

FCC 47 CFR PART 15 SUBPART E

TEST REPORT

For

NetVanta 150

Trade Name: ADTRAN

Model: 1700412E1

Issued to

ADTRAN 901 Explorer Blvd. Huntsville Alabama 35806 U.S.A.

Issued by

Compliance Certification Services Inc. No. 81-1, Lane 210, Bade Rd. 2, Luchu Hsiang, Taoyuan Hsien, (338) Taiwan, R.O.C. http://www.ccsemc.com.tw service@tw.ccsemc.com

Note: This report shall not be reproduced except in full, without the written approval of Compliance Certification Services Inc. This document may be altered or revised by Compliance Certification Services Inc. personnel only, and shall be noted in the revision section of the document.

TABLE OF CONTENTS

1.	TES	T RESULT CERTIFICATION	
2.	EUT	DESCRIPTION	4
3.	TES	T METHODOLOGY	6
	3.1	EUT CONFIGURATION	6
	3.2	EUT EXERCISE	
	3.3	GENERAL TEST PROCEDURES	6
	3.4	FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS	7
	3.5	DESCRIPTION OF TEST MODES	7
4	INST	FRUMENT CALIBRATION	
	4.1	MEASURING INSTRUMENT CALIBRATION	
	4.2	MEASUREMENT EQUIPMENT USED	
5	FAC	ILITIES AND ACCREDITATIONS	9
	5.1	FACILITIES	9
	5.2	EQUIPMENT	
	5.3	TABLE OF ACCREDITATIONS AND LISTINGS	
6	SET	UP OF EQUIPMENT UNDER TEST	
	6.1	SETUP CONFIGURATION OF EUT	11
	6.2	SUPPORT EQUIPMENT	
7	FCC	PART 15 REQUIREMENTS	12
	7.1	26 DB EMISSION BANDWIDTH	
	7.2	PEAK POWER	15
	7.3	BAND EDGES MEASUREMENT	
	7.4	PEAK POWER SPECTRAL DENSITY	
	7.5	PEAK EXCURSION	
	7.6	RADIATED UNDESIRABLE EMISSION	
	7.7	CONDUCTED UNDESIRABLE EMISSION	
	7.8	POWERLINE CONDUCTED EMISSIONS	
	7.9	TRANSMISSION IN ABSENCE OF DATA	
	7.10	FREQUENCY STABILITY	
	7.11	DYNAMIC FREQUENCY SELECTION	
A	PPENI	DIX I RADIO FREQUENCY EXPOSURE	
A	PPENI	DIX II PHOTOGRAPHS OF TEST SETUP	

1. TEST RESULT CERTIFICATION

Applicant:	ADTRAN 901 Explorer Blvd. Huntsville Alabama 35806 U.S.A.
Equipment Under Test:	NetVanta 150
Trade Name:	ADTRAN
Model:	1700412E1
Date of Test:	August 5, 2006 ~ March 16, 2007

APPLICABLE S	TANDARDS
STANDARD	TEST RESULT
FCC 47 CFR Part 15 Subpart E	No non-compliance noted

We hereby certify that:

Compliance Certification Services Inc. tested the above equipment. The test data, data evaluation, test procedures, and equipment configurations shown in this report were made in accordance with the procedures given in ANSI C63.4: 2003 and the energy emitted by the sample EUT tested as described in this report is in compliance with conducted and radiated emission limits of FCC Rules Part 15.407.

The test results of this report relate only to the tested sample identified in this report.

Approved by:

Gavin Lim () Section Manager Compliance Certification Services Inc.

Reviewed by:

Amanda Wu Section Manager Compliance Certification Services Inc.

2. EUT DESCRIPTION

Product	NetVanta 150
Trade Name	ADTRAN
Model Number	1700412E1
Model Discrepancy	N/A
Power Supply	Model: LS-A8069-ADT1 I/P: 120V, 16W, 60Hz O/P: 12V, 800mA
Frequency Range	5.15 ~ 5.35 GHz
Transmit Power	14.49 dBm
Modulation Technique	OFDM (QPSK, BPSK, 16-QAM, 64-QAM)
Transmit Data Rate	54, 48, 36, 24, 18, 12, 9, 6 Mbps
Number of Channels	8 Channels
Antenna Specification	Gain: 3 dBi
Antenna Designation	Dipole-directional Antenna

Operation Frequency:

UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE (U-NII)				
CHANNEL	MHz			
36	5180			
40	5200			
44	5220			
48	5240			
52	5260			
56	5280			
60	5300			
64	5320			

- 1. The sample selected for test was engineering sample that approximated to production product and was provided by manufacturer.
- 2. This submittal(s) (test report) is intended for FCC ID: <u>HDC1700412E1</u> filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

3. TEST METHODOLOGY

Both conducted and radiated testing was performed according to the procedures in ANSI C63.4 Radiated testing was performed at an antenna to EUT distance 3 meters.

3.1EUT CONFIGURATION

The EUT configuration for testing is installed for RF field strength measurement to meet the Commissions requirement, and is operated in a manner intended to generate the maximum emission in a continuous normal application.

3.2EUT EXERCISE

The EUT is operated in the engineering mode to fix the Tx frequency for the purposes of measurement.

According to its specifications, the EUT must comply with the requirements of Section 15.407 under the FCC Rules Part 15 Subpart E.

3.3GENERAL TEST PROCEDURES

Conducted Emissions

The EUT is placed on the turntable, which is positioned at 0.8 m above the ground plane. According to the requirements in Section 13.1.4.1 of ANSI C63.4, the conducted emission from the EUT is measured in the frequency range between 0.15 MHz and 30MHz, using the CISPR Quasi-Peak detector mode.

Radiated Emissions

The EUT is placed on the turntable, which is 0.8 m above the ground plane. The turntable is then rotated for 360 degrees to determine the proper orientation for the maximum emission level. The EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission level. And, each emission is to be maximized by changing the horizontal and vertical polarization of the receiving antenna. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 13.1.4.1 of ANSI C63.4.

3.4FCC PART 15.205 RESTRICTED BANDS OF OPERATIONS

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 -	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.52525	2655 - 2900	22.01 - 23.12
8.41425 - 8.41475	156.7 - 156.9	3260 - 3267	23.6 - 24.0
12.29 - 12.293	162.0125 - 167.17	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	167.72 - 173.2	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	240 - 285	3600 - 4400	$(^{2})$
13.36 - 13.41	322 - 335.4		

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

(b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi-peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements.

3.5DESCRIPTION OF TEST MODES

The EUT (model: 1700412E1) had been tested under operating condition.

Software used to control the EUT for staying in continuous transmitting mode was programmed.

After verification, all tests were carried out with the worst case test modes as shown below except radiated spurious emission below 1GHz and power line conducted emissions below 30MHz, which worst case was in normal link mode only.

Channel Low (5180MHz), Channel Mid (5260MHz) and Channel High (5320MHz) with 6Mbps data rate were chosen for full testing.

4 INSTRUMENT CALIBRATION

4.1 MEASURING INSTRUMENT CALIBRATION

The measuring equipment, which was utilized in performing the tests documented herein, has been calibrated in accordance with the manufacturer's recommendations for utilizing calibration equipment, which is traceable to recognized national standards.

4.2MEASUREMENT EQUIPMENT USED

Equipment Used for Emissions Measurement

Remark: Each piece of equipment is scheduled for calibration once a year.

Conducted Emissions Test Site					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/30/2008	

3M Semi Anechoic Chamber						
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due		
Spectrum Analyzer	Agilent	E4446A	US42510252	08/02/2007		
Test Receiver	Rohde&Schwarz	ESCI	100064	11/13/2007		
Switch Controller	TRC	Switch Controller	SC94050010	05/05/2007		
4 Port Switch	TRC	4 Port Switch	SC94050020	05/05/2007		
Horn-Antenna	TRC	HA-0502	06	06/06/2007		
Horn-Antenna	TRC	HA-0801	04	05/05/2007		
Horn-Antenna	TRC	HA-1201A	01	07/10/2007		
Horn-Antenna	TRC	HA-1301A	01	07/18/2007		
Bilog- Antenna	Sunol Sciences	JB3	A030205	03/09/2008		
Turn Table	Max-Full	MFT-120S	T120S940302	N.C.R.		
Antenna Tower	Max-Full	MFA-430	A440940302	N.C.R.		
Controller	Max-Full	MF-CM886	CC-C-1F-13	N.C.R.		
Site NSA	CCS	N/A	FCC: 965860 IC: IC 6106	09/25/2008		
Test S/W	Test S/W LABVIEW (V 6.1)					

Remark: The measurement uncertainty is less than +/-2.0065dB (30MHz ~ 1GHz), +/-3.0958dB (Above 1GHz) which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

Powerline Conducted Emissions Test Site						
Name of Equipment	Serial Number	Calibration Due				
EMI TEST RECEIVER 9kHz-30MHz	ROHDE & SCHWARZ	ESHS30	828144/003	10/31/2007		
TWO-LINE V-NETWORK 9kHz-30MHz	SCHAFFNER	NNB41	03/10013	06/14/2007		
LISN 10kHz-100MHz	EMCO	3825/2	9106-1809	03/20/2008		
Test S/W LABVIEW (V 6.1)						

Remark: The measurement uncertainty is less than +/- 2.81dB, which is evaluated as per the NAMAS NIS 81 and CISPR/A/291/CDV.

DYNAMIC FREQUENCY SELECTION					
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due	
Spectrum Analyzer	Agilent	E4446A	MY43360131	01/30/2008	
Signal Generator	Agilent	E8267C	US42340162	12/05/2007	

5 FACILITIES AND ACCREDITATIONS

5.1FACILITIES

All measurement facilities used to collect the measurement data are located at

- No. 199, Chunghsen Road, Hsintien City, Taipei Hsien, Taiwan, R.O.C.
 Tel: 886-2-2217-0894 / Fax: 886-2-2217-1029
- No. 11, Wugong 6th Rd., Wugu Industrial Park, Taipei Hsien 248, Taiwan Tel: 886-2-2299-9720 / Fax: 886-2-2298-4045
- No.81-1, Lane 210, Bade 2nd Rd., Luchu Hsiang, Taoyuan Hsien 338, Taiwan Tel: 886-3-324-0332 / Fax: 886-3-324-5235

The sites are constructed in conformance with the requirements of ANSI C63.7, ANSI C63.4 and CISPR Publication 22.

5.2EQUIPMENT

Radiated emissions are measured with one or more of the following types of linearly polarized antennas: tuned dipole, biconical, log periodic, bi-log, and/or ridged waveguide, horn. Spectrum analyzers with pre-selectors and quasi-peak detectors are used to perform radiated measurements.

Conducted emissions are measured with Line Impedance Stabilization Networks and EMI Test Receivers.

Calibrated wideband preamplifiers, coaxial cables, and coaxial attenuators are also used for making measurements.

All receiving equipment conforms to CISPR Publication 16-1, "Radio Interference Measuring Apparatus and Measurement Methods."

5.3TABLE OF ACCREDITATIONS AND LISTINGS

Country	Agency		Logo
USA	A2LA	EN 55011, EN 55014-1/2, CISPR 11, CISPR 14-1/2, EN 55022, EN 55015, CISPR 22, CISPR 15, AS/NZS 3548, VCCI V3 (2001), CFR 47, FCC Part 15/18, CNS 13783-1, CNS 13439, CNS 13438, CNS 13803, CNS 14115, EN 55024, IEC 801-2, IEC 801-3, IEC 801-4, IEC/EN 61000-3-2, EIC/EN 61000-3-3, IEC/EN 61000-4-2/3/4/5/6/8/11, EN 50081-1/ EN 61000-6-3, EN 50081-2/EN 61000-6-4, EN 50081-2/EN 61000-6-1: 2001	ACCREDITED 0824-01
USA	FCC	3/10 meter Open Area Test Sites (93105, 90471) / 3M Semi Anechoic Chamber (965860) to perform FCC Part 15/18 measurements	FCC 93105, 90471 965860
Japan	VCCI	3/10 meter Open Area Test Sites to perform conducted/radiated measurements	VCCI R-393/1066/725/879 C-402/747/912
Norway	NEMKO	EN 50081-1/2, EN 50082-1/2, IEC 61000-6-1/2, EN 50091-2, EN 50130-4, EN 55011, EN 55013, EN 55014-1/2, EN 55015, EN 55022, EN 55024, EN 61000-3-2/3, EN 61326-1, IEC 61000-4-2/3/4/5/6/8/11, EN 60601-1-2, EN 300 328, EN 300 422-2, EN 301 419-1, EN 301 489-01/03/07/08/09/17, EN 301 419-2/3, EN 300 454-2, EN 301 357-2	ELA 124a ELA 124b ELA 124c
Taiwan	TAF	EN 300 328, EN 300 220-1, EN 300 220-2, EN 300 220-3, 47 CFR FCC Part 15 Subpart C, EN 61000-3-2, EN 61000-3-3, CNS 13439, CNS 13783-1, CNS 14115, CNS 13438, AS/NZS CISPR 22, CNS 13022-1, IEC 61000-4-2/3/4/5/6/8/11, CNS 13022-2/3	Testing Laboratory 0363
Taiwan	BSMI	CNS 13438, CNS 13783-1, CNS 13439, CNS 14115	SL2-IS-E-0014 SL2-IN-E-0014 SL2-A1-E-0014 SL2-R1-E-0014 SL2-R2-E-0014 SL2-L1-E-0014
Canada	Industry Canada	3/10 meter Open Area Test Sites (IC 2324C-3, IC 2324C-5) / 3M Semi Anechoic Chamber (IC 6106) to perform RSS 212 Issue 1	Canada IC 2324C-3 IC 2324C-5 IC 6106

No part of this report may be used to claim or imply product endorsement by A2LA or any agency of the US Government.

6 SETUP OF EQUIPMENT UNDER TEST

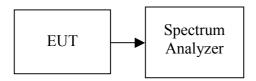
6.1 SETUP CONFIGURATION OF EUT

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

6.2 SUPPORT EQUIPMENT

No.	Device Type	Brand	Model	Series No.	FCC ID	Data Cable	Power Cord
1.	Wireless PCI Card	ZCOM	AG-621	AG62145NE00032	M4Y-0AG621	N/A	N/A
2.	Test kit	N/A	N/A	N/A	N/A	N/A	N/A
3.	Notebook PC (Remote)	IBM	2672 (X31)	9985H9M	WLAN: ANO20030400LEG Bluetooth: ANO20020100MTN	Unshielded, 10m Line Cable:	AC I/P: Unshielded, 1.8m DC O/P: Unshielded, 1.8m with a core

- 1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.
- 2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.



7 FCC PART 15 REQUIREMENTS7.1 26 DB EMISSION BANDWIDTH

LIMIT

According to §15.403(i), Emission bandwidth. For purposes of this subpart the emission bandwidth shall be determined by measuring the width of the signal between two points, one below the carrier center frequency and one above the carrier center frequency, that are 26 dB down relative to the maximum level of the modulated carrier. Determination of the emissions bandwidth is based on the use of measurement instrumentation employing a peak detector function with an instrument resolution bandwidth approximately equal to 1.0 percent of the emission bandwidth of the device under measurement.

Test Configuration

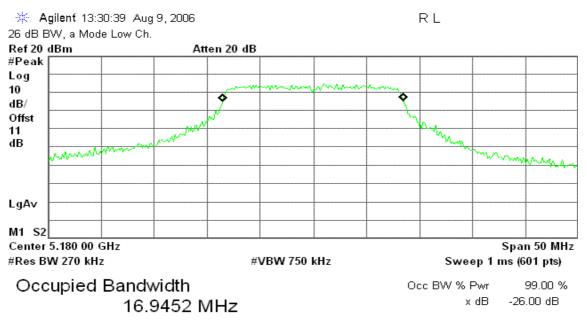
TEST PROCEDURE

- 1. Place the EUT on the table and set it in the transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low-loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 1%EBW, VBW = RBW, Span = 50MHz / 100MHz (Turbo Mode), and Sweep = auto.
 - Or Set the spectrum analyzer as RBW > 1%EBW, VBW > RBW, Span >26dB bandwidth (Base Mode) / >26dB bandwidth (Turbo Mode), and Sweep = auto.
- 4. Mark the peak frequency and –26dB (upper and lower) frequency.
- 5. Repeat until all the rest channels were investigated.

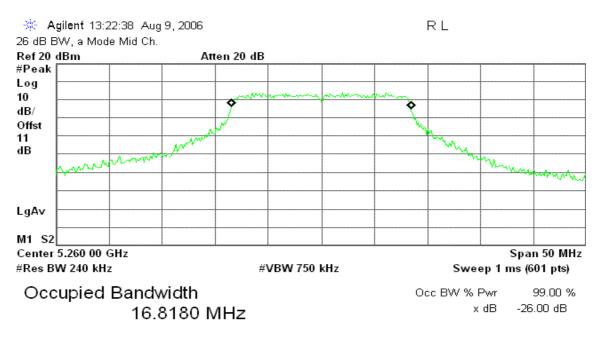
TEST RESULTS

No non-compliance noted

<u>Test Data</u>

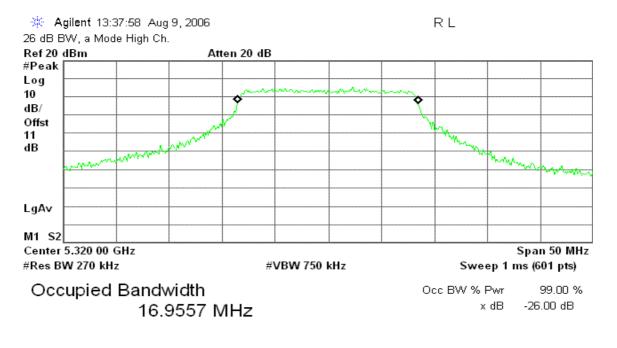

Channel	Frequency (MHz)	Bandwidth (B) (MHz)
Low	5180	23.645
Mid	5260	23.775
High	5320	23.184

Test Plot


IEEE 802.11a

CH Low

Transmit Freq Error	-20.155 kHz
x dB Bandwidth	23.645 MHz


CH Mid

Transmit Freq Error x dB Bandwidth -23.296 kHz 23.775 MHz

CH High

Transmit Freq Error	-43.902 kHz
x dB Bandwidth	23.184 MHz

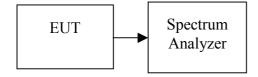
7.2 PEAK POWER

LIMIT

According to §15.407(a),

- (1) For the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed the lesser of 50 mW or 4 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz.
- (2) For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10log B, where B is the 26 dB emission bandwidth in MHz.

If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.


The peak power shall not exceed the limit as follow:

Frequency (MHz)	26 dB Bandwidth (B) (MHz)	10 Log B (dB)	Limit 4 + 10 Log B or 11 + 10 Log B (dBm)	Power Limit (dBm)
5180	23.645	13.74	17.74	17.00
5260	23.775	13.76	24.76	24.00
5320	23.184	13.65	24.65	24.00

Test Configuration

The EUT was connected to a spectrum analyzer through a 50 Ω RF cable.

TEST PROCEDURE

Set span to encompass the entire emission bandwidth (EBW) of the signal.

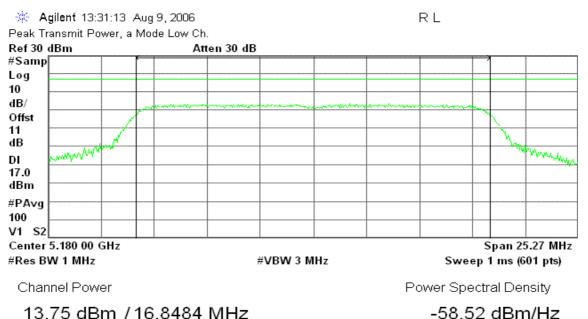
Set RBW = 1 MHz / Set VBW = 3 MHz.

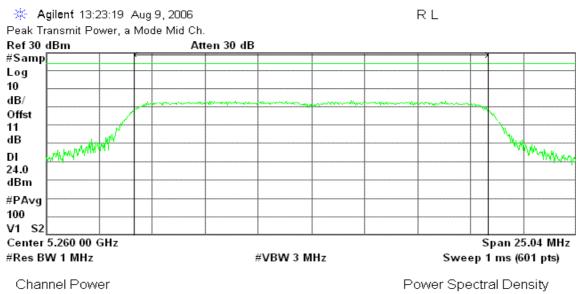
Use sample detector mode if bin width (i.e., span/number of points in spectrum display) < 0.5 RBW. Otherwise use peak detector mode. Use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at full control power for entire sweep of every sweep. If the device transmits continuously, with no off intervals or reduced power intervals, the trigger may be set to "free run". Trace average 100 traces in power averaging mode. Compute power by integrating the spectrum across the 26 dB EBW of the signal. The integration can be performed using the spectrum analyzer's band power measurement function with band limits set equal to the EBW band edges or by summing power levels in each 1 MHz band in linear power terms. The 1 MHz band power levels to be summed can be obtained by averaging, in linear power terms, power levels in each frequency bin across the 1 MHz.

TEST RESULTS

No non-compliance noted

<u>Test Data</u>

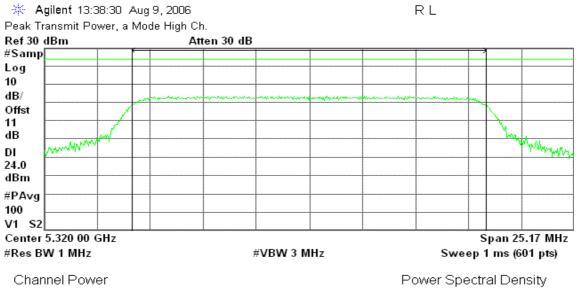

Channel	Frequency (MHz)	Output Power (dBm)	Limit (dBm)		
Low	5180	13.75	17.00		
Mid	5260	14.08	24.00		
High	5320	14.49	24.00		


Test Plot

IEEE 802.11a

CH Low

CH Mid



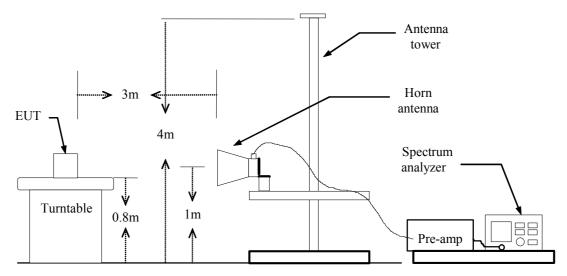
14.08 dBm / 16.6964 MHz

-58.15 dBm/Hz

CH High

14.49 dBm / 16.7767 MHz

-57.76 dBm/Hz


7.3 BAND EDGES MEASUREMENT

LIMIT

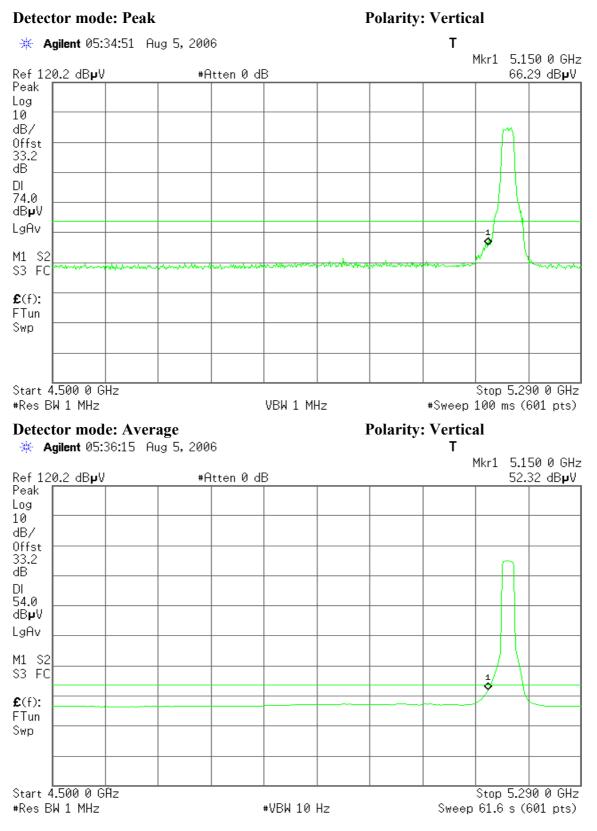
According to §15.407(b),

- 1. The provisions of Section 15.205 of this part apply to intentional radiators operating under this section.
- 2. When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the upper and lower frequency block edges as the design of the equipment permits.

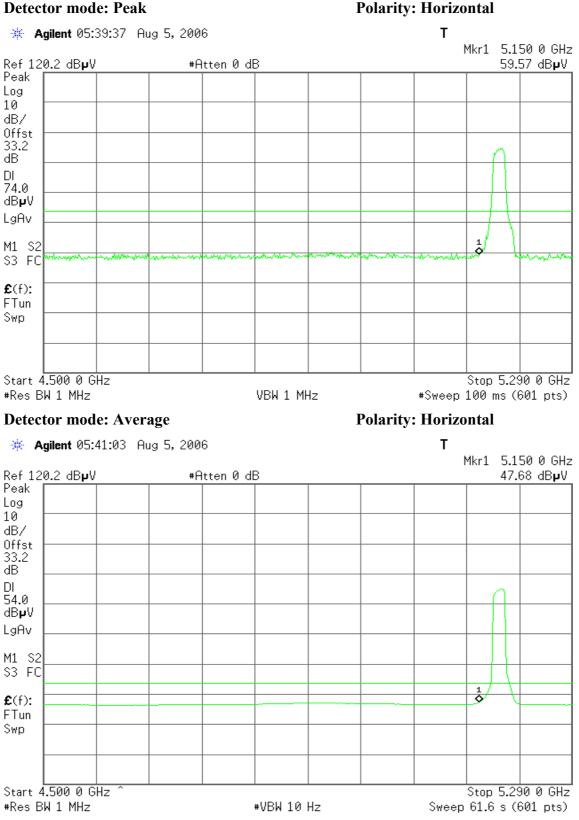
Test Configuration

TEST PROCEDURE

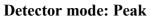
- 1. The EUT is placed on a turntable, which is 0.8m above the ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emission.
- 4. Set the spectrum analyzer in the following setting in order to capture the lower and upper band-edges of the emission:
 - (a) PEAK: RBW=VBW=1MHz / Sweep=AUTO
 - (b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO
- 5. Repeat the procedures until all the PEAK and AVERAGE versus POLARIZATION are measured.

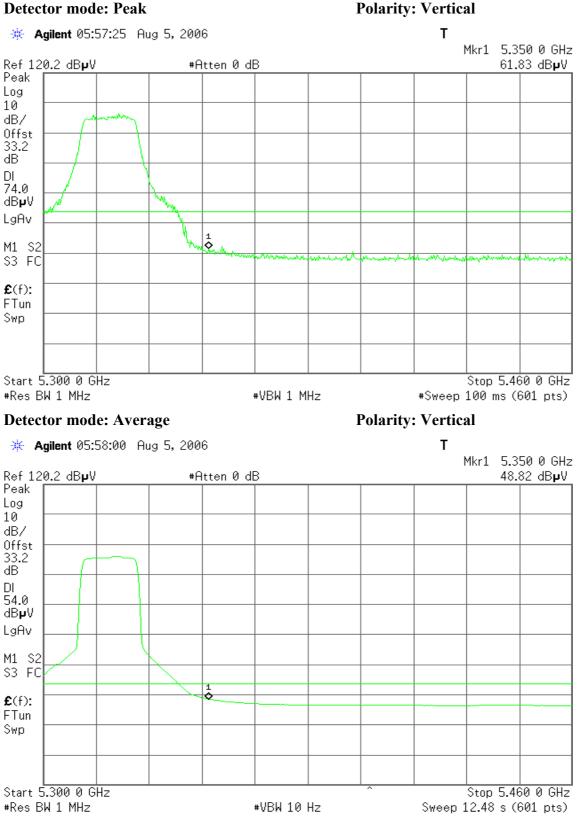

TEST RESULTS

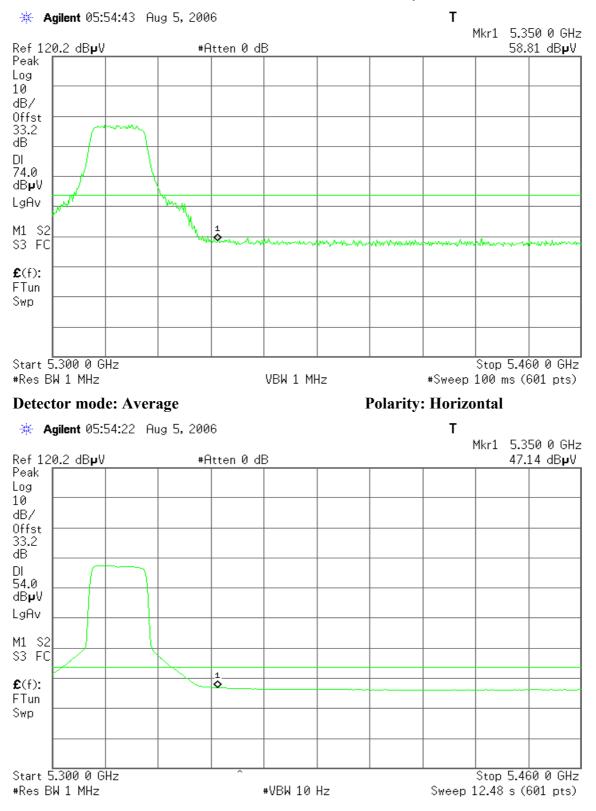
Refer to attach spectrum analyzer data chart.


Test Plot

IEEE 802.11a / CH Low



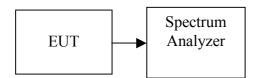

Detector mode: Peak


IEEE 802.11a / CH High

Detector mode: Peak

Polarity: Horizontal

7.4 PEAK POWER SPECTRAL DENSITY


LIMIT

According to §15.407(a),

- (1) For the band 5.15-5.25 GHz, the peak power spectral density shall not exceed 4dBm in any 1MHz band.
- (2) For the band 5.25-5.35 GHz, the peak power spectral density shall not exceed 11dBm in any 1MHz band.

If transmitting antennas of directional gain greater than 6dBi are used, both the peak transmit power and the peak power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

Test Configuration

TEST PROCEDURE

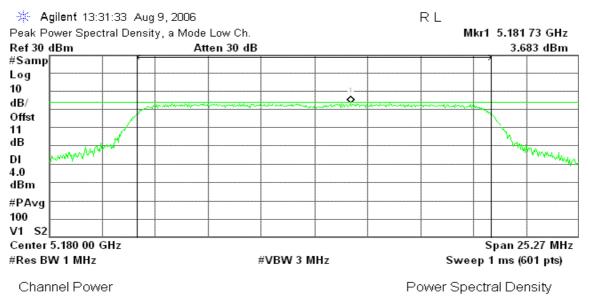
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW = 1MHz, VBW = 3MHz, Span = Base mode: 25MHz / Turbo mode: 50MHz, Sweep=Auto.
- 4. Record the max. reading.

Repeat the above procedure until the measurements for all frequencies are completed.

TEST RESULTS

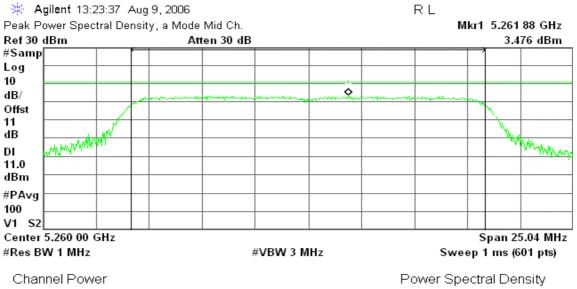
No non-compliance noted

<u>Test Data</u>


Channel	Frequency (MHz)	PPSD (dBm)	Limit (dBm)	Margin (dB)	Result
Low	5180	3.68	4.00	-0.32	PASS
Mid	5260	3.48	11.00	-7.52	PASS
High	5320	3.72	11.00	-7.28	PASS

Test Plot

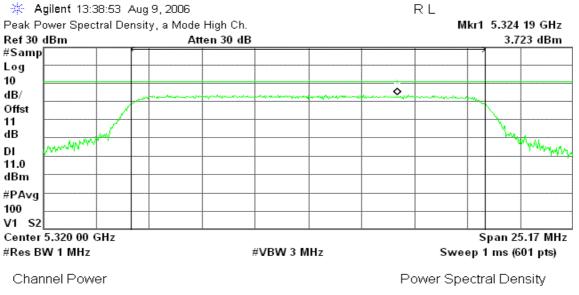
<u>IEEE 802.11a</u>


CH Low

13.91 dBm / 16.8484 MHz

-58.36 dBm/Hz

CH Mid



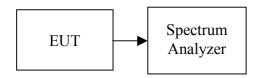
13.68 dBm / 16.6964 MHz

-58.54 dBm/Hz

CH High

14.59 dBm / 16.7767 MHz

-57.66 dBm/Hz



7.5 PEAK EXCURSION

LIMIT

According to §15.407(a)(6), the ratio of the peak excursion of the modulation envelope (measured using a peak hold function) to the maximum conducted output power (measured as specified above) shall not exceed 13 dB across any 1 MHz bandwidth or the emission bandwidth whichever is less.

Test Configuration

TEST PROCEDURE

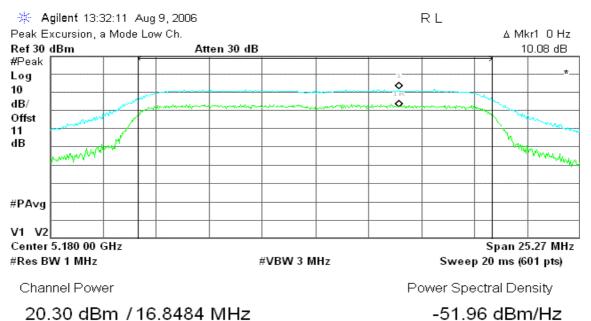
The test is performed in accordance with <FCC Public Notice: APPENDIX A Guidelines for Assessing Unlicensed National Information Infrastructure (U-NII) Devices> – Part 15, Subpart E, August 2002.

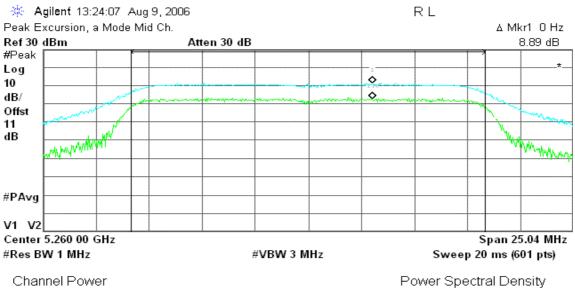
- 1. Place the EUT on the table and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to spectrum.
- 3. Trace A, Set RBW =1MHz, VBW = 3MHz, Span >26dB bandwidth (Base Mode) / >26dB bandwidth (Turbo Mode), Max. hold.
- 4. Trace B, Set RBW = 1MHz, VBW = 30kHz, Span >26dB bandwidth (Base Mode) / >26dB bandwidth (Turbo Mode), Max. hold.
- 5. Delta Mark trace A Maximum frequency and trace B same frequency.
- 6. Repeat the above procedure until measurements for all frequencies were complete.

TEST RESULTS

No non-compliance noted

<u>Test Data</u>

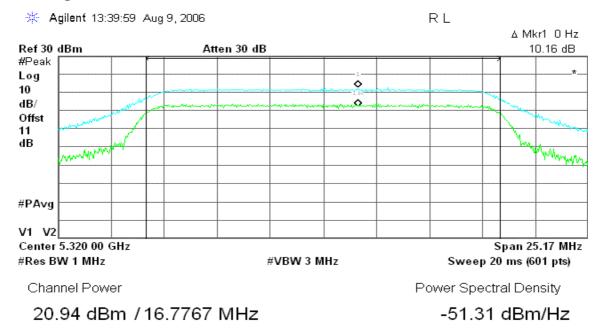

Channel	Frequency (MHz)	Peak Excursion (dB)	Limit (dB)	Margin (dB)	Result
Low	5180	10.08	13.00	-2.92	PASS
M id	5260	8.89	13.00	-4.11	PASS
High	5320	10.16	13.00	-2.84	PASS


Test Plot

IEEE 802.11a

CH Low

CH Mid



20.49 dBm / 16.6964 MHz

-51.74 dBm/Hz

CH High

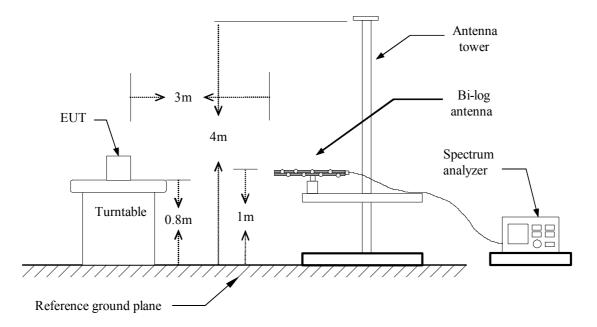
7.6RADIATED UNDESIRABLE EMISSION

LIMIT

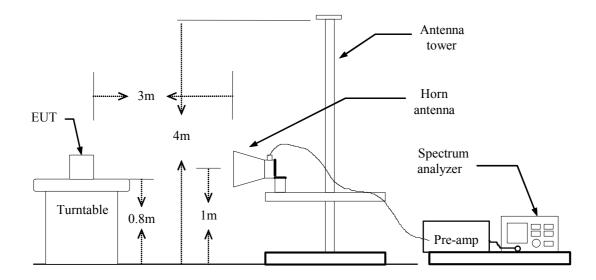
1. According to §15.209(a), except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (µV/m)	Measurement Distance (m)
30-88	100*	3
88-216	150*	3
216-960	200*	3
Above 960	500	3

Remark: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


2. In the emission table above, the tighter limit applies at the band edges.

Frequency (MHz)	Field Strength (μV/m at 3-meter)	Field Strength (dBµV/m at 3-meter)
30-88	100	40
88-216	150	43.5
216-960	200	46
Above 960	500	54



Test Configuration

Below 1 GHz

Above 1 GHz

TEST PROCEDURE

- 1. The EUT is placed on a turntable, which is 0.8m above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Set the spectrum analyzer in the following setting as:

Below 1GHz:

Above 1GHz:

(a) PEAK: RBW=VBW=1MHz / Sweep=AUTO

(b) AVERAGE: RBW=1MHz / VBW=10Hz / Sweep=AUTO

7. Repeat above procedures until the measurements for all frequencies are complete.

TEST RESULTS

Below 1 GHz

Operation Mode:	Normal Link	Test Date:	August 10, 2006
Temperature:	22°C	Tested by:	Rex Lai
Humidity:	52% RH	Polarity:	Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (dBuV)	Correction Factor (dB/m)	Result (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Remark
38.08	V	44.20	-11.60	32.60	40.00	-7.40	QP
249.87	V	53.51	-14.56	38.95	46.00	-7.05	Peak
400.22	V	45.78	-10.00	35.78	46.00	-10.22	Peak
450.33	V	45.04	-8.73	36.31	46.00	-9.69	Peak
629.78	V	43.86	-5.34	38.51	46.00	-7.49	Peak
809.23	V	39.19	-2.93	36.25	46.00	-9.75	Peak
249.87	Н	52.10	-14.56	37.53	46.00	-8.47	Peak
359.80	Н	42.61	-10.42	32.19	46.00	-13.81	Peak
400.22	Н	48.32	-10.00	38.32	46.00	-7.68	Peak
629.78	Н	38.40	-5.34	33.05	46.00	-12.95	Peak
720.32	Н	37.72	-4.30	33.42	46.00	-12.58	Peak
809.23	Н	37.04	-2.93	34.10	46.00	-11.90	Peak

- 1. Measuring frequencies from 30 MHz to the 1GHz.
- 2. Radiated emissions measured in frequency range from 30 MHz to 1000MHz were made with an instrument using peak/quasi-peak detector mode.
- 3. *Quasi-peak test would be performed if the peak result were greater than the quasi-peak limit or as required by the applicant.*
- 4. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 5. Margin (dB) = Remark result (dBuV/m) Quasi-peak limit (dBuV/m).

Above 1 GHz

Operation Mode: Tx / IEEE 802.11a / CH Low **Temperature:** 22°C

Humidity: 52% RH

Test Date: August 8, 2006 Tested by: Rex Lai Polarity: Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
10350.00	V	52.68	38.99	12.76	65.44	51.75	74.00	54.00	-2.25	AVG
N/A										
4406.67	Н	54.92		-5.00	49.92		74.00	54.00	-4.08	Peak
10350.00	Н	40.43		12.76	53.19		74.00	54.00	-0.81	Peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "---" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Operation Mode: Tx / IEEE 802.11a / CH Mid

Temperature: 24°C

Humidity: 51% RH

Test Date: August 8, 2006 Tested by: Rex Lai Polarity: Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
10516.67	V	50.82	36.30	13.64	64.46	49.94	74.00	54.00	-4.06	AVG
N/A										
10050.00	Н	40.30		11.06	51.36		74.00	54.00	-2.64	Peak
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).

Operation Mode: Tx / IEEE 802.11a / CH High

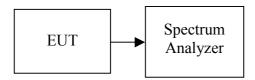
Temperature: 24°C

Humidity: 51% RH

Test Date: August 8, 2006 Tested by: Rex Lai Polarity: Ver. / Hor.

Frequency (MHz)	Ant.Pol. (H/V)	Reading (Peak) (dBuV)	Reading (Average) (dBuV)	Correction Factor (dB/m)	Result (Peak) (dBuV/m)	Result (Average) (dBuV/m)	Limit (Peak) (dBuV/m)	Limit (Average) (dBuV/m)	Margin (dB)	Remark
10650.00	V	49.89	35.01	13.82	63.71	48.83	74.00	54.00	-5.17	AVG
N/A										
N/A										

- 1. Measuring frequencies from 1 GHz to the 10th harmonic of highest fundamental frequency.
- 2. Radiated emissions measured in frequency above 1000MHz were made with an instrument using peak/average detector mode.
- 3. Average test would be performed if the peak result were greater than the average limit.
- 4. Data of measurement within this frequency range shown "----" in the table above means the reading of emissions are attenuated more than 20dB below the permissible limits or the field strength is too small to be measured.
- 5. Measurements above show only up to 6 maximum emissions noted, or would be lesser, with "*N/A*" remark, if no specific emissions from the EUT are recorded (ie: margin>20dB from the applicable limit) and considered that's already beyond the background noise floor.
- 6. Margin (dB) = Remark result (dBuV/m) Average limit (dBuV/m).


7.7CONDUCTED UNDESIRABLE EMISSION

LIMIT

According to 15.407(b),

- (1) For transmitters operating in the 5.15-5.25 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: all emissions outside of the 5.15-5.35 GHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5.25-5.35 GHz band that generate emissions in the 5.15-5.25 GHz band must meet all applicable technical requirements for operation in the 5.15-5.25 GHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5.15-5.25 GHz band.

Test Configuration

TEST PROCEDURE

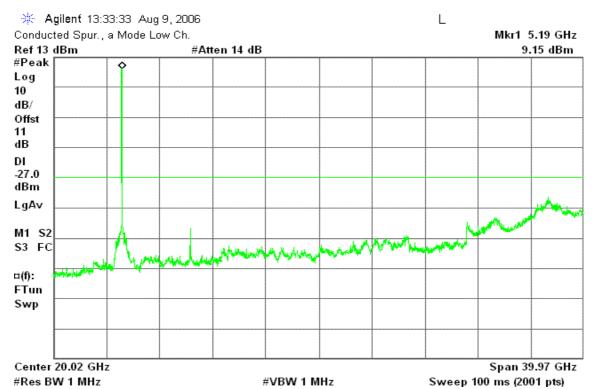
Conducted RF measurements of the transmitter output were made to confirm that the EUT antenna port conducted emissions meet the specified limit and to identify any spurious signals that require further investigation or measurements on the radiated emissions site.

The transmitter output is connected to the spectrum analyzer. The resolution bandwidth is set to 1 MHz. The video bandwidth is set to 1 MHz. Peak detector measurements are compared to the average EIRP limit, adjusted for the maximum antenna gain. If necessary, additional average detection measurements are made.

Measurements are made over the 30 MHz to 40 GHz range with the transmitter set to the lowest, middle, and highest channels.

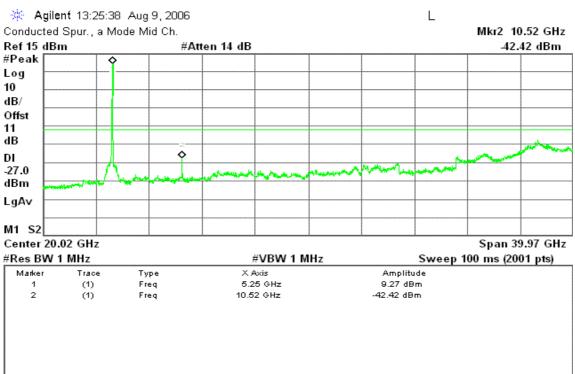
TEST RESULTS

No non-compliance noted



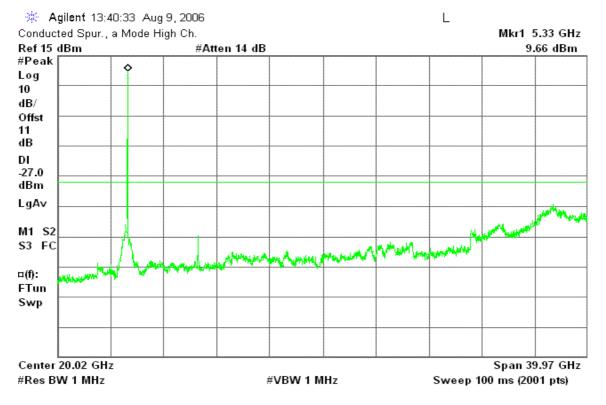
Test Plot

IEEE 802.11a


CH Low

30MHz ~ 40GHz

CH Mid


30MHz ~ 40GHz

CH High

30MHz ~ 40GHz

7.8POWERLINE CONDUCTED EMISSIONS

LIMIT

According to \$15.207(a), except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequency ranges.

Frequency Range	Lim (dBj	
(MHz)	Quasi-peak	Average
0.15 to 0.50	66 to 56*	56 to 46*
0.50 to 5	56	46
5 to 30	60	50

* Decreases with the logarithm of the frequency.

TEST CONFIGURATION

See test photographs attached in Appendix 1 for the actual connections between EUT and support equipment.

TEST PROCEDURE

- 1. The EUT was placed on a table, which is 0.8m above ground plane.
- 2. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 3. Repeat above procedures until all frequency measured were complete.

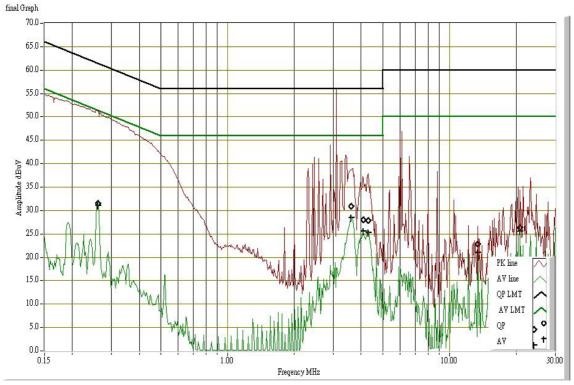
TEST RESULTS

The initial step in collecting conducted data is a spectrum analyzer peak scan of the measurement range. Significant peaks are then marked as shown on the following data page, and these signals are then quasi-peaked.

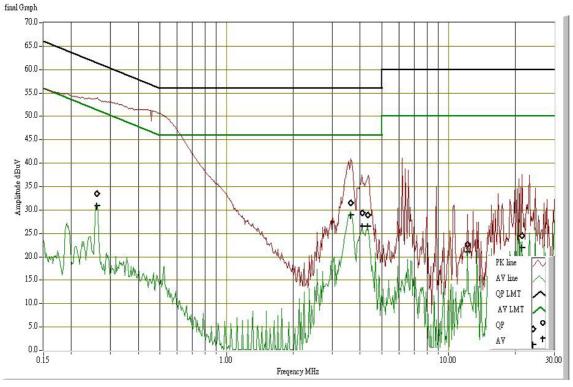
Test Data

Operation Mode:	Normal Link	Test Date:	February 13, 2007
Temperature:	25°C	Tested by:	Ming Chen
Humidity:	55% RH		

Freq. (MHz)	QP Reading (dBuV)	AV Reading (dBuV)	Corr. factor (dB)	QP Result (dBuV)	AV Result (dBuV)	QP Limit (dBuV)	AV Limit (dBuV)	QP Margin (dB)	AV Margin (dB)	Note
0.260	31.430	31.020	0.100	31.530	31.120	61.431	51.431	-29.901	-20.311	L1
3.604	30.910	28.390	0.100	31.010	28.490	56.000	46.000	-24.990	-17.510	L1
4.095	27.950	25.520	0.109	28.059	25.629	56.000	46.000	-27.941	-20.371	L1
4.295	27.860	25.330	0.130	27.990	25.460	56.000	46.000	-28.010	-20.540	L1
13.422	22.790	21.060	0.768	23.558	21.828	60.000	50.000	-36.442	-28.172	L1
20.805	26.400	25.540	1.200	27.600	26.740	60.000	50.000	-32.400	-23.260	L1
0.260	33.410	30.950	0.100	33.510	31.050	61.431	51.431	-27.921	-20.381	L2
3.633	31.470	28.910	0.100	31.570	29.010	56.000	46.000	-24.430	-16.990	L2
4.095	29.320	26.420	0.109	29.429	26.529	56.000	46.000	-26.571	-19.471	L2
4.329	28.950	26.530	0.133	29.083	26.663	56.000	46.000	-26.917	-19.337	L2
12.198	22.720	20.980	0.744	23.464	21.724	60.000	50.000	-36.536	-28.276	L2
21.478	24.570	21.840	1.200	25.770	23.040	60.000	50.000	-34.230	-26.960	L2


Remark:

- 1. Measuring frequencies from 0.15 MHz to 30MHz.
- 2. The emissions measured in frequency range from 0.15 MHz to 30MHz were made with an instrument using Quasi-peak detector and average detector.
- 3. The IF bandwidth of SPA between 0.15MHz to 30MHz was 10kHz; the IF bandwidth of Test Receiver between 0.15MHz to 30MHz was 9kHz;
- 4. L1 = Line One (Live Line) / L2 = Line Two (Neutral Line)



Test Plots

Conducted emissions (Line 1)

Conducted emissions (Line 2)

7.9TRANSMISSION IN ABSENCE OF DATA

LIMIT

According to §15.319(f), the device shall automatically discontinue transmission in case of either absence of information to transmit or operational failure. These provisions are not intended to preclude transmission of control and signaling information or use of repetitive codes used by certain digital technologies to complete frame or burst intervals.

Applicants shall include in their application for equipment authorization a description of how this requirement is met.

TEST RESULTS

No non-compliance noted

Remark: For the details, please refer to the user's manual.

7.10 FREQUENCY STABILITY

LIMIT

According to §15.407(g), manufacturers of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

TEST RESULTS

Please refer to the user's manual for further details.

Remark: An examination of the band-edge plots shows that the emission will stay within the authorized band over the entire temperature range.

7.11 DYNAMIC FREQUENCY SELECTION

LIMIT

According to §15.407 (h) and FCC 06-96 appendix "compliance measurement procedures for unlicensed-national information infrastructure devices operating in the 5250-5350 MHz and 5470-5725 MHz bands incorporating dynamic frequency selection".

Dequinement	Operational Mode					
Requirement	Master	Client (without radar detection)	Client (with radar detection)			
Non-Occupancy Period	Yes	Not required	Yes			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Availability Check Time	Yes	Not required	Not required			
Uniform Spreading	Yes	Not required	Not required			

Table 1: Applicability of DFS requirements prior to use of a channel

Table 2: Applicability of DFS requirements during normal operation

Dequirement	Operational Mode					
Requirement	Master	Client (without radar detection)	Client (with radar detection)			
DFS Detection Threshold	Yes	Not required	Yes			
Channel Closing Transmission Time	Yes	Yes	Yes			
Channel Move Time	Yes	Yes	Yes			

Table 3: Interference Threshold values, Master or Client incorporating In-Service

Maximum Transmit Power	Value (see note)
>=200 Milliwatt	-64 dBm
< 200 Milliwatt	-62 dBm
Note 1. This is the lovel at the input of the provision economy	

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna. Note 2: Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

Table 4: DFS Response requirement values						
Parameter	Value					
Non-occupancy period	30 minutes					
Channel Availability Check Time	60 seconds					
Channel Move Time	10 seconds					
Channel Closing Transmission Time	200 milliseconds + approx. 60 milliseconds over remaining 10 second period					

Table 4: DFS Response requirement values

The instant that the Channel Move Time and the Channel Closing Transmission Time begins is as follows:

• For the Short pulse radar Test Signals this instant is the end of the Burst.

- For the Frequency Hopping radar Test Signal, this instant is the end of the last radar burst generated.
- For the Long Pulse radar Test Signal this instant is the end of the 12 second period defining the radar transmission.

The Channel Closing Transmission Time is comprised of 200 milliseconds starting at the beginning of the Channel Move Time plus any additional intermittent control signals required to facilitate channel changes (an aggregate of approximately 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

Table 5 – Short Pulse Radar Test Waveforms

Radar Type	Pulse Width (Microseconds)	PRI (Microseconds)	Pulses	Minimum Percentage of Successful Detection	Minimum Trials
1	1	1428	18	60%	30
2	1-5	150-230	23-29	60%	30
3	6-10	200-500	16-18	60%	30
4	11-20	200-500	12-16	60%	30
Aggregate (R	adar Types 1-4)	·		80%	120

Table 6 – Long Pulse Radar Test Signal

Radar Waveform	Bursts	Pulses per Burst	Pulse Width (µsec)	Chirp Width (µsec)		Minimum Percentage of Successful Detection	Minimum Trials
5	8-20	1-3	50-100	5-20	1000-2000	80%	30

Table 7 – Frequency Hopping Radar Test Signal

Radar Waveform	Pulse Width (µsec)	PRI (µsec)	Burst Length (ms)	Pulses Per Hop	Hopping Rate (kHz)	Minimum Percentage of Successful Detection	Minimum Trials
6	1	333	300	9	0.33	70%	30

DESCRIPTION OF EUT

Overview Of EUT With Respect To §15.407 (H) Requirements

The EUT operates over the 5250-5350 MHz.

The EUT is a Master Device.

The antenna assembly utilized with the EUT has a gain of 3 dBi.

The highest power level within these bands is 14.49 dBm EIRP in the 5250-5350 MHz band.

The rated output power of the Master unit is < 23dBm (EIRP). Therefore the required interference threshold level is -62 dBm.

After correction for antenna gain and procedural adjustments, the required conducted threshold at the antenna port is -62 + 3 = -59 dBm.

The calibrated conducted DFS Detection Threshold level is set to -59 dBm. The tested level is lower than the required level hence it provides margin to the limit.

The EUT uses one transmitter connected to two 50-ohm coaxial antenna ports via a diversity switch. Both antenna ports are connected to the test system via a power divider to perform conducted tests.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic is generated by streaming the video file TestFile.mp2 "6 ½ Magic Hours" from the Master to the Slave in full motion video mode using the media player with the V2.61 Codec package.

TPC is not required since the maximum EIRP is less than 500 mW (27 dBm).

The EUT utilizes the 802.11a architecture, with a nominal channel bandwidth of 20 MHz.

Test results show that the EUT requires 1.62 seconds to complete its initial power-up cycle.

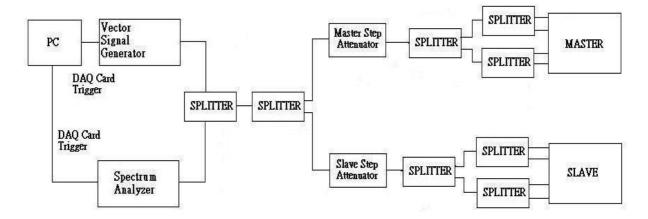
Manufacturer's Statement Regarding Uniform Channel Spreading

The end product implements an automatic channel selection feature at startup such that operation commences on channels distributed across the entire set of allowed 5GHz channels. This feature will ensure uniform spreading is achieved while avoiding non-allowed channels due to prior radar events.

TEST AND MEASUREMENT SYSTEM

System Overview

The measurement system is based on a conducted test method.


The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of FCC 06-96 APPENDIX. The frequency of the signal generator is incremented in 1 MHz steps from FL to FH for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer set to display 8001 bins on the horizontal axis. The time-domain resolution is 2 msec / bin with a 16 second sweep time, meeting the 10 second short pulse reporting criteria. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold. The time-domain resolution is 3 msec / bin with a 24 second sweep time, meeting the 22 second long pulse reporting criteria and allowing a minimum of 10 seconds after the end of the long pulse waveform.

Should multiple RF ports be utilized for the Master and/or Slave devices (for example, for diversity or MIMO implementations), 50 ohm termination would be removed from the splitter so that connection can be established between splitter and the Master and/or Slave devices.

Conducted Method System Block Diagram

System Calibration

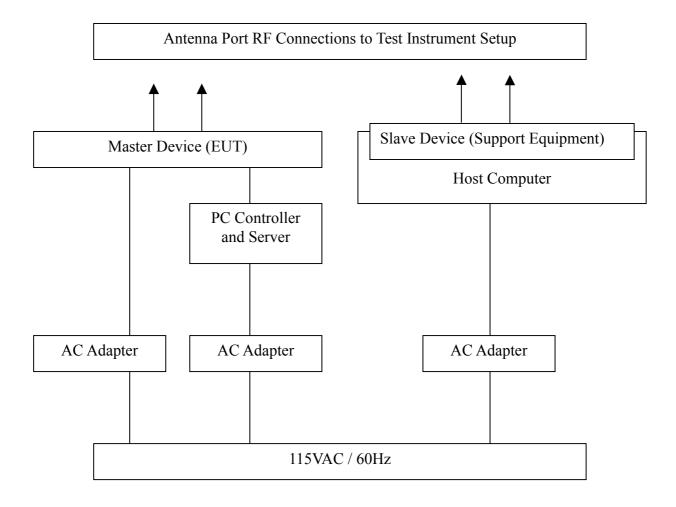
Connect the spectrum analyzer to the test system in place of the master device. Set the signal generator to CW mode. Adjust the amplitude of the signal generator to yield a measured level of -62 dBm on the spectrum analyzer.

Without changing any of the instrument settings, reconnect the spectrum analyzer to the Common port of the Spectrum Analyzer Combiner/Divider and connect a 50 ohm load to the Master Device port of the test system.

Measure the amplitude and calculate the difference from -62 dBm. Adjust the Reference Level Offset of the spectrum analyzer to this difference. Confirm that the signal is displayed at -62 dBm. Readjust the RBW and VBW to 3 MHz, set the span to 10 MHz, and confirm that the signal is still displayed at -62 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of -62 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

Set the signal generator to produce a radar waveform, trigger a burst manually and measure the level on the spectrum analyzer. Readjust the amplitude of the signal generator as required so that the peak level of the waveform is at a displayed level equal to the required or desired interference detection threshold. Separate signal generator amplitude settings are determined as required for each radar type.


Adjustment Of Displayed Traffic Level

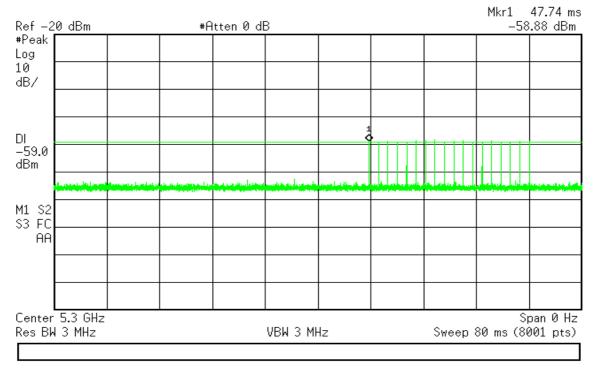
Establish a link between the Master and Slave, adjusting the Link Step Attenuator as needed to provide a suitable received level at the Master and Slave devices. Stream the video test file to generate WLAN traffic. Confirm that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold. Confirm that the displayed traffic is from the Master Device. For Master Device testing confirm that the displayed traffic does not include Slave Device traffic. For Slave Device testing confirm that the displayed traffic does not include Master Device traffic.

If a different setting of the Master Step Attenuator is required to meet the above conditions, perform a new System Calibration for the new Master Step Attenuator setting.

Test Setup

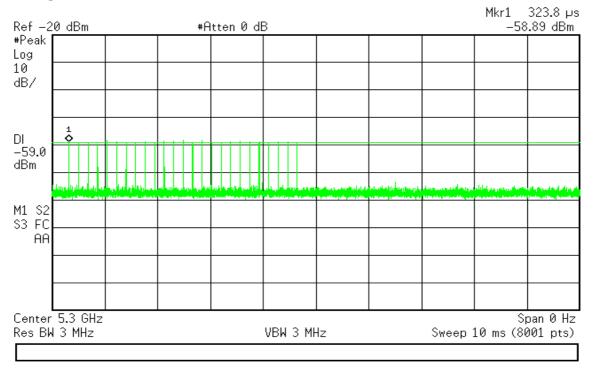
TEST RESULTS

No non-compliance noted

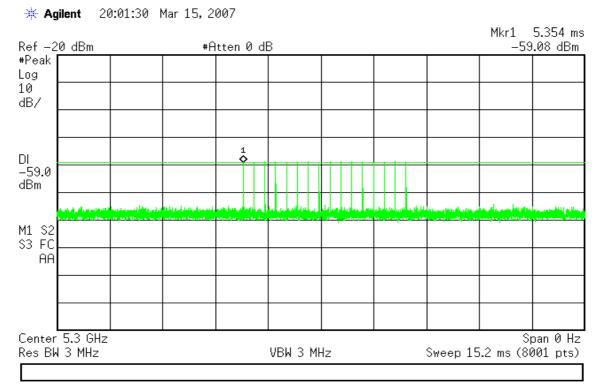


Test Plot

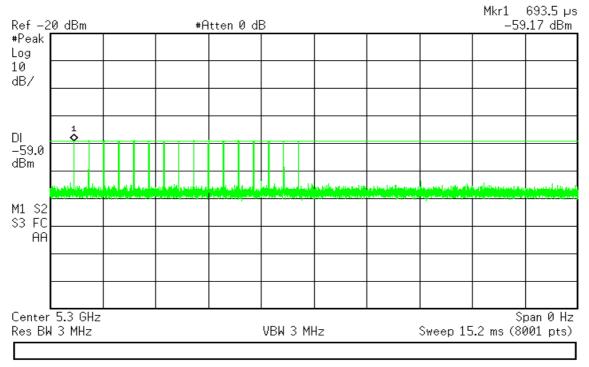
PLOTS OF RADAR WAVEFORMS


Sample of Short Pulse Radar Type 1

Agilent 19:50:00 Mar 15, 2007

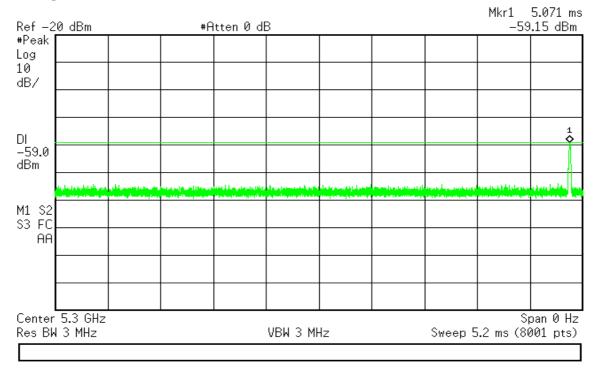

Sample of Short Pulse Radar Type 2

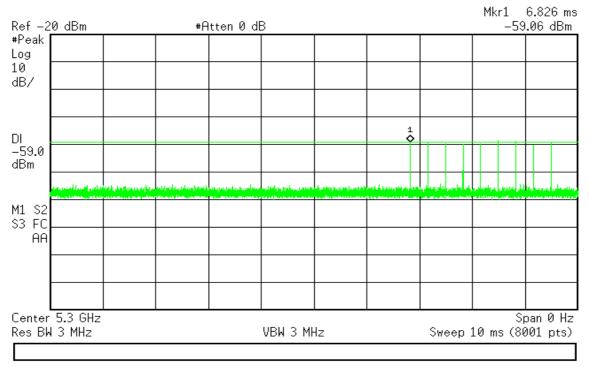
🔆 Agilent 19:53:52 Mar 15, 2007



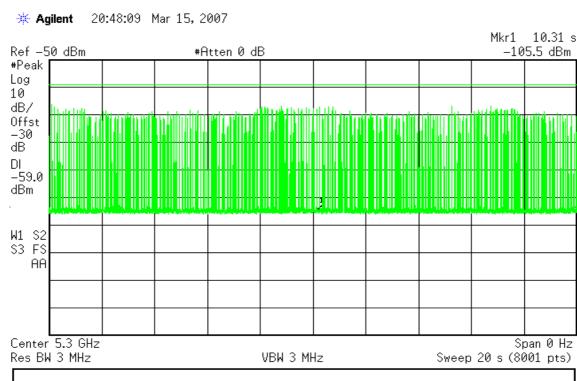
Sample of Short Pulse Radar Type 3

Sample of Short Pulse Radar Type 4




Sample of Single Burst Long Pulse Radar Type 5

Agilent 20:11:10 Mar 15, 2007


Sample of Frequency Hopping Radar Type 6

🔆 Agilent 20:25:19 Mar 15, 2007

Plot of WLAN Traffic from Master

TEST CHANNEL AND METHOD

All tests were performed at a channel center frequency of 5300 MHz utilizing a conducted test method.

CHANNEL AVAILABILITY CHECK TIME

Test Procedure To Determine Initial Power-Up Cycle Time

A link was established on channel then the EUT was rebooted. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

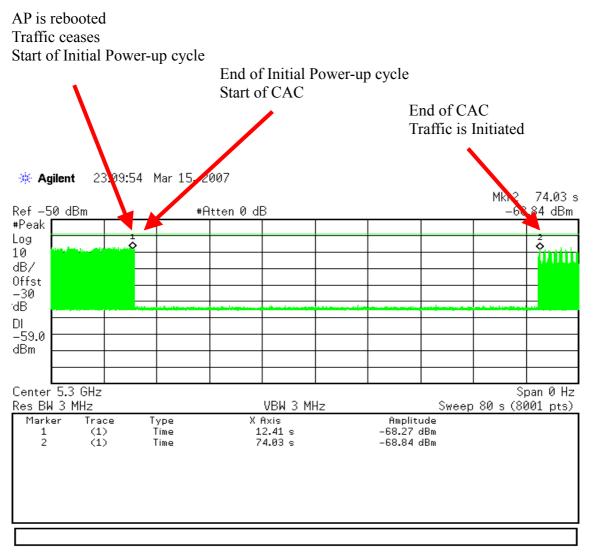
Test Procedure For Timing Of Radar Burst

With a link established on channel, the EUT was rebooted. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, corresponding to the beginning of the CAC time, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was rebooted. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, corresponding to the end of the CAC time, and transmissions on the channel were monitored on the spectrum analyzer.

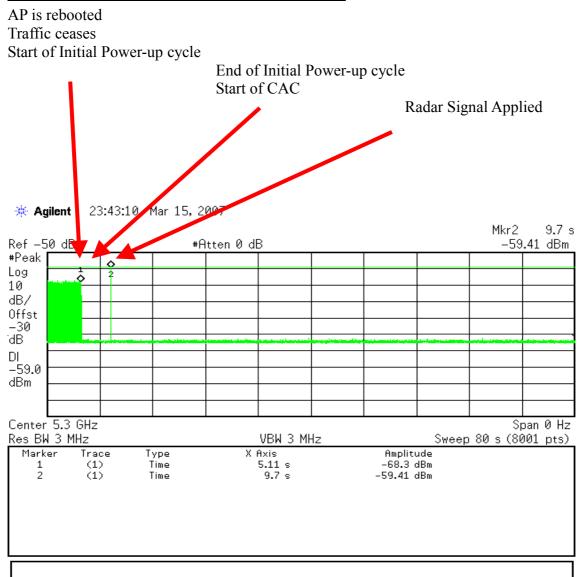
Channel Availability Check Time Results

No non-compliance noted.


Time required for EUT to complete the initial power-up cycle				
(sec)				
1.62				

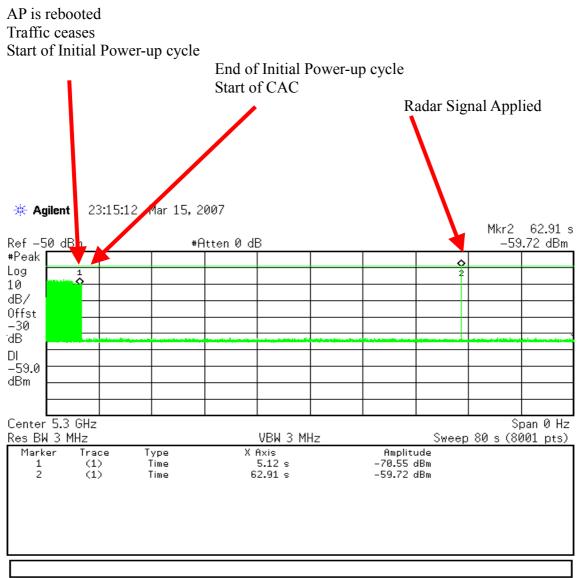
If a radar signal is detected during the channel availability check then the PC controlling the EUT displays a message stating that radar was detected.

Timing of Radar Burst	Display on EUT / PC Control Computer	Spectrum Analyzer Display
No Radar Triggered	EUT Initiates Transmissions	Transmissions begin on channel after completion of the initial power-up cycle and the 60 second CAC
Within 0 to 6 second window	EUT indicates radar detected EUT does not display any radar parameter values	No transmissions on channel
Within 54 to 60 second window	EUT indicates radar detected EUT does not display any radar parameter values	No transmissions on channel


Timing Plot Without Radar During CAC

The initial power-up cycle requires (74.03 - 12.41 - 60) = 1.62 seconds.

Timing Plot With Radar Near Beginning Of CAC



The radar signal is applied (9.7-5.11) = 4.59 seconds after reboot, which is (4.59-1.62) = 2.97 seconds after the start of the CAC period.

No EUT transmissions were observed after the radar signal.

Timing Plot With Radar Near End Of CAC

The radar signal is applied (62.91-5.12) = 57.79 seconds after reboot, which is (57.79-1.62) = 56.71 seconds after the start of the CAC period.

No EUT transmissions were observed after the radar signal.

CHANNEL MOVE TIME AND CHANNEL CLOSING TRANSMISSION TIME General Reporting Notes

The reference marker is set at the end of last radar pulse.

Type 1 Radar Reporting Notes

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time =

(Number of analyzer bins showing transmission) * (dwell time per bin)

The observation period over which the aggregate time is calculated

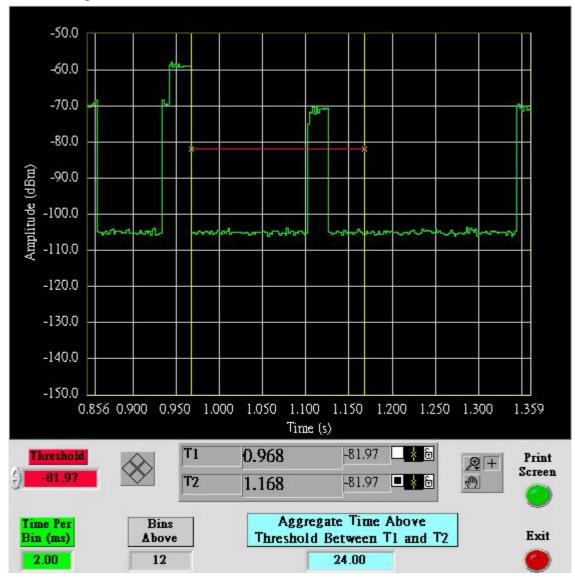
Begins no later than (Reference Marker + 200 msec)

and

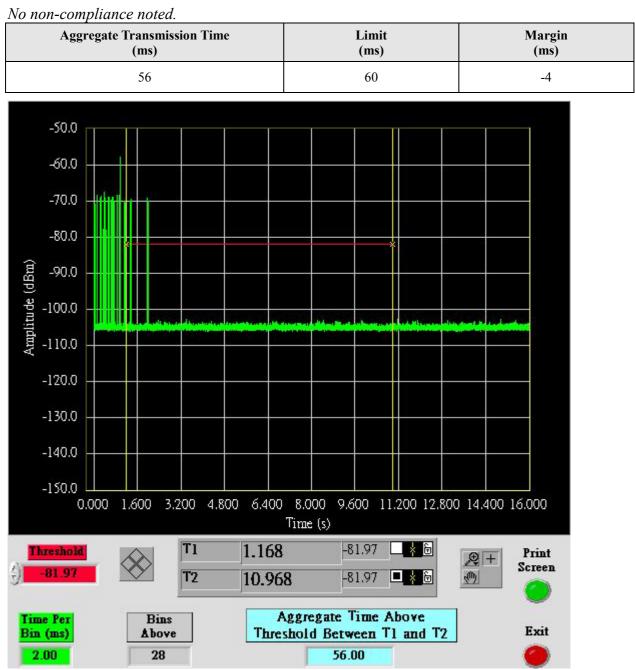
Ends no earlier than (Reference Marker + 10 sec).

Type 5 Radar Reporting Notes

The delta marker is set to 10 seconds after the end of the radar pulse.

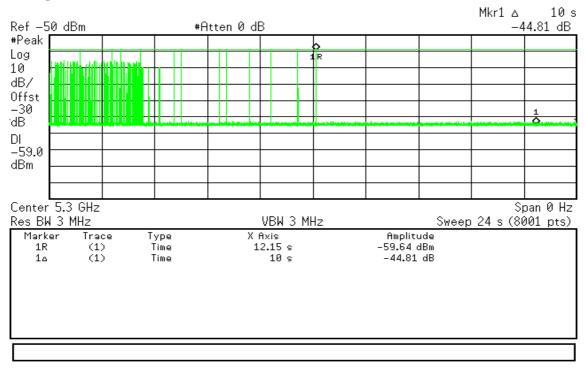

Type 1 Channel Move Time Results

No non-compliance noted	1.		
Channel Mo (s)	ove Time		Limit (s)
1.00)		10
★ Agilent 00:21:27 Mar Pot E0 dPm		L	Mkr1 Δ 1 s
Ref -50 dBm #Peak Log 10 dB/ 0ffst -30 dB DI -59.0 dBm Center 5.3 GHz Res BW 3 MHz Marker Trace Type 1R (1) Time 1△ (1) Time	#Atten 0 dB	Swee Amplitude -13.09 dB	-13.09 dB


Type 1 Channel Closing Time Results

No non-compliance noted.

Type 1 Channel Closing Transmission Time Results

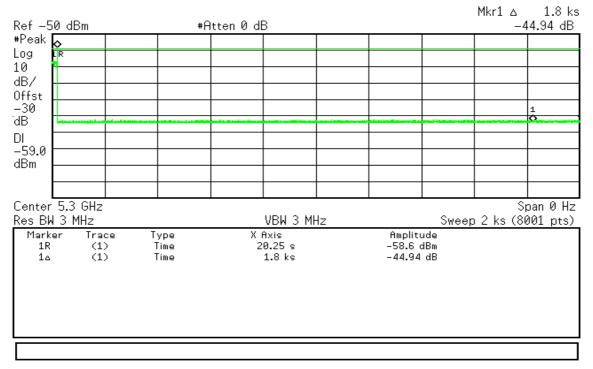


Type 5 Channel Move Time Results

No non-compliance noted.

The traffic ceases prior to the end of the radar waveform, therefore it also ceases prior to 10 seconds after the end of the radar waveform.

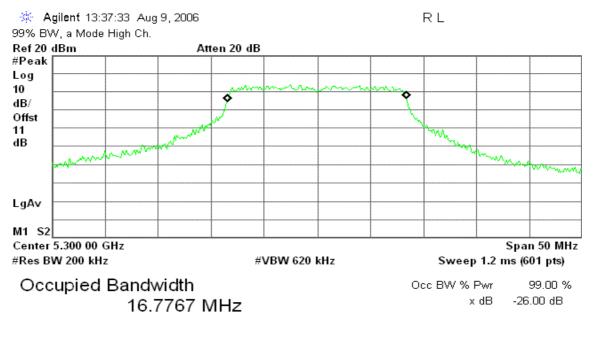
🔆 Agilent 13:40:45 Mar 16, 2007


NON-OCCUPANCY PERIOD

Type 1 Non-Occupancy Period Test Results

No non-compliance noted.

No EUT transmissions were observed on the test channel during the 30 minute observation time.


🔆 Agilent 09:54:16 Mar 16, 2007

DETECTION BANDWIDTH

Reference Plot of 99% Power Bandwidth

Transmit Freq Error	-28.212 kHz
x dB Bandwidth	23.737 MHz

Test Results

No non-compliance noted.

FL (MHz)	FH (MHz)	Detection Bandwidth (MHz)	99% Power Bandwidth (MHz)	Ratio of Detection BW to 99% Power BW (%)	Minimum Limit (%)
5292	5308	16.00	16.7767	95.35	80

Fixed Waveform Test Results:		Waveform N	ame: FCC TYPE	t
Frequency (MHz)	Number of Trials	Number Detected	Detection (%)	Marks
5291	10	8	80%	
5292	10	9	90%	FL
5293	10	10	100%	
5294	10	10	100%	
5295	10	9	90%	
5296	10	10	100%	
5297	10	10	100%	
5298	10	10	100%	
5299	10	10	100%	
5300	10	10	100%	
5301	10	9	90%	
5302	10	9	90%	
5303	10	10	100%	
5304	10	9	90%	
5305	10	10	100%	
5306	10	10	100%	
5307	10	10	100%	
5308	10	10	100%	FH
5309	10	7	70%	

IN-SERVICE MONITORING

Test Results

No non-compliance noted.

SUMMARY OF DETECTION PROBABILITY

Summary of Detection Probability

Radar Type	Number of Trials	Detection (%)	Limit (%)	Pass / Fail
short 1	30	97	60	Pass
short 2	30	93	60	Pass
short 3	30	86	60	Pass
short 4	30	73	60	Pass
Aggregate of 1 to 4	30	87	80	Pass
Long 5	30	80	70	Pass
Hopping 6	30	100	80	Pass

Type 1 Detection Probability

Gable 1: Data Sheet for Fixed Radar Signal 1		
Trial No.	Successful Detection (Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	No	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	Yes	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

Type 2 Detection Probability

able 2: Data Sheet	ble 2: Data Sheet for Fixed Radar Test Signal 2				
Waveform No.	# Pulses per burst	Pulse Width (us)	Pulse repetition Interval (us)	Successful Detection (Yes/No)	
1	24	1.90	201	Yes	
2	28	1.90	208	Yes	
3	24	2.50	162	Yes	
4	29	3.70	175	Yes	
5	27	3.10	176	Yes	
6	25	3.00	166	Yes	
7	24	2.40	198	Yes	
8	26	5.00	191	Yes	
9	25	2.10	214	Yes	
10	23	3.30	170	Yes	
11	25	1.70	167	Yes	
12	27	2.00	230	Yes	
13	29	5.00	201	Yes	
14	24	1.70	215	Yes	
15	24	1.90	219	Yes	
16	26	4.10	228	No	
17	28	2.90	204	Yes	
18	29	3.70	194	Yes	
19	24	2.10	194	Yes	
20	27	4.50	206	Yes	
21	24	1.40	165	Yes	
22	24	4.20	178	Yes	
23	27	1.80	226	Yes	
24	27	5.00	217	Yes	
25	29	1.30	172	Yes	
26	27	2.00	230	No	
27	28	2.30	208	Yes	
28	26	2.80	229	Yes	
29	23	2.70	209	Yes	
30	29	2.90	173	Yes	

Type 3 Detection Probability

ble 3: Data Sheet for Fixed Radar Test Signal 3				
Waveform No.	# Pulses per burst	Pulse Width (us)	Pulse repetition Interval (us)	Successful Detection (Yes/No)
1	18	8.50	334	Yes
2	18	5.30	291	Yes
3	17	9.00	304	Yes
4	18	5.80	252	Yes
5	17	5.90	456	Yes
6	18	8.80	359	Yes
7	18	6.80	317	No
8	16	8.80	286	No
9	17	8.60	349	Yes
10	16	5.30	487	Yes
11	16	6.10	270	Yes
12	16	6.90	393	Yes
13	17	10.00	349	Yes
14	17	9.50	257	Yes
15	18	7.60	477	Yes
16	16	5.00	399	Yes
17	16	8.30	370	Yes
18	16	8.30	453	Yes
19	17	9.60	430	Yes
20	16	8.10	411	Yes
21	16	7.00	331	No
22	17	6.20	268	Yes
23	16	8.10	409	Yes
24	17	5.70	449	Yes
25	18	6.30	401	Yes
26	16	10.00	485	Yes
27	16	8.80	286	No
28	16	9.70	271	Yes
29	18	8.70	483	Yes
30	18	5.90	495	Yes

Type 4 Detection Probability

Fable 4: Data Sheet	able 4: Data Sheet for Fixed Radar Test Signal 4				
Waveform No.	# Pulses per burst	Pulse Width (us)	Pulse repetition Interval (us)	Successful Detection (Yes/No)	
1	15	14.80	275	Yes	
2	12	19.70	330	Yes	
3	13	13.10	265	No	
4	16	19.50	396	Yes	
5	16	18.10	286	Yes	
6	12	13.00	278	No	
7	13	16.60	395	Yes	
8	12	12.30	446	Yes	
9	16	17.70	401	Yes	
10	13	19.70	253	Yes	
11	12	15.30	445	No	
12	16	17.70	394	Yes	
13	15	19.10	397	Yes	
14	15	18.70	479	No	
15	12	14.40	396	Yes	
16	15	11.00	459	Yes	
17	15	18.10	404	Yes	
18	16	11.40	270	Yes	
19	16	16.40	496	Yes	
20	13	14.50	308	Yes	
21	13	15.90	423	No	
22	14	14.30	361	Yes	
23	12	18.80	399	No	
24	14	18.50	417	Yes	
25	14	16.70	476	No	
26	16	17.50	473	Yes	
27	15	15.30	448	Yes	
28	16	12.20	258	No	
29	12	13.70	486	Yes	
30	14	20.00	496	Yes	

Type 5 Detection Probability

able 5: Data Sheet for Long Pulse Radar Test Signal 5		
Waveform No.Successful Detection (Yes/No)		
5001	Yes	
5002	Yes	
5003	Yes	
5004	NO	
5005	Yes	
5006	Yes	
5007	Yes	
5008	Yes	
5009	NO	
5010	NO	
5011	Yes	
5012	Yes	
5013	Yes	
5014	Yes	
5015	Yes	
5016	Yes	
5017	Yes	
5018	Yes	
5019	Yes	
5020	Yes	
5021	Yes	
5022	Yes	
5023	NO	
5024	Yes	
5025	Yes	
5026	Yes	
5027	NO	
5028	NO	
5029	Yes	
5030	Yes	

Note: Type 5 randomized parameters are shown in a separate document.

Type 6 Detection Probability

ble 6: Data Sheet for Hopping Signal		
Trial No.	Successful Detection (Yes/No)	
1	Yes	
2	Yes	
3	Yes	
4	Yes	
5	Yes	
6	Yes	
7	Yes	
8	Yes	
9	Yes	
10	Yes	
11	Yes	
12	Yes	
13	Yes	
14	Yes	
15	Yes	
16	NO	
17	Yes	
18	Yes	
19	Yes	
20	Yes	
21	Yes	
22	Yes	
23	Yes	
24	Yes	
25	Yes	
26	Yes	
27	Yes	
28	Yes	
29	Yes	
30	Yes	

APPENDIX I RADIO FREQUENCY EXPOSURE

LIMIT

According to §15.407(f), U-NII devices are subject to the radio frequency radiation exposure requirements specified in §§ 1.1307(b), 2.1091 and 2.1093 of this chapter, as appropriate. All equipment shall be considered to operate in a "general population/uncontrolled" environment. Applications for equipment authorization of devices operating under this section must contain a statement confirming compliance with these requirements for both fundamental emissions and unwanted emissions. Technical information showing the basis for this statement must be submitted to the Commission upon request.

EUT Specification

EUT	NetVanta 150
Frequency band (Operating)	 □ WLAN: 2.412GHz ~ 2.462GHz □ WLAN: 5.15GHz ~ 5.35GHz □ WLAN: 5.725GHz ~ 5.850GHz □ Bluetooth: 2.402 GHz ~ 2.482 GHz □ Others:
Device category	 Portable (<20cm separation) Mobile (>20cm separation) Others:
Exposure classification	General Population/Uncontrolled exposure $(S=1mW/cm^2)$
Antenna diversity	 Single antenna Multiple antennas Tx diversity Rx diversity Tx/Rx diversity
Max. output power	14.49 dBm (28.12mW)
Antenna gain (Max)	3 dBi (Numeric gain: 2.00)
Evaluation applied	MPE Evaluation* SAR Evaluation N/A

Remark:

- 1. The maximum output power is <u>14.49dBm (28.12mW)</u> at <u>5320MHz</u> (with <u>2.00numeric antenna</u> <u>gain.</u>)
- 2. For mobile or fixed location transmitters, no SAR consideration applied. The maximum power density is 1.0 mW/cm² even if the calculation indicates that the power density would be larger.

TEST RESULTS

No non-compliance noted.

Calculation

Given

 $E = \frac{\sqrt{30 \times P \times G}}{d} \& S = \frac{E^2}{3770}$ Where E = Field strength in Volts / meter P = Power in Watts G = Numeric antenna gain d = Distance in meters

S = Power density in milliwatts / square centimeter

Combining equations and re-arranging the terms to express the distance as a function of the remaining variables yields:

$$S = \frac{30 \times P \times G}{3770d^2}$$

Changing to units of mW and cm, using:

Yields

$$S = \frac{30 \times (P/1000) \times G}{3770 \times (d/100)^2} = 0.0796 \times \frac{P \times G}{d^2}$$
 Equation 1
Where $d = Distance in cm$

P = Power in mW G = Numeric antenna gainS = Power density in mW / cm2

Maximum Permissible Exposure

EUT output power = 28.12mW

Numeric Antenna gain = 2.00

Substituting the MPE safe distance using d = 20 cm into Equation 1:

Yields

$$S = 0.000199 \times P \times G$$

Where $P = Power \text{ in } mW$
 $G = Numeric \text{ antenna gain}$
 $S = Power \text{ density in } mW / cm^2$

 \rightarrow Power density = 0.011192 mW/cm²

(For mobile or fixed location transmitters, the maximum power density is 1.0 mW/cm^2 even if the calculation indicates that the power density would be larger.)