channel plan.

6.3.2. MOVE AND CLOSING TIME

REPORTING NOTES

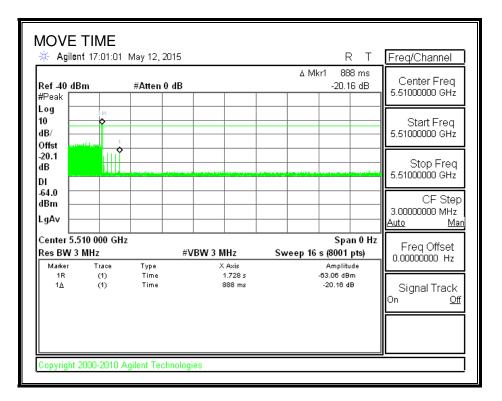
The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) * (dwell time per bin)

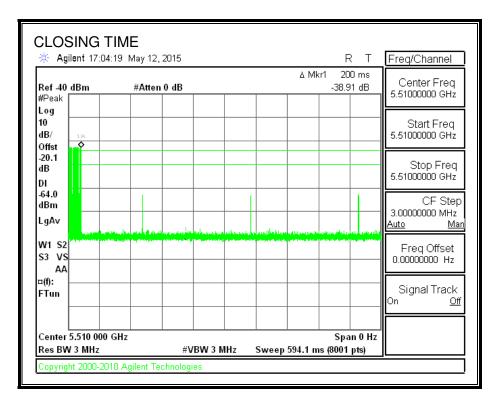
The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).


RESULTS

Channel Move Time	Limit
(sec)	(sec)
0.888	10

Aggregate Channel Closing Transmission Time	Limit
(msec)	(msec)
8.0	60

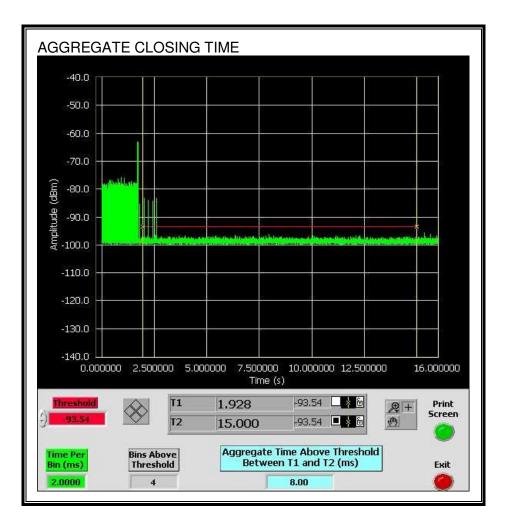
Page 60 of 78


MOVE TIME

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 61 of 78

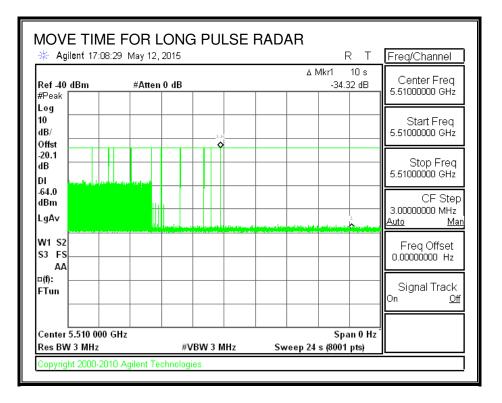
CHANNEL CLOSING TIME



UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 62 of 78

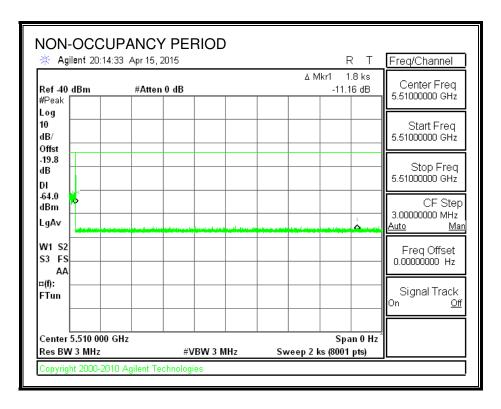
AGGREGATE CHANNEL CLOSING TRANSMISSION TIME


Only intermittent transmissions are observed during the aggregate monitoring period.

Page 63 of 78

LONG PULSE CHANNEL MOVE TIME

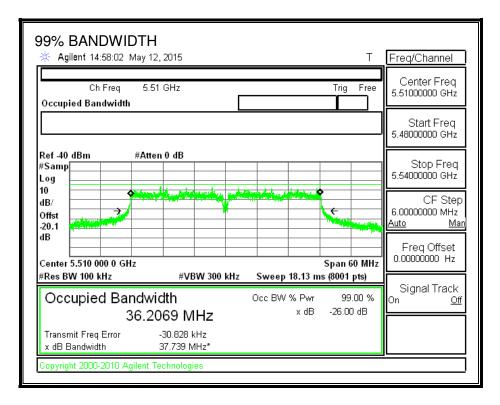
The traffic ceases prior to 10 seconds after the end of the radar waveform.


UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 64 of 78

6.3.3. NON-OCCUPANCY PERIOD

RESULTS


No EUT transmissions were observed on the test channel during the 30-minute observation time.

Page 65 of 78

6.3.4. DETECTION BANDWIDTH

REFERENCE PLOT OF 99% POWER BANDWIDTH

RESULTS

FL	FH	Detection	99% Power	Ratio of	Minimum
		Bandwidth	Bandwidth	Detection BW to	Limit
				99% Power BW	
(MHz)	(MHz)	(MHz)	(MHz)	(%)	(%)
5491	5529	38	36.207	105.0	100

DETECTION BANDWIDTH PROBABILITY

Detection Band	width Test Results			
FCC Type 0 Wa	veform: 1 us Pulse V	Vidth, 1428 us PRI, 1	8 Pulses per l	Burst
Frequency	Number of Trials	Number Detected	Detection	Mark
(MHz)			(%)	
5491	10	10	100	FL
5492	10	10	100	
5493	10	10	100	
5494	10	10	100	
5495	10	10	100	
5500	10	10	100	
5505	10	10	100	
5510	10	10	100	
5515	10	10	100	
5520	10	10	100	
5525	10	10	100	
5526	10	10	100	
5527	10	10	100	
5528	10	10	100	
5529	10	10	100	FH

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 67 of 78

6.3.5. IN-SERVICE MONITORING

RESULTS

FCC Radar Test Summary	N 1 (T) 1			D (5 1
Signal Type	Number of Trials	Detection	Limit	Pass/Fail
		(%)	(%)	
FCC Short Pulse Type 1	30	100.00	60	Pass
FCC Short Pulse Type 2	30	100.00	60	Pass
FCC Short Pulse Type 3	30	100.00	60	Pass
FCC Short Pulse Type 4	30	100.00	60	Pass
Aggregate		100.00	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
FCC Long Pulse Type 5	30	100.00	80	Pass
(5 MHz Below Center Frequency)				
FCC Long Pulse Type 5	30	96.67	80	Pass
(5 MHz Above Center Frequency)				
FCC Hopping Type 6	39	100.00	70	Pass

Page 68 of 78

TYPE 1 DETECTION PROBABILITY

l us Pulse V		Short Pulse Radar		
Waveform	PRI	Pulses Per Burst	Test	Successful Detection
	(us)		(A/B)	(Yes/No)
1001	3066	18	A	Yes
1002	678	78	Α	Yes
1003	538	99	Α	Yes
1004	698	76	Α	Yes
1005	798	67	Α	Yes
1006	598	89	Α	Yes
1007	578	92	Α	Yes
1008	858	62	Α	Yes
1009	618	86	Α	Yes
1010	558	95	Α	Yes
1011	758	70	Α	Yes
1012	518	102	Α	Yes
1013	778	68	Α	Yes
1014	718	74	Α	Yes
1015	878	61	Α	Yes
1016	898	59	В	Yes
1017	1224	44	В	Yes
1018	2886	19	В	Yes
1019	2802	19	В	Yes
1020	652	81	В	Yes
1021	2206	24	В	Yes
1022	1712	31	В	Yes
1023	1205	44	В	Yes
1024	1210	44	В	Yes
1025	1658	32	В	Yes
1026	784	68	В	Yes
1027	1407	38	В	Yes
1028	2642	20	В	Yes
1029	969	55	В	Yes
1030	2508	22	В	Yes

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET, FREMONT, CA 94538, USA TEL: (510) 771-1000 FAX: (510) 661-0888 This report shall not be reproduced except in full, without the written approval of UL Verification Services Inc. .

Page 69 of 78

TYPE 2 DETECTION PROBABILITY

Waveform	Pulse Width	PRI	Pulses Per Burst	Successful Detection (Yes/No)	
	(us)	(us)			
2001	1.6	211.00	27	Yes	
2002	4.7	154.00	26	Yes	
2003	1	163.00	27	Yes	
2004	4	225.00	28	Yes	
2005	2.3	155.00	28	Yes	
2006	3	193.00	25	Yes	
2007	3.5	222.00	25	Yes	
2008	2.9	160.00	29	Yes	
2009	4.7	230.00	29	Yes	
2010	2.5	207.00	29	Yes	
2011	1.7	227.00	29	Yes	
2012	2.3	218.00	24	Yes	
2013	1.9	200.00	27	Yes	
2014	1.3	196.00	23	Yes	
2015	4.9	151.00	26	Yes	
2016	2	205.00	27	Yes	
2017	3.7	176.00	29	Yes	
2018	2.8	184.00	28	Yes	
2019	2	155.00	29	Yes	
2020	1.6	156.00	27	Yes	
2021	2	214.00	28	Yes	
2022	2.8	228.00	27	Yes	
2023	1.4	164.00	29	Yes	
2024	3.8	157.00	25	Yes	
2025	5	222.00	27	Yes	
2026	3.3	164.00	26	Yes	
2027	4.4	201.00	27	Yes	
2028	2.5	151.00	28	Yes	
2029	4.2	186.00	23	Yes	

Page 70 of 78

TYPE 3 DETECTION PROBABILITY

Waveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
3001	7.3	369.00	16	Yes
3002	7.1	444.00	16	Yes
3003	5.5	329.00	18	Yes
3004	7.1	259.00	16	Yes
3005	9.5	272.00	17	Yes
3006	9.4	495.00	17	Yes
3007	7.5	317.00	18	Yes
3008	9.8	439.00	16	Yes
3009	9.5	350.00	16	Yes
3010	5.9	491.00	16	Yes
3011	6.4	406.00	17	Yes
3012	9.1	283.00	18	Yes
3013	6.8	314.00	17	Yes
3014	6.8	377.00	18	Yes
3015	9.8	457.00	16	Yes
3016	9.1	484.00	18	Yes
3017	9.1	461.00	16	Yes
3018	10	265.00	16	Yes
3019	7.2	268.00	16	Yes
3020	8.2	305.00	16	Yes
3021	6.1	472.00	18	Yes
3022	6.5	500.00	18	Yes
3023	5	448.00	18	Yes
3024	8.3	334.00	18	Yes
3025	7.4	457.00	18	Yes
3026	9.9	488.00	18	Yes
3027	6.8	453.00	18	Yes
3028	9.1	333.00	18	Yes
3029	7.9	399	18	Yes
3030	6.6	303	16	Yes

Page 71 of 78

TYPE 4 DETECTION PROBABILITY

Naveform	Pulse Width (us)	PRI (us)	Pulses Per Burst	Successful Detection (Yes/No)
4001	10.3	460.00	14	Yes
4002	15.3	403.00	14	Yes
4003	17.1	286.00	16	Yes
4004	10.6	374.00	12	Yes
4005	14.6	408.00	15	Yes
4006	11.8	340.00	13	Yes
4007	14.8	470.00	13	Yes
4008	13.5	454.00	14	Yes
4009	10.2	440.00	16	Yes
4010	12.4	327.00	15	Yes
4011	19.1	258.00	14	Yes
4012	13.8	347.00	14	Yes
4013	17.7	319.00	15	Yes
4014	15.6	472.00	15	Yes
4015	15.7	419.00	12	Yes
4016	11.3	431.00	12	Yes
4017	16.3	480.00	14	Yes
4018	19.6	422.00	12	Yes
4019	12.7	330.00	13	Yes
4020	13.2	446.00	14	Yes
4021	12.3	276.00	15	Yes
4022	15.6	467.00	15	Yes
4023	18.9	495.00	13	Yes
4024	19.3	407.00	15	Yes
4025	10.8	341.00	14	Yes
4026	10.6	251.00	13	Yes
4027	10.4	463.00	12	Yes
4028	13.4	402.00	12	Yes
4029	16.3	376.00	12	Yes

Page 72 of 78

TYPE 5 DETECTION PROBABILITY AT THE CHANNEL CENTER FREQUENCY

Trial	ong Pulse Radar Type 5. Successful Detection	
	(Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

TYPE 5 DETECTION PROBABILITY AT 5 MHz BELOW THE CHANNEL CENTER FREQUENCY

Trial	Successful Detection	
1	(Yes/No) Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

Note: The Type 5 randomized parameters tested are shown in a separate document.

Page 74 of 78

TYPE 5 DETECTION PROBABILITY AT 5 MHz ABOVE THE CHANNEL CENTER FREQUENCY

Trial	Long Pulse Radar Type 5 Successful Detection	
4	(Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	No	

TYPE 6 DETECTION PROBABILITY

	for FCC Hopping Rada						
1 us Pulse Width, 333 us PRI, 9 Pulses per Burst, 1 Burst per Hop							
NTIA August 2005 Hopping Sequence							
Trial	Starting Index	Signal Generator		Successful			
IIIai	Within Sequence	Frequency	Detection BW	Detection			
		(MHz)		(Yes/No)			
1	221	5491	10	Yes			
2	696	5492	10	Yes			
3	1171	5493	8	Yes			
4	1646	5494	2	Yes			
5	2121	5495	6	Yes			
6	2596	5496	9	Yes			
7	3071	5497	10	Yes			
8	3546	5498	9	Yes			
9	4021	5499	8	Yes			
10	4496	5500	13	Yes			
11	4971	5501	7	Yes			
12	5446	5502	11	Yes			
13	5921	5503	8	Yes			
14	6396	5504	8	Yes			
15	6871	5505	6	Yes			
16	7346	5506	8	Yes			
17	7821	5507	11	Yes			
18	8296	5508	7	Yes			
19	8771	5509	8	Yes			
20	9246	5510	4	Yes			
21	9721	5511	13	Yes			
22	10196	5512	7	Yes			
23	10671	5513	8	Yes			
24	11146	5514	5	Yes			
25	11621	5515	11	Yes			
26	12096	5516	5	Yes			
27	12571	5517	5	Yes			
28	13046	5518	9	Yes			
29	13521	5519	3	Yes			
30	13996	5520	11	Yes			
31	14471	5521	9	Yes			
32	14946	5522	6	Yes			
33	15421	5523	8	Yes			
34	15896	5524	8	Yes			
35	16371	5525	7	Yes			
36	16846	5526	8	Yes			
37	17321	5527	9	Yes			
38	17796	5528	9	Yes			
39	18271	5529	3	Yes			

Page 76 of 78