

FCC Certification Test Report for ADTRAN, Inc. HDCTRC5045

March 21, 2003

Prepared for:

ADTRAN, Inc. 901 Explorer Blvd Huntsville, AL 35806

Prepared By:

Washington Laboratories, Ltd. 7560 Lindbergh Drive Gaithersburg, Maryland 20879

FCC Certification Test Report for the ADTRAN, Inc. TRACER Transceiver 5045 FCC ID: HDCTRC5045

WLL JOB# 7458

Prepared by: Brian J. Dettling

Documentation Specialist

Reviewed by: Gregory M. Snyder

Wireless/Telco Services Manager & Chief EMC Engineer

Abstract

This report has been prepared on behalf of ADTRAN, Inc. to support the attached Application for Equipment Authorization. The test report and application are submitted for a Digitally Modulated Transmitter under Part 15.247 of the FCC Rules and Regulations. This Federal Communication Commission (FCC) Certification Test Report documents the test configuration and test results for a ADTRAN, Inc. TRACER 5045.

Testing was performed on an Open Area Test Site (OATS) of Washington Laboratories, Ltd, 7560 Lindbergh Drive, Gaithersburg, MD 20879. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

The ADTRAN, Inc. TRACER 5045 complies with the limits for a Digitally Modulated Transmitter device under Part 15.247 of the FCC Rules and Regulations.

Table of Contents

A	bstract.		ii
1	Intro	duction	1
	1.1	Compliance Statement	1
	1.2	Test Scope	1
	1.3	Contract Information	1
	1.4	Test Dates	1
	1.5	Test and Support Personnel.	1
	1.6	Abbreviations	2
2	Equi	pment Under Test	3
	2.1	EUT Identification & Description.	3
	2.2	Test Configuration.	4
	2.3	Testing Algorithm	4
	2.4	Test Location.	4
	2.5	Measurements.	5
	2.5.	1 References	5
	2.6	Measurement Uncertainty	5
3	Test	Equipment	5
4	Test	Results	6
	4.1	RF Power Output	6
	4.2	RF Peak Power Spectral Density	6
	4.3	Occupied Bandwidth	7
	4.4	Spurious Emissions at Antenna Terminals (FCC Part §15.247(b))	8
	4.5	Radiated Spurious Emissions: (FCC Part §15.247(c))	20
	4.5.	1 Test Procedure	21
	4.6	AC Powerline Conducted Emissions: (FCC Part §15.207)	24

List	Λf	Tah]	وما
டு	UΙ	I av	1C2

Table 1. Device Summary	4
Table 2: Test Equipment List	5
Table 3. RF Power Output	6
Table 4. Power Spectral Density	6
Table 5. Occupied Bandwidth Results	8
Table 6: Radiated Emission Test Data - Plan A	22
Table 7: Radiated Emission Test Data - Plan B	23
Table 8: Conducted Emissions Test Data; 15.207	
List of Figures	
Figure 1. Occupied Bandwidth - Plan A	7
Figure 2. Occupied Bandwidth - Plan B	8
Figure 3. Conducted Spurious Emissions, Plan A, 30MHz-1GHz	9
Figure 4. Conducted Spurious Emissions, Plan A, 1GHz-5.7GHz	10
Figure 5. Conducted Spurious Emissions, Plan A, 5.7GHz-5.9GHz	11
Figure 6. Conducted Spurious Emissions, Plan A, 5.9GHz-18GHz	12
Figure 7. Conducted Spurious Emissions, Plan A, 18GHZ-26GHz	13
Figure 8. Conducted Spurious Emissions, Plan A, 26GHz-40GHz	14
Figure 9. Conducted Spurious Emissions, Plan B, 30MHz-1GHz	15
Figure 10. Conducted Spurious Emissions, Plan B, 1GHz-5.7GHz	
Figure 11. Conducted Spurious Emissions, Plan B, 5.7GHz-5.9GHz	17
Figure 12. Conducted Spurious Emissions, Plan B, 5.9GHz-18GHz	
Figure 13. Conducted Spurious Emissions, Plan B, 18GHZ-26GHz	
Figure 14. Conducted Spurious Emissions, Plan B, 26GHz-40GHz	

1 Introduction

1.1 Compliance Statement

The ADTRAN, Inc. TRACER 5045 Spread Spectrum System complies with the limits for a Digitally Modulated Transmitter device under Part 15.247 of the FCC Rules and Regulations.

1.2 Test Scope

Tests for radiated and conducted emissions were performed. All measurements were performed according to the 1992 version of ANSI C63.4. The measurement equipment conforms to ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation.

1.3 Contract Information

Customer: ADTRAN, Inc.

901 Explorer Blvd Huntsville, AL 35806

Quotation Number: 60657

1.4 Test Dates

Testing was performed from March 3, 2003 to March 5, 2003

1.5 Test and Support Personnel

Washington Laboratories, LTD Ken Gemmell and James Ritter

1.6 Abbreviations

A Ampere

Ac alternating current AM Amplitude Modulation

Amps Amperes

b/s bits per second BW Bandwidth

CE Conducted Emission

Cm centimeter

CW Continuous Wave

DB decibel

Dc direct current

EMI Electromagnetic Interference EUT Equipment Under Test FM Frequency Modulation

G giga - prefix for 10⁹ multiplier

Hz Hertz

IF Intermediate Frequency

K kilo - prefix for 10³ multiplier M Mega - prefix for 10⁶ multiplier

M Meter

 μ micro - prefix for 10^{-6} multiplier

NB Narrowband

LISN Line Impedance Stabilization Network

RE Radiated Emissions
RF Radio Frequency
Rms root-mean-square
SN Serial Number
S/A Spectrum Analyzer

V Volt

2 Equipment Under Test

2.1 EUT Identification & Description

ADTRAN Part #	Product Name/Description	
12805045L1A	Tracer 5045 Plan A	
12805045L1B	Tracer 5045 Plan B	

Top Assembly #:	12805045L1A/B
Sub Assembly #(s):	2280030-6, 2280018-11
Circuit Board #(s):	5280030-6, 5280018-11

The 12805045L1A/B (Tracer 5045 Bridge Radio) is a 4-port 10/100BASE-T/TX bridge interfaced to a 44.736 Mb/sec WAN pipe. A pair of these radios forms a wireless transport for IEEE 802.3 Ethernet traffic and provides four (4) ports of LAN-side switching to each side of the link. This device operates in the 5.8GHz Industrial, Scientific, and Medical (ISM) radio band.

The Tracer 5045 operates in the 5747-5827 MHz band using digitally modulation. Two channels are available: "A" and "B". The channels are determined by internal cable routing on the transmit module during manufacture.

I/O Ports and Cables available on the TRACER 5045 Bridge Radio:

Signal/	Signal/	Cable Type	NOTES
Port Name	Port Type		
10/100 BASE-TX	I/O	CAT4/5 Unshielded	
RS232	I/O	Shielded 25 wire	
ALARM	Control	Unshielded TP	Alarm contacts, no active signals
ANTENNA	I/O		50 ohm impedance, 5.8 GHz signal only

Table 1. Device Summary

ITEM	DESCRIPTION
Manufacturer:	ADTRAN, Inc.
FCC ID Number	HDCTRC5045
EUT Name:	TRACER 5045
Model:	5045
FCC Rule Parts:	§15.247
Frequency Range:	5747MHz (Plan A) – 5827MHz (Plan B)
Maximum Output Power:	100mW
Modulation:	Digital (QPSK)
Bandwidth:	23.25 MHz
Keying:	Automatic
Type of Information:	Data
Number of Channels:	2
Power Output Level	Fixed
Antenna Type	Parabolic Dish
Power Source & Voltage:	48 Vdc

2.2 Test Configuration

The EUT was configured with an external power adapter, loopback connections on Channels A and B, unshielded wires connected to the alarm I/O, and a 50 Ohm coaxial cable connected to the antenna port.

The EUT firmware was set up to provide continuous random data for digital modulation to the output connector.

Two "Plans" are available: "A" and "B". Each "Plan" has a single channel. Changing between the plans is accomplished by switching the internal cables. The channels are then programmed within the plan.

2.3 Testing Algorithm

The TRACER 5045 was operated continuously by firmware test sequence that provided a modulated RF data stream to the output port.

2.4 Test Location

All measurements herein were performed at Washington Laboratories, Ltd. test center in Gaithersburg, MD. Site description and site attenuation data have been placed on file with the FCC's Sampling and Measurements Branch at the FCC laboratory in Columbia, MD. Washington Laboratories, Ltd. has been accepted by the FCC and approved by NIST NVLAP (NVLAP Lab Code: 200066-0) as an independent FCC test laboratory.

2.5 Measurements

2.5.1 References

ANSI C63.2 Specifications for Electromagnetic Noise and Field Strength Instrumentation

ANSI C63.4 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

2.6 Measurement Uncertainty

All results reported herein relate only to the equipment tested. The measurement uncertainty of the data contained herein is ± 2.3 dB.

For the purposes of the measurements performed by Washington Laboratories, the measurement uncertainty is $2.3\pm$ dB. This has been calculated for a *worst-case situation* (radiated emissions measurements performed on an open area test site).

The following measurement uncertainty calculation is provided:

Total Uncertainty = $(A^2 + B^2 + C^2)^{1/2}/(n-1)$

where:

A = Antenna calibration uncertainty, in dB = 2 dB

 $B = \mbox{ Spectrum Analyzer uncertainty, in } dB = \mbox{ 1 } dB$

C = Site uncertainty, in dB = 4 dB

n = number of factors in uncertainty calculation = 3

Thus, total uncertainty = $0.5 (2^2 + 1^2 + 4^2)^{1/2} = \pm 2.3 dB$.

3 Test Equipment

Table 2 shows a list of the test equipment used for measurements along with the calibration information.

Table 2: Test Equipment List

Manufacturer	Model/Type	Function	Serial Number	Calibration Due
HP	8568B	Spectrum Analyzer	2634A02888	7/03/03
HP	85650A	Quasi-Peak Adapter	3303A01786	7/05/03
Solar	8012-50-R-24BNC	LISN	8379493	6/20/03
ARA	LPB-2520	BiconiLog Antenna	1044	6/19/03
HP	85685A	RF Preselector	3221A01395	5/17/03

4 Test Results

4.1 RF Power Output

For devices within the scope of FCC §15.247, the peak power conducted from the intentional radiator to the antenna shall not be greater than one watt (30 dBm).

The output from the transmitter was connected to a diode detector and oscilloscope. The peak deflection was measured on the oscilloscope and recorded. A signal generator was then substituted in place of EUT and set to the same frequency as the transmitter. The CW output of the signal generator was increased until the same deflection was noted on the oscilloscope. A power meter was then connected to the output of the signal generator to determine the output power of the signal generator. This level is then recorded as the output power of the EUT at the specified frequency.

This measurement method was chosen as the bandwidth of the EUT was much greater than the measurement bandwidth available on the spectrum analyzer.

The EUT carrier was modulated during this test.

FrequencyLevelLimitPass/FailPlan A19.8 dBm30 dBmPassPlan B20.18 dBm30 dBmPass

Table 3. RF Power Output

4.2 RF Peak Power Spectral Density

For digitally modulated devices, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band.

The output from the transmitter was connected to an attenuator and then to the input of the RF Spectrum Analyzer. The analyzer offset was adjusted to compensate for the attenuator and other losses in the system.

The carrier was modulated.

Table 4. Power Spectral Density

Frequency	Level	Limit	Pass/Fail
Plan A			
5747 MHz	-3.5 dBm	8 dBm	Pass
Plan B			

5827 MHz	-5.83 dBm	8 dBm	Pass
----------	-----------	-------	------

4.3 Occupied Bandwidth

Occupied bandwidth was performed by coupling the output of the EUT to the input of a spectrum analyzer.

For Digitally Modulated Systems, FCC Part 15.247 requires that the minimum 6 dB bandwidth be at least $500 \ \text{kHz}$.

Figure 1. Occupied Bandwidth - Plan A

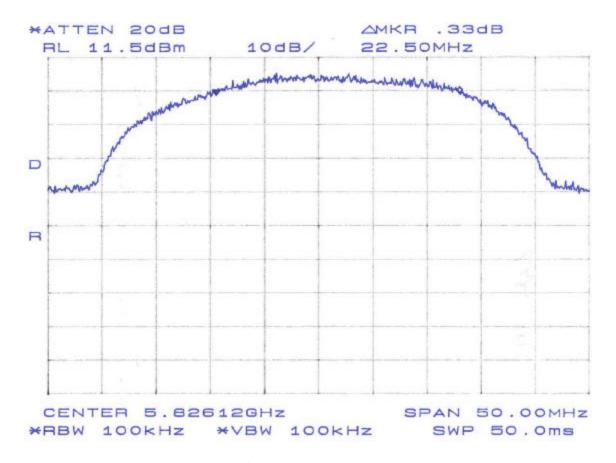


Figure 2. Occupied Bandwidth - Plan B

Table 5 provides a summary of the Occupied Bandwidth Results.

Table 5. Occupied Bandwidth Results

Frequency	Bandwidth	Limit	Pass/Fail
Plan A			
5747.00 MHz	23.25 MHz	> 500 kHz	Pass
Plan B			
5826.12 MHz	22.5 MHz	> 500 kHz	Pass

4.4 Spurious Emissions at Antenna Terminals (FCC Part §15.247(b))

In any 100 kHz band outside the frequency band in which the system is operating, the RF power shall be at least 20dB below that in the 100 kHz bandwidth that contain the highest level of the desired power.

Plots of the conducted emissions follow.

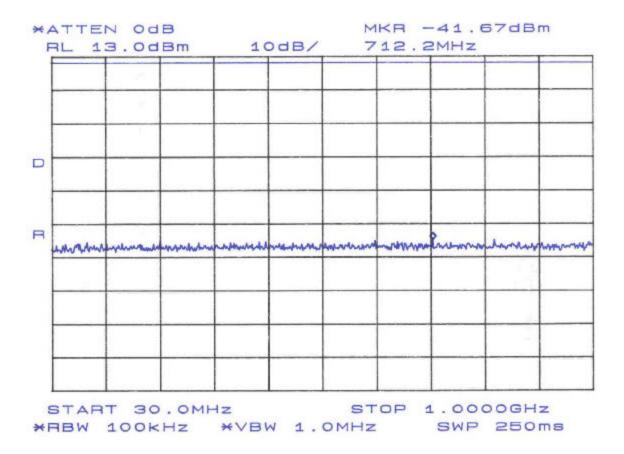


Figure 3. Conducted Spurious Emissions, Plan A, 30MHz-1GHz

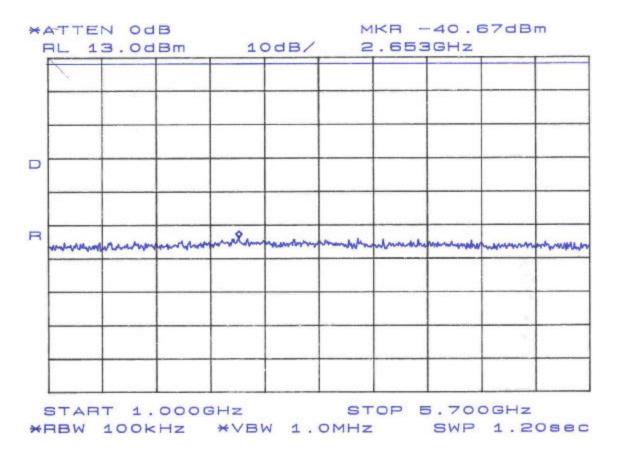


Figure 4. Conducted Spurious Emissions, Plan A, 1GHz-5.7GHz

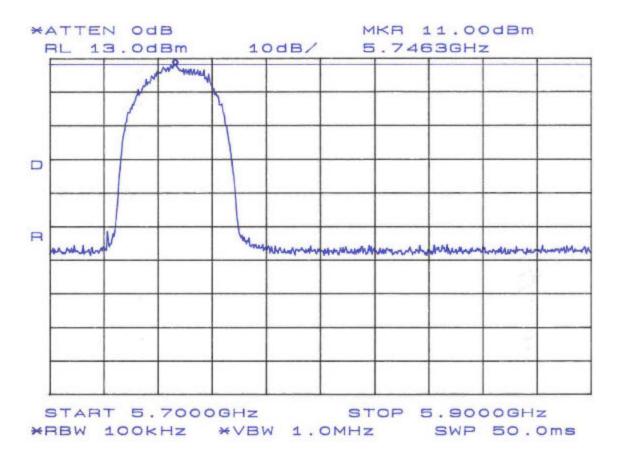


Figure 5. Conducted Spurious Emissions, Plan A, 5.7GHz-5.9GHz

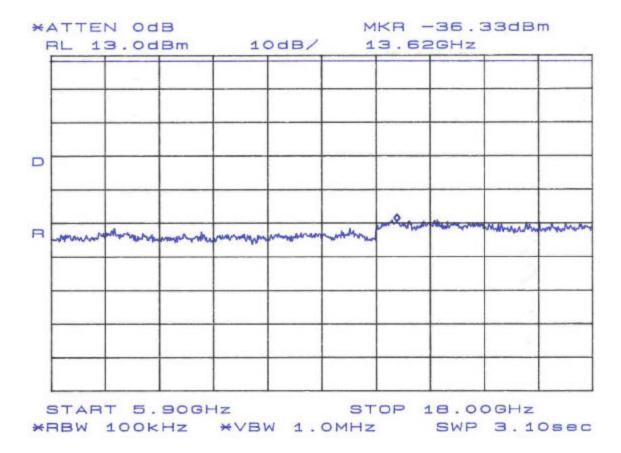


Figure 6. Conducted Spurious Emissions, Plan A, 5.9GHz-18GHz

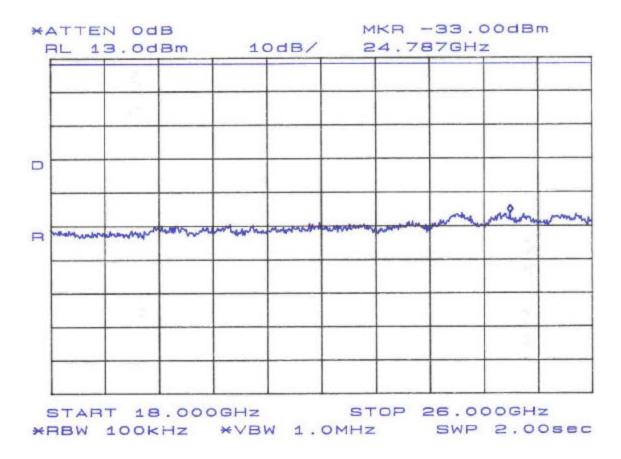


Figure 7. Conducted Spurious Emissions, Plan A, 18GHZ-26GHz

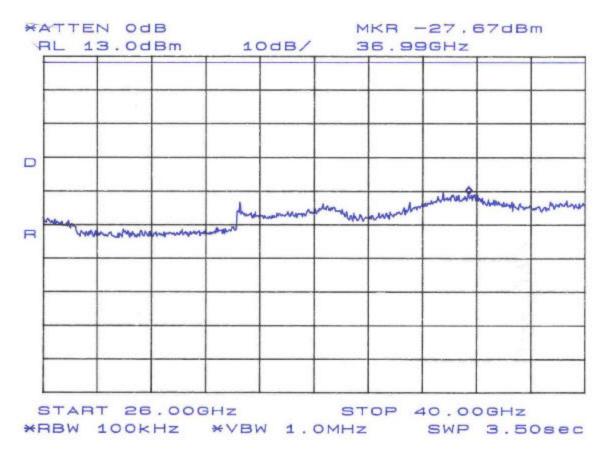


Figure 8. Conducted Spurious Emissions, Plan A, 26GHz-40GHz

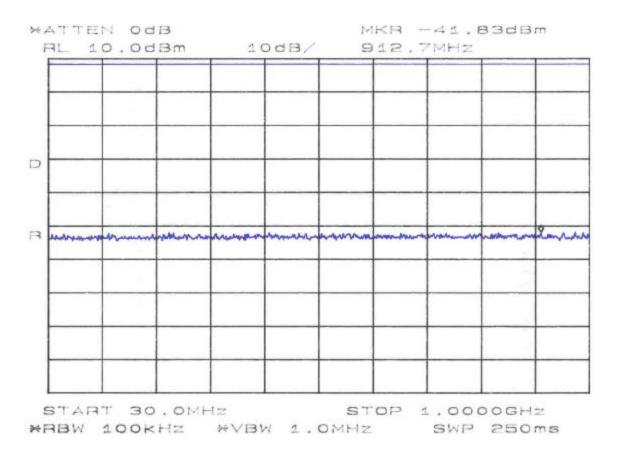


Figure 9. Conducted Spurious Emissions, Plan B, 30MHz-1GHz

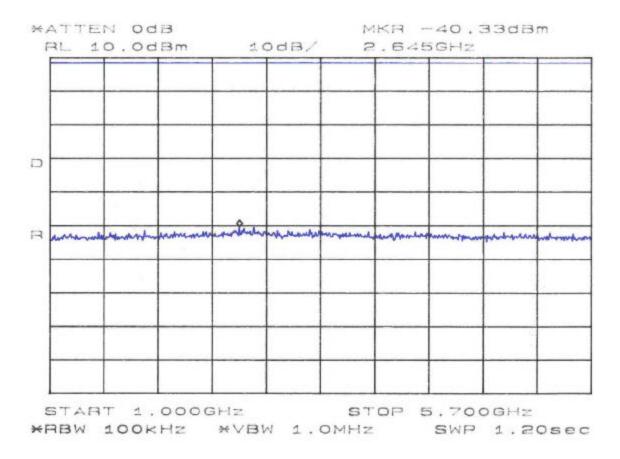


Figure 10. Conducted Spurious Emissions, Plan B, 1GHz-5.7GHz

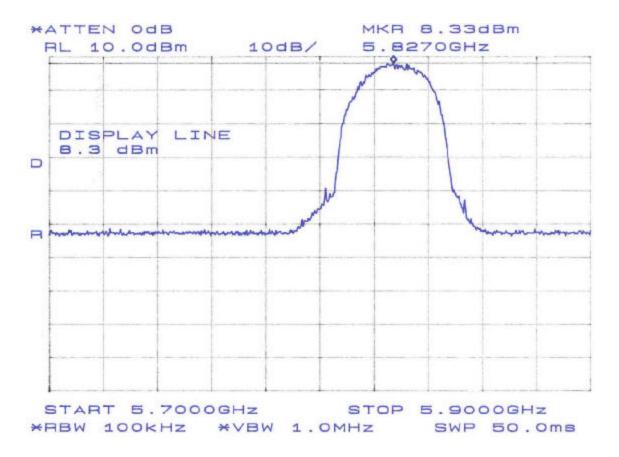


Figure 11. Conducted Spurious Emissions, Plan B, 5.7GHz-5.9GHz

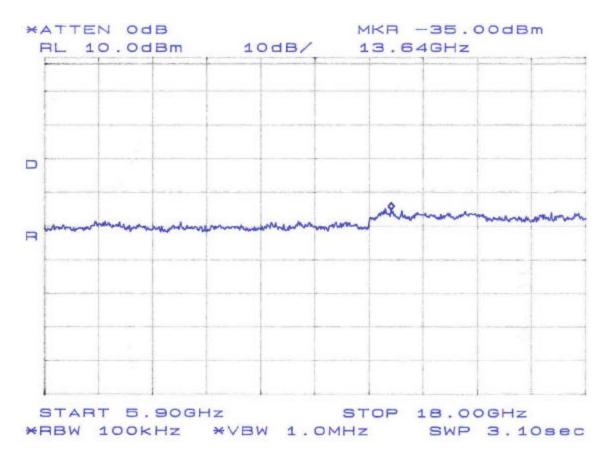


Figure 12. Conducted Spurious Emissions, Plan B, 5.9GHz-18GHz

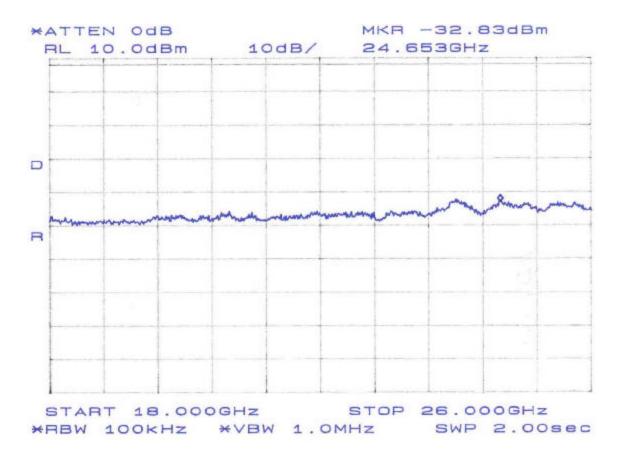


Figure 13. Conducted Spurious Emissions, Plan B, 18GHZ-26GHz

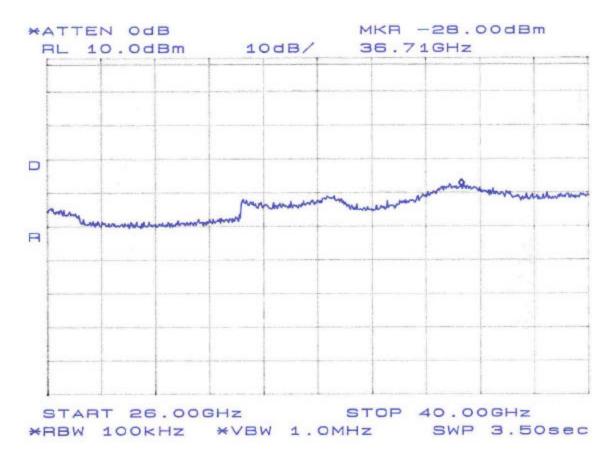


Figure 14. Conducted Spurious Emissions, Plan B, 26GHz-40GHz

4.5 Radiated Spurious Emissions: (FCC Part §15.247(c))

Radiated emissions that fall in the restricted bands must comply with the general emissions limits in 15.209(a).

The emissions were measured using the following resolution bandwidths:

Frequency Range	Resolution Bandwidth	Video Bandwidth
30MHz-1000 MHz	120kHz	300 kHz
>1000 MHz	1 MHz	<30 Hz (Avg.)
		1MHz (Peak)

Harmonic and Spurious emissions that were identified as coming from the EUT were checked in Peak and in Average Mode. It was verified that the peak-to-average ratio did not exceed 20dB.

Peak measurements and average measurements are made. All emissions were determined to have a peak-to-average ratio of less than 20 dB.

4.5.1 Test Procedure

The EUT was placed on motorized turntable for radiated testing on a 3-meter open field test site. The emissions from the EUT were measured continuously at every azimuth by rotating the turntable. Receiving antennas were mounted on an antenna mast to determine the height of maximum emissions. The height of the antenna was varied between 1 and 4 meters. The peripherals were placed on the table in accordance with ANSI C63.4-1992. Cables were varied in position to produce maximum emissions. Both the horizontal and vertical field components were measured.

The EUT was tested in the following configurations and modes:

Antenna	Channel				
2 foot, 28dBi, Parabolic Dish	A&B				

These data are supplied in the following tables.

Table 6: Radiated Emission Test Data - Plan A

CLIENT: Adtran DATE: 3/4/03 TESTER: Ken Gemmell JOB #: 7461

EUT Information: Test Requirements:

EUT:Tracer 5045TEST STANDARD:FCC Part 15CONFIGURATION:Plan A TX mode (5747 MHz)DISTANCE:3m

CLOCKS: 50, 51,249, 25,714, 12, 22,118 MHZ CLASS: B

Test Equipment/Limit:

ANTENNA: A_00004 LIMIT: LFCC_3m_Class_B CABLE: CSITE2_HF AMPLIFIER (dB) A_00066

Frequency	Polarity			SA	Ant.	Cable	Amp	Corr.	Corr.	Limit	Margin	Notes
			Hght	Level	Corr.	Corr.	Gain	Level	Level			
(MHz)	H/V	Degree	(m)	(dBµV)	(dB/m)	(dB)	(dB)	(dBµV/m)	(uV/m)	(μV/m)	dB	
(IVIIIZ)	11/ 4	Degree	(111)	(αΒμν)	(uD/III)	(ub)	(uD)	(αισμ ν/ιιι)	(μ ν / ΙΙΙ)	(μ ν / ΙΙΙ)	uD.	
1822.33	Н	180.0	1.0	42.8	28.3	3.1	35.6	38.6	85.6	500.0	-15.3	Avg
1822.33	V	180.0	1.0	40.9	28.3	3.1	35.6	36.7	68.8	500.0	-17.2	Avg
1895.67	Н	180.0	1.0	41.9	28.6	3.2	35.5	38.2	81.1	500.0	-15.8	Avg
1895.67	V	180.0	1.0	41.7	28.6	3.2	35.5	38.0	79.2	500.0	-16.0	Avg
2733.50	Н	180.0	1.0	41.5	30.3	2.9	35.6	39.0	89.6	500.0	-14.9	Avg
2733.50	V	180.0	1.0	41.4	30.3	2.9	35.6	38.9	88.6	500.0	-15.0	Avg
2843.50	Н	180.0	1.0	37.8	30.5	2.8	35.7	35.4	59.1	500.0	-18.5	Avg
2843.50	V	180.0	1.0	38.8	30.5	2.8	35.7	36.4	66.3	500.0	-17.5	Avg
												Avg
11494.00	Н	180.0	1.0	34.3	40.9	5.0	35.6	44.5	167.9	500.0	-9.5	(amb)
11494.00	V	180.0	1.0	36.7	40.9	5.0	35.6	46.9	221.3	500.0	-7.1	Avg
11494.00	V	100.0	1.0	30.7	40.9	3.0	33.0	40.9	221.3	300.0	-7.1	(amb)
1822.33	Н	180.0	1.0	54.5	28.3	3.1	35.6	50.3	329.2	5000.0	-23.6	peak
1822.33	V	180.0	1.0	53.2	28.3	3.1	35.6	49.0	283.4	5000.0	-24.9	peak
1895.67	Н	180.0	1.0	51.8	28.6	3.2	35.5	48.1	253.5	5000.0	-25.9	peak
1895.67	V	180.0	1.0	52.6	28.6	3.2	35.5	48.9	277.9	5000.0	-25.1	peak
2733.50	Н	180.0	1.0	53.4	30.3	2.9	35.6	50.9	352.6	5000.0	-23.0	peak
2733.50	V	180.0	1.0	52.3	30.3	2.9	35.6	49.8	310.7	5000.0	-24.1	peak
2843.50	Н	180.0	1.0	51.3	30.5	2.8	35.7	48.9	279.7	5000.0	-25.0	peak
2843.50	V	180.0	1.0	52.5	30.5	2.8	35.7	50.1	321.1	5000.0	-23.8	peak
												Peak
11494.00	Н	180.0	1.0	44.2	40.9	5.0	35.6	54.4	524.1	5000.0	-19.6	(amb)
4440465		400.0					2 .		010 5	2000 -	40.0	Peak
11494.00	V	180.0	1.0	45.6	40.9	5.0	35.6	55.8	616.5	5000.0	-18.2	(amb)

Table 7: Radiated Emission Test Data - Plan B

CLIENT: Adtran DATE: 3/4/03 TESTER: Ken Gemmell JOB #: 7461

EUT Information: Test Requirements:

EUT: Tracer 5045 TEST STANDARD: FCC Part 15

 CONFIGURATION:
 PlanB TX mode (5827 MHz)
 DISTANCE:
 3m

 CLOCKS:
 50, 51,249, 25,714, 12, 22,118 MHZ
 CLASS:
 B

Test Equipment/Limit:

ANTENNA: A_00004 LIMIT: LFCC_3m_Class_B CABLE: CSITE2_HF AMPLIFIER (dB) A_00066

Frequency	Polarity	Azimuth	Ant. Hght	SA Level	Ant. Corr.	Cable Corr.			Corr. Level	Limit	Margin	Notes
			пдш	Level	Coll.	Corr.	Gaill	Levei	Level			
(MHz)	H/V	Degree	(m)	(dBµV)	(dB/m)	(dB)	(dB)	$(dB\mu V/m)$	(µV/m)	(μV/m)	dB	
1849.00	Н	180.0	1.0	44.7	28.4	3.2	35.6	40.7	108.5	500.0	-13.3	Avg
1849.00	V	180.0	1.0	45.9	28.4	3.2	35.6	41.9	124.6	500.0	-12.1	Avg
1869.00	Н	180.0	1.0	46.9	28.5	3.2	35.6	43.0	141.6	500.0	-11.0	Avg
1869.00	V	180.0	1.0	46.8	28.5	3.2	35.6	42.9	140.0	500.0	-11.1	Avg
2773.50	Н	180.0	1.0	38.7	30.4	2.9	35.7	36.3	65.1	500.0	-17.7	Avg
2773.50	V	180.0	1.0	40.1	30.4	2.9	35.7	37.7	76.5	500.0	-16.3	Avg
2803.50	Н	180.0	1.0	40.2	30.4	2.9	35.7	37.8	77.6	500.0	-16.2	Avg
2803.50	V	180.0	1.0	41.7	30.4	2.9	35.7	39.3	92.3	500.0	-14.7	Avg
4335.54	Н	180.0	1.0	40.2	32.2	3.4	35.6	40.1	101.6	500.0	-13.8	Avg
4335.54	V	180.0	1.0	47.2	32.2	3.4	35.6	47.1	227.6	500.0	-6.8	Avg
												Avg
11654.00	Н	180.0	1.0	34.8	41.0	5.0	35.7	45.1	180.1	500.0	-8.9	(amb)
11654.00	V	180.0	1.0	37.8	41.0	5.0	35.7	48.2	255.6	500.0	-5.8	Avg (amb)
11034.00	V	100.0	1.0	37.0	41.0	3.0	33.7	40.2	233.0	300.0	-3.6	Avg
22988.00	Н	180.0	1.0	30.7	40.5	5.5	32.4	44.2	162.8	500.0	-9.7	(amb)
												Avg
22988.00	V	180.0	1.0	30.5	40.5	5.5	32.4	44.1	159.7	500.0	-9.9	(amb)
1849.00	Н	180.0	1.0	55.1	28.4	3.2	35.6	51.1	359.2	5000.0	-22.9	peak
1849.00	V	180.0	1.0	56.7	28.4	3.2	35.6	52.7	431.9	5000.0	-21.3	peak
1869.00	Н	180.0	1.0	55.6	28.5	3.2	35.6	51.7	385.7	5000.0	-22.3	peak
1869.00	V	180.0	1.0	54.8	28.5	3.2	35.6	50.9	351.7	5000.0	-23.1	peak
2773.50	Н	180.0	1.0	50.8	30.4	2.9	35.7	48.4	262.4	5000.0	-25.6	peak
2773.50	V	180.0	1.0	52.4	30.4	2.9	35.7	50.0	315.4	5000.0	-24.0	peak
2803.50	Н	180.0	1.0	50.8	30.4	2.9	35.7	48.4	263.1	5000.0	-25.6	peak
2803.50	V	180.0	1.0	51.8	30.4	2.9	35.7	49.4	295.2	5000.0	-24.6	peak
4335.54	Н	180.0	1.0	53.7	32.2	3.4	35.6	53.6	480.9	5000.0	-20.3	peak
4335.54	V	180.0	1.0	52.4	32.2	3.4	35.6	52.3	414.1	5000.0	-21.6	peak
11654.00	Н	180.0	1.0	47.4	41.0	5.0	35.7	57.7	766.6	5000.0	-16.3	Pk-amb
11654.00	V	180.0	1.0	46.5	41.0	5.0	35.7	56.8	692.7	5000.0	-17.2	Pk-amb
22988.00	Н	180.0	1.0	42.6	40.5	5.5	32.4	56.2	643.6	5000.0	-17.8	Pk-amb
22988.00	V	180.0	1.0	42.7	40.5	5.5	32.4	56.3	650.5	5000.0	-17.7	Pk-amb

4.6 AC Powerline Conducted Emissions: (FCC Part §15.207)

The EUT was placed on an 80 cm high 1 x 1.5 m non-conductive table above a ground plane. Power to the EUT was provided through a Solar Corporation 50 $\Omega/50~\mu H$ Line Impedance Stabilization Network bonded to a 3 x 2 meter ground plane. The LISN has its AC input supplied from a filtered AC power source. Power and data cables were moved about to obtain maximum emissions.

The 50 Ω output of the LISN was connected to the input of the spectrum analyzer and the emissions in the frequency range of 150 kHz to 30 MHz was measured. The detector function was set to quasi-peak or peak, as appropriate, and the resolution bandwidth during testing was at least 9 kHz, with all post-detector filtering no less than 10 times the resolution bandwidth.

Data is recorded in Table 11.

Table 8: Conducted Emissions Test Data; 15.207

CLIENT: Adtran DATE: 3/5/03 FCC Part 15 TEST STANDARD: MODEL: Tracer 5045 JOB #: 7460 CLASS: FCC_B TESTER: Ken Gemmell TEST VOLTAGE: 120 VAC

LINE 1 - NEUTRAL

Frequency	Level QP	Limit QP	Margin QP	Level AVG	Limit AVG	Margin AVG
MHz	dBuV	dBuV	dB	dBuV	dBuV	dB
0.15	52.8	65.9	-13.1	37.9	55.9	-18.0
0.84	35.8	56.0	-20.2	35.8	46.0	-10.2
3.74	35.2	56.0	-20.8	35.2	46.0	-10.8
5.02	32.2	60.0	-27.8	32.2	50.0	-17.8
14.79	34.6	60.0	-25.4	34.6	50.0	-15.4
16.75	36.6	60.0	-23.4	36.6	50.0	-13.4
29.73	27.8	60.0	-32.2	27.8	50.0	-22.2

LINE 2 - PHASE

Frequency	Level QP	Limit QP	Margin QP	Level AVG	Limit AVG	Margin AVG
MHz	dBuV	dBuV	ďB	dBuV	dBuV	dB
0.15	53.0	65.9	-12.9	36.9	55.9	-19.0
0.84	35.7	56.0	-20.3	35.7	46.0	-10.3
3.74	37.1	56.0	-18.9	37.1	46.0	-8.9
5.02	34.2	60.0	-25.8	34.2	50.0	-15.8
14.79	35.8	60.0	-24.2	35.8	50.0	-14.2
16.75	38.1	60.0	-21.9	38.1	50.0	-11.9
29.73	28.0	60.0	-32.0	28.0	50.0	-22.0