

FCC Part 15.407

TEST REPORT

For

Adtran

901 Explorer Boulevard, Huntsville Alabama , United States 35806-2807

FCC ID: HDC-17600078

Report Type: Class II permissive change Report	Product Type: WiFi 6 Router			
Report Producer : <u>Coco Lin</u>				
Report Number : <u>RXZ2403040</u>	07RF01			
Report Date : <u>2024-05-30</u>				
Reviewed By: <u>Andy Shih</u>	Nondy. Shih			
Prepared By: Bay Area Complianc	e Laboratories Corp.			
(New Taipei Laborat	ory)			
70, Lane 169, Sec. 2, 1	Datong Road, Xizhi Dist.,			
New Taipei City 221,	Taiwan, R.O.C.			
Tel: +886 (2) 2647 6898				
Fax: +886 (2) 2647 6895				
www.bacl.com.tw				

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RXZ240304007	RXZ240304007RF01	2024-05-30	Class II permissive change Report	Coco Lin

TABLE OF CONTENTS

1	Ger	neral Information	5
	1.1 1.2	Product Description for Equipment under Test (EUT) Objective	6
	1.3 1.4	Test Methodology Statement	
	1.5	Measurement Uncertainty	7
	1.6	Environmental Conditions	
2	1.7 Svsi	Test Facility tem Test Configuration	
-	2.1	Description of Test Configuration	
	2.1	EUT Exercise Software	
	2.3	Test Mode	
	2.4	Equipment Modifications	12
	2.5	Support Equipment List and Details	
	2.6	External Cable List and Details	
	2.7	Block Diagram of Test Setup	
	2.8	Duty Cycle	15
3	Sun	nmary of Test Results	20
4	Tes	t Equipment List and Details	21
5	FC	C §15.407(f), §1.1307(b)(3) – RF Exposure	
	5.1	Applicable Standard	
	5.2	RF Exposure Evaluation Result	23
6	FC	C §15.203 – Antenna Requirements	24
	6.1	Applicable Standard	24
	6.2	Antenna Information	24
7	FC	C §15.407(b)(9), §15.207(a) – AC Line Conducted Emissions	25
	7.1	Applicable Standard	25
	7.2	EUT Setup	
	7.3	EMI Test Receiver Setup	
	7.4	Test Procedure	
	7.5	Corrected Factor & Over Limit Calculation	
	7.6	Test Results	
8	FC	C §15.209, §15.205, §15.407(b) – Spurious Emissions	29
	8.1	Applicable Standard	29
	8.2	EUT Setup	
	8.3	EMI Test Receiver & Spectrum Analyzer Setup	
	8.4	Test Procedure	
	8.5	Corrected Factor & Margin Calculation	32
	8.6	Test Results	33
9	FC	C §15.407(a) – Emission Bandwidth And Occupied Bandwidth	94
	9.1	Applicable Standard	94
	9.2	Test Procedure	
	9.3	Test Results	95
		y not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. i Laboratory) Page 3 of 42	:3

Bay Area Co	ompliance Laboratories Corp. (New Taipei Laboratory)	No.: RXZ240304007RF01
10 FCC	§15.407(a) – Maximum Output Power	
10.1 A	Applicable Standard	
10.2 T	fest Procedure	
10.3 T	Cest Results	
11 FCC	§15.407(a) – Power Spectral Density	
11.1 A	Applicable Standard	
11 .2 T	Test Procedure	
11 . 3 T	Cest Results	

1 General Information

	Adtran
Applicant	901 Explorer Boulevard, Huntsville Alabama, United States
	35806-2807
Brand(Trade) Name	Adtran
Product (Equipment)	WiFi 6 Router
Main Model Name	SDG-8610YYYYYY(Y can be 0-9, a-z, A-Z, blank, "+" or "-" or "#")
Part Number	17600078FYYYYYYY(Y can be 0-9, a-z, A-Z, blank, "+" or "-" or "#")
	The major electrical and mechanical constructions of series
M 11D	models are identical to the basic model, except different Market
Model Discrepancy	segmentation. The model, SDG-8610 is the testing sample, and
	the final test data are shown on this test report.
Frequency Range	5250-5350 MHz , 5470-5725 MHz
	Non Beamforming:
	5250-5350 MHz: 21.99 dBm
Maximum Conducted Average	5470-5725 MHz: 21.88 dBm
Output Power	Beamforming:
	5250-5350 MHz: 17.32 dBm
	5470-5725 MHz: 17.12 dBm
Modulation Technique	OFDM / OFDMA
	Adapter
Power Operation	I/P: 100-240V, 50/60Hz, 0.7A
(Voltage Range)	O/P: DC 12V, 1.5A
Received Date	2024/01/24
Date of Test	2024/03/08 ~ 2024/05/29

1.1 Product Description for Equipment under Test (EUT)

*All measurement and test data in this report was gathered from production sample serial number: RXZ240304007-1(Assigned by BACL, New Taipei Laboratory).

1.2 Objective

This report is prepared on behalf of *Adtran* in accordance with Part 2, Subpart J, Part 15, Subparts A, and E of the Federal Communication Commission's rules.

Test Purpose:

This is Class II permissive Change Test for FCC ID: HDC-17600078, the changes was below, which was provided by Applicant:

1. Enabled 5G WiFi 5250-5350MHz and 5470-5725 MHz band by software

This report is only for the new enabled 5250-5350MHz and 5470-5725 MHz band.

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices. KDB 789033 D02 General UNII Test Procedures New Rules v02r01

1.4 Statement

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested.

The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard document specification.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

1.5 Measurement Uncertainty

Parameter		Uncertainty
AC Mains		+/- 3.02 dB
RF output power, conduct	ted	+/- 0.57 dB
Power Spectral Density, c	onducted	+/- 0.63 dB
Occupied Bandwidth		+/- 0.09 %
Unwanted Emissions, con	ducted	+/- 1.09 dB
	9 kHz~30 MHz	+/- 3.20 dB
Emissions, radiated	30 MHz~1 GHz	+/- 3.30 dB
Emissions, radiated	1 GHz~18 GHz	+/- 5.14 dB
18 GHz~40 GHz		+/- 4.75 dB
Temperature		+/- 0.76 °C
Humidity		+/- 0.41 %

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

1.6 Environmental Conditions

Test Site	Test Date	Temperature (°C)	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
AC Line Conducted Emissions	2024/03/12	21.6	51	1010	Jing Chang
Radiation Spurious Emissions	2024/3/8~2024/3/22	18.2~21.6	47~68	1010	Aaron Pan
Emission Bandwidth	2024/3/20~ 2024/3/25	20.7~24.8	50~58	1010	Jing Chang
Maximum Output Power	2024/3/20~ 2024/3/25	20.7~24.8	50~58	1010	Jing Chang
Power Spectral Density	2024/3/25~2024/5/29	24.8~25.5	51~58	1010	Jing Chang

1.7 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 221, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3732) and the FCC designation No.TW3732 under the Mutual Recognition Agreement (MRA) in FCC Test.

2 System Test Configuration

2.1 Description of Test Configuration

The system supports 802.11a/n ht20/n ht40/ac vht20/ac vht40/ac vht80/ac vht160/ax he20/ax he40/ ax he80/ax he160 mode.

Since the 802.11n ht20/n ht40 parameters are the same as 802.11ac vht20 and ac vht40, 802.11n ht20/n ht40 is reduced.

For 802.11n/ac/ax mode, MIMO mode supports beamforming.

For 5250 ~ 5350MHz

4 channels are provided for 802.11a, 802.11n HT20, 802.11ac VHT20, 802.11ax HE20:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
52	5260	60	5300
56	5280	64	5320

2 channels are provided for 802.11n HT40, 802.11ac VHT40, 802.11ax HE40:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
54	5270	62	5310

1 channel is provided for 802.11ac VHT80, 802.11ax HE80:

Channel	Frequency (MHz)
58	5290

802.11a/n20/ac20/ax20 mode Channel 52, 60, 64 were tested.

802.11n40/ac40/ax40 mode Channel 54, 62 were tested.

802.11ac80/ax80 mode Channel 58 was tested.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

For 5470 ~ 5725MHz

11 channels are provided for 802.11a, 802.11n HT20, 802.11ac VHT20, 802.11ax HE20:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
100	5500	124	5620
104	5520	128	5640
108	5540	132	5660
112	5560	136	5680
116	5580	140	5700
120	5600	/	/

5 channels are provided for 802.11n HT40, 802.11ac VHT40, 802.11ax HE40:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
102	5510	126	5630
110	5550	134	5670
118	5590	/	/

2 channels are provided for 802.11ac VHT80, 802.11ax HE80:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
106	5530	122	5610

802.11a/n20/ac20/ax20 mode Channel 100, 116, 140 were tested.

802.11n40/ac40/ax40 mode Channel 102, 110, 134 were tested.

802.11ac80/ax80 mode Channel 106, 122 was tested.

For Bandwidth 160MHz:

2 channel is provided for 802.11ac VHT160, 802.11ax HE160:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
50	5250	114	5570

802.11ac160/ax160 mode Channel 50 , 114 was tested.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

2.2 EUT Exercise Software

The software was used "QATool_UIv2.78_DLLv6.83_ap_2021.11.05_Customer". The system was configured for testing in engineering mode, which was provided by Applicant.

Non Beamforming:

UNII Band	Mode	Channel	Frequency (MHz)		ower setti IMO(CD	8
Danu	MIMO(CDD)		(101112)	Chain 0	Chain 1	Chain 2
		52	5260	12.5	12.5	12.5
UNII-2A		60	5300	13	13	13
	902.11	64	5320	13	13	13
	802.11a	100	5500	14	14	14
UNII-2C		116	5580	13.5	13.5	13.5
		140	5700	13	13	13
		52	5260	14.5	14.5	14.5
UNII-2A	802.11n HT20 / ac VHT20	60	5300	14.5	14.5	14.5
		64	5320	14.5	14.5	14.5
		100	5500	15.5	15.5	15.5
UNII-2C		116	5580	15	15	15
		140	5700	14.5	14.5	14.5
	802.11n HT40 / ac VHT40	54	5270	17	17	17
UNII-2A		62	5310	16	16	16
		102	5510	17.5	17.5	17.5
UNII-2C		110	5550	18	18	18
		134	5670	17.5	17.5	17.5
UNII-2A		58	5290	11.5	11.5	11.5
UNII-2C	802.11ac VHT80	106	5530	14	14	14
UNII-2C		122	5610	18	18	18
		52	5260	14	14	14
UNII-2A		60	5300	14.5	14.5	14.5
	802.11ax HE20	64	5320	14.5	14.5	14.5
	002.11ax ne20	100	5500	15	15	15
UNII-2C		116	5580	14.5	14.5	14.5
		140	5700	14.5	14.5	14.5
		54	5270	16.5	16.5	16.5
UNII-2A		62	5310	15.5	15.5	15.5
	802.11ax HE40	102	5510	17	17	17
UNII-2C		110	5550	17	17	17
		134	5670	17	17	17

Bay Area Co	ompliance Laboratories Corp. (ratory)	No.: RXZ240304007RF01			
UNII-2A	802.11ax HE80	58	5290	13.5	13.5	13.5
UNII-2C		106	5530	15.5	15.5	15.5
UNII-2C		122	5610	18	18	18
UNII-2A	802.11ac VHT160	50	5250	13	13	13
UNII-2C	802.11ac vH1100	114	5570	13.5	13.5	13.5
UNII-2A	802.11ax HE160	50	5250	16	16	16
UNII-2C	802.11aX ПЕ100	114	5570	14.5	14.5	14.5

Beamforming:

UNII Band	Mode MIMO	Channel	Frequency (MHz)	Power setting MIMO			
Dunu	IVIIIVIO		(1/112)	Chain 0	Chain 1	Chain 2	
		52	5260	24	24	24	
UNII-2A		60	5300	25	25	25	
	802.11n HT20 / ac VHT20	64	5320	25	25	25	
	802.11n H120 / ac VH120	100	5500	26	26	26	
UNII-2C		116	5580	26	26	26	
		140	5700	26	26	26	
UNII-2A		54	5270	24	24	24	
UNII-2A		62	5310	25	25	25	
	802.11n HT40 / ac VHT40	102	5510	26	26	26	
UNII-2C		110	5550	26	26	26	
		134	5670	26	26	26	
UNII-2A		58	5290	27	27	27	
UNII-2C	802.11ac VHT80	106	5530	28	28	28	
UNII-2C		122	5610	27	27	27	
		52	5260	23	23	23	
UNII-2A		60	5300	24	24	24	
	802.11ax HE20	64	5320	24	24	24	
	002.11ax 11E20	100	5500	25	25	25	
UNII-2C		116	5580	24	24	24	
		140	5700	25	25	25	
UNII-2A		54	5270	23	23	23	
		62	5310	24	24	24	
	802.11ax HE40	102	5510	25	25	25	
UNII-2C		110	5550	24	24	24	
		134	5670	25	25	25	

Bay Area C	ompliance Laboratories Corp. (oratory)	No.: RXZ240304007RF01			
UNII-2A		58	5290	26	26	26
UNII-2C	802.11ax HE80	106	5530	27	27	27
UNII-2C		122	5610	27	27	27
UNII-2A	802.11ac VHT160	50	5250	27	27	27
UNII-2C	802.11ac vH1100	114	5570	32	32	32
UNII-2A	802.11ax HE160	50	5250	27	27	27
UNII-2C	802.11ax HE100	114	5570	33	33	33

The device support SISO and MIMO (CDD).

SISO mode and MIMO mode have the same power level setting and base on output power testing, MIMO mode power large than SISO mode, MIMO mode was selected for full testing. For n/ac/ax mode, the MIMO mode support beamforming.

The worst case data rates are as follows: 802.11a Mode: 6Mbps 802.11ac VHT20 Mode: MCS0 802.11ac VHT40 Mode: MCS0 802.11ac VHT80 Mode: MCS0 802.11ac VHT160 Mode: MCS0 802.11ax HE20 Mode: MCS0 802.11ax HE40 Mode: MCS0 802.11ax HE80 Mode: MCS0 802.11ax HE160 Mode: MCS0

2.3 Test Mode

Full System (model: SDG-8610) for all test item.

The device 802.11ax mode only supports full RU, not partial RU, test with full RU.

2.4 Equipment Modifications

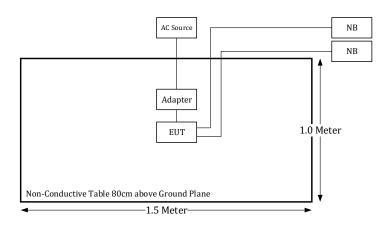
No modification was made to the EUT.

Description	Manufacturer	Model Number	Serial Number	
NB	DELL	E6410	F4NYJM1	
NB	NB DELL		70DSQM1	
Adapter	KLEC	KL-WA120150-H1	N/A	

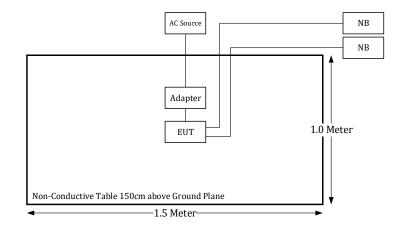
2.5 Support Equipment List and Details

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 12 of 423

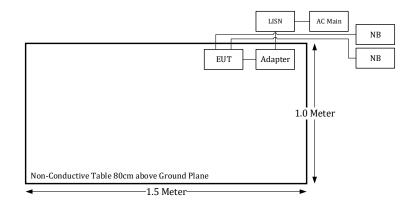
Description	Manufacturer	Cable length		
RJ-45 Cable	BACL	8m		
RJ-45 Cable	BACL	8m		


2.6 External Cable List and Details

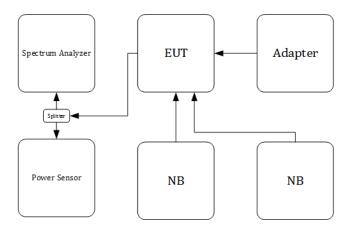
2.7 Block Diagram of Test Setup


See test photographs attached in setup photos for the actual connections between EUT and support equipment.

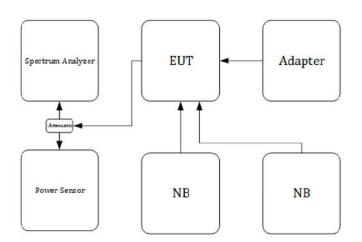
Radiation:


Below 1GHz

Above 1GHz:



Conduction:


Conducted 1:

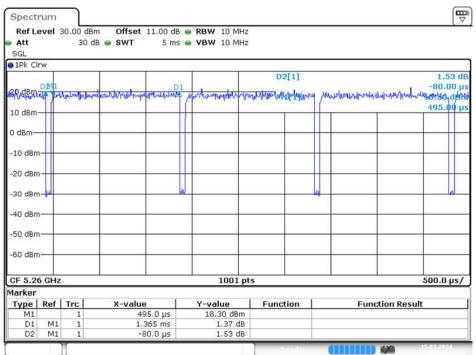
Offset: 8dB (Splitter+Cable)

Conducted 1:

Offset: 11dB (Attenuator +Cable)

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ240304007RF01


2.8 Duty Cycle

The duty cycle as below:

Radio Mode	On Time (ms)	Off Time (ms)	Duty Cycle (%)	Duty Cycle Correction Factor (dB)	1/T (kHz)	VBW Setting (kHz)
802.11a	1.365	0.08	94	0.27	0.73	1
802.11ac 20	1.285	0.095	93	0.32	0.78	1
802.11ac 40	0.654	0.058	92	0.36	1.53	2
802.11ac 80	0.324	0.057	85	0.71	3.09	5
802.11ac 160	0.184	0.057	76	1.19	5.43	10
802.11ax 20	0.31	0.057	84	0.76	3.23	5
802.11ax 40	0.312	0.061	84	0.76	3.21	5
802.11ax 80	0.295	0.059	83	0.81	3.39	5
802.11ax 160	0.296	0.056	84	0.76	3.38	5

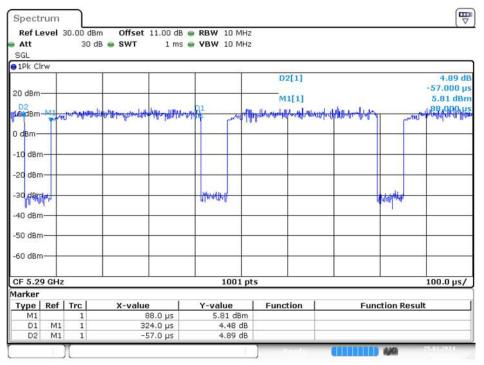
Note: Duty Cycle Correction Factor = $10*\log(1/duty cycle)$

Please refer to the following plots.

802.11a Mode

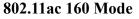
Date: 15.MAR.2024 10:33:33

Ref L	evel (30.00 di 30	780 - COCCO	dB - RBW 10 M				
SGL				100 - 1011 101	- Artic			
1Pk Cl		D2M1	nunhartmanda	nutrum linitari	and war	D2[1]	uy porthermore	-0.40 d -95.00 μ ավրուլատուլյացուննուցը 790.00 μ
10 авт-								
-10 dBm								
-20 dBm								
-30 dBm		UK		W	1		4	V
-40 dBm					1			
-50 dBm	8							
-60 dBr								
CF 5.2	6 GHz	6		100	1 pts			500.0 µs/
Marker		- 1						
Type M1	Ref	Trc 1	<u>X-value</u> 790.0 μ	Y-value S 19.95 di		unction	Functio	on Result
D1	M1	1	1.285 m	China				
D2	M1	1	-95.0 µ		and the second sec			


802.11ac 20 Mode

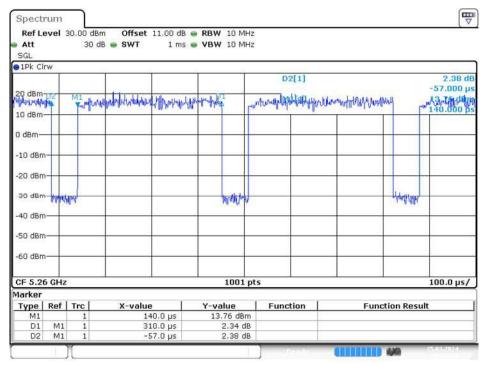
Date: 25.MAR.2024 09:43:57

802.11ac 40 Mode


Spect Ref Lo Att SGL			dBm 🕻 dB 🥌 S		B 📾 RBW 10 M s 🖶 VBW 10 M							[₩
1Pk Cl	rw			74	- 11 <u>1</u>	- -						
							D	2[1]				3.62 d -58.00 µ
20 dBm	enument	92 M	allwande	hyperathropognation	uniter the states of the state	1	altenships	Hilling .	pulationstantices	alan you with light	الر	10.78 dBr
0 dBm—	_	_							_	_		
-10 dBm	-		_			+				_	-	
-20 dBm			_			+		-			+	
-30 dBm		Inorth				P _{IV}				-	w.	
-40 dBm			-			\vdash		-				
-50 dBm	-					+			_		_	
-60 dBm						+				_	_	
CF 5.2	7 GHz	8			100	1 p	ts					200.0 µs/
Marker												
Туре	Ref		X	value	Y-value 10.78 di		Fund	tion		Function Re	sult	ί
M1 D1	M1	1		330.0 µs 654.0 µs	10.78 dt							
D2	M1	1		-58.0 µs	3.62							

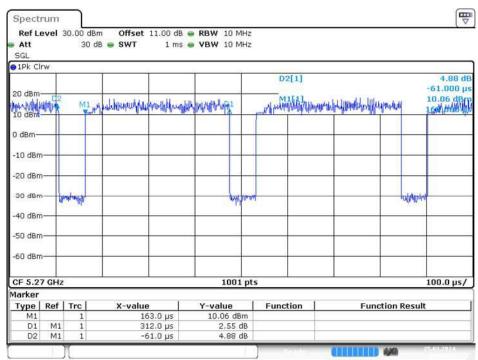
Date: 25.MAR.2024 10:16:09

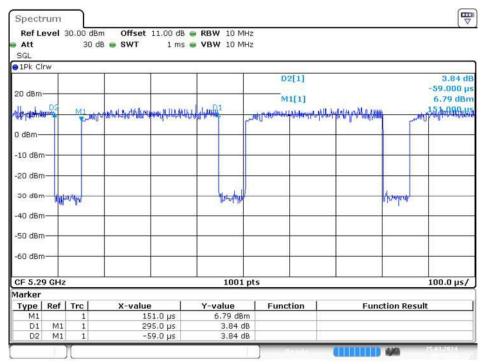
802.11ac 80 Mode


Date: 25.MAR.2024 10:20:24

Att	sver	30.00 dBi 30 d		• VBW 10 MH				
SGL	rw							
20 dBm					D2[1] M1[1]			2.35 d -57.000 µ 3.05 dBr 293.000 µ
10 dBm	any any	solopul	hand management	ringthermalions is	- utrain Mary My Brogen	(aprilianter)	- and whether whether	
-10 dBm								
-20 dBm	-							
rag den			that have		ort	hilogram	ф	Mur
-40 dBm	+							
-50 dBm	+		-					
-60 dBm	-							
CF 5.2	5 GHz	8		1001	ots			100.0 µs,
Marker								
Type M1	Ref	Trc 1	293.0 µs	Y-value 3.05 dBm	Function	F	unction Result	[
D1	M1	1	184.0 µs	3.10 dB		1		
D2	M1	1	-57.0 µs	2.35 dB				

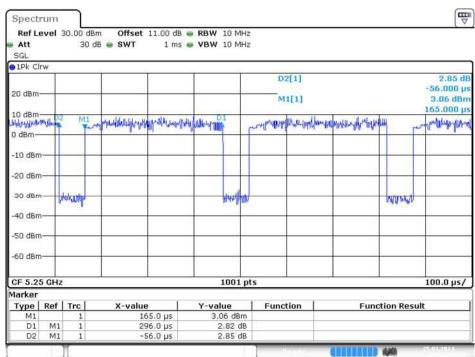
Date: 25.MAR.2024 10:28:27


No.: RXZ240304007RF01


802.11ax 20 Mode

Date: 25.MAR.2024 10:12:38

802.11ax 40 Mode



Date: 25.MAR.2024 10:17:56

802.11ax 80 Mode

Date: 25.MAR.2024 10:23:55

802.11ax 160 Mode

Date: 25.MAR.2024 10:34:46

3 Summary of Test Results

Standard(s) Section	Description of Test	Results
FCC §15.407(f), §1.1307(b)(3)	RF Exposure	Compliance
§15.203	Antenna Requirement	Compliance
§15.407(b)(9) & §15.207(a)	AC Line Conducted Emissions	Compliance
§15.205 & §15.209 & §15.407(b)	Unwanted Emission	Compliance
§15.407(a)	Emission Bandwidth	Compliance
§15.407(a)	Conducted Transmitter Output Power	Compliance
§15.407(a)	Power Spectral Density	Compliance

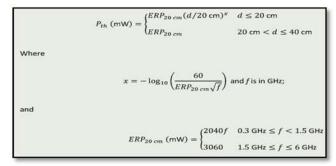
4 Test Equipment List and Details

Description	Manufacturer	Model	Serial	Calibration	Calibration
Description			Number	Date	Due Date
		Line Conduction Roc	· · · · · · · · · · · · · · · · · · ·		
LISN	Rohde & Schwarz	ENV216	101612	2024/2/16	2025/2/16
EMI Test Receiver	Rohde & Schwarz	ESW8	100947	2023/5/22	2024/5/21
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2023/5/18	2024/5/17
RF Cable	EMEC	EM-CB5D	001	2023/6/6	2024/6/5
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R
		Radiation Room (9	66-A)		
Active Loop Antenna	ETS-Lindgren	6502	35796	2023/3/23	2024/3/22
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI-CIRCUITS	JB6/UNAT-6+	A050115/1554 2_01	2024/1/19	2025/1/17
Horn Antenna	EMCO	SAS-571	1020	2023/5/18	2024/5/17
Horn Antenna	ETS-Lindgren	3116	62638	2023/8/25	2024/8/24
Preamplifier	Sonoma	310N	130602	2023/6/16	2024/6/15
Preamplifier	Channel	ERA-100M-18G- 01D1748	EC2300051	2023/4/1	2024/3/31
Preamplifier	A.H. Systems	PAM-1840VH	174	2023/3/24	2024/3/23
Spectrum Analyzer	Rohde & Schwarz	FSV40	101939	2023/3/24	2024/3/23
EMI Test Receiver	Rohde & Schwarz	ESR3	102099	2023/6/16	2024/6/15
Micro flex Cable	UTIFLEX	UFB197C-1- 2362-70U-70U	225757-001	2024/1/23	2025/1/21
Coaxial Cable	COMMATE	PEWC	8Dr	2023/12/23	2024/12/22
Coaxial Cable	UTIFLEX	UFB311A-Q- 1440-300300	220490-006	2024/1/23	2025/1/21
Coaxial Cable	JUNFLON	J12J102248-00- B-5	AUG-07-15- 044	2023/12/23	2024/12/22
Cable	EMC	EMC105-SM- SM-10000	201003	2024/1/23	2025/1/21
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-450CM	160309-1	2024/1/23	2025/1/21
Coaxial Cable	ROSNOL	K1K50-UP0264- K1K50-50CM	15120-1	2024/1/23	2025/1/21
Band-stop filter	SinoSciTe	BSF5150-5850 MN-0899-002	001	2023/10/20	2024/10/19
High-pass filter	XINGBOKEJI	XBLBQ-GTA29	200121-3-26	2023/10/20	2024/10/19
Software	AUDIX	E3	18621a	N.C.R	N.C.R
		Conducted Roc			
Spectrum Analyzer	Rohde & Schwarz	FSV40	101204	2023/5/30	2024/5/29
Cable	UTIFLEX	UFA210A	9435	2023/10/2	2024/10/1
Power Sensor	KEYSIGHT	U2021XA	MY54080018	2024/1/30	2025/1/28
Attenuator	MCL	BW-S10W5+	1419	2024/2/23	2025/2/23

*Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 21 of 423

5 FCC §15.407(f), §1.1307(b)(3) – RF Exposure


5.1 Applicable Standard

According to subpart 15.407(f) and subpart §1.1307(b)(3), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

For single RF sources (*i.e.*, any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph
(b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph
(b)(3)(ii)(A);

(B) Or the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). *Pth* is given by:

(C) Or using Table 1 and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in Table 1 to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

	(C) - Single RF Sources Subject to Routine nomental Evaluation
RF Source frequency (MHz)	Threshold ERP (watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R ² .

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 22 of 423

5.2 **RF Exposure Evaluation Result**

Project info

Beam-forming:

For the 5G Wi-Fi, as it can support the beam-forming function,

So Directional gain = $10 \log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN}/10)^2/N_{ANT}] dBi.$

Directional gain = Band 2: 8.91 dBi, Band 3: 8.86 dBi

Band	Freq (MHz)	Tune-up Power (dBm)	Ant Gain (dBi)	Distances (mm)	Tune-up Power (mW)	ERP (dBm)	ERP (mW)
WiFi 5GHz Band 2	5260	17.5	8.91	200	56.23	24.26	266.69
WiFi 5GHz Band 3	5500	17.5	8.86	200	56.23	24.21	263.63

§ 1.1307(b)(3)(i)(A) method is not applicable.

§ 1.1307(b)(3)(i)(C)

Band	Freq (MHz)	λ/2π (mm)	Distances applies	ERP Limit (mW)	Result Option C
WiFi 5GHz Band 2	5260	9.08	apply	768.00	exempt
WiFi 5GHz Band 3	5500	8.68	apply	768.00	exempt

The minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates.

ERP (watts) is no more than the calculated value prescribed for that frequency.

R must be at least $\lambda/2\pi$.

 $\lambda~$ is the free-space operating wavelength in meters.

Non Beam-forming:

Band	Freq (MHz)	Tune-up Power (dBm)	Ant Gain (dBi)	Distances (mm)	Tune-up Power (mW)	ERP (dBm)	ERP (mW)
WiFi 5GHz Band 2	5260	22	4.9	200	158.49	24.75	298.54
WiFi 5GHz Band 3	5500	22	5.1	200	158.49	24.95	312.61

§ 1.1307(b)(3)(i)(A) method is not applicable.

§ 1.1307(b)(3)(i)(C)

Band	Freq (MHz)	λ/2π (mm)	Distances applies	ERP Limit (mW)	Result Option C
WiFi 5GHz Band 2	5260	9.08	applies	768.00	exempt
WiFi 5GHz Band 3	5500	8.68	apply	768.00	exempt

The minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates.

ERP (watts) is no more than the calculated value prescribed for that frequency. R must be at least $\lambda/2\pi$.

 λ is the free-space operating wavelength in meters.

The WIFI 2.4GHz and WIFI 5GHz cannot transmit simultaneously

Result: The device compliant the MPE-Based Exemption at 20cm distances.

6 FCC §15.203 – Antenna Requirements

6.1 Applicable Standard

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

6.2 Antenna Information

Manufacturer	Antenna Type	Antenna Gain (dBi)	Input impedance
LYNwave Technology.	PCB Antenna	Antenna 0: 5250-5350 MHz: 3.0 5470-5725 MHz: 2.8 Antenna 1: 5250-5350 MHz: 4.4 5470-5725 MHz: 4.2 Antenna 2: 5250-5350 MHz: 4.9 5470-5725 MHz: 5.1	50Ω

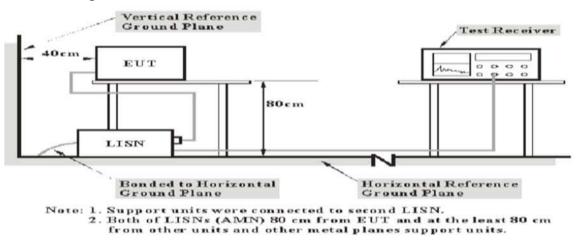
The antenna is permanently connected to the EUT.

Result: Compliance

7 FCC §15.407(b)(9), §15.207(a) – AC Line Conducted Emissions

7.1 Applicable Standard

As per FCC §15.407(b) (9)


Further, any U-NII devices using an AC power line are required to comply also with the conducted limits set forth in §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a 50 μ H/50 ohms line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

Frequency of Emission	Conducted Limit (dBuV)		
(MHz)	Quasi-Peak	Average	
0.15-0.5	66 to 56 ^{Note 1}	56 to 46 ^{Note 1}	
0.5-5	56	46	
5-30	60	50	

Note 1: Decreases with the logarithm of the frequency.

7.2 EUT Setup

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

7.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz-30MHz	9kHz

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 25 of 423

7.4 Test Procedure

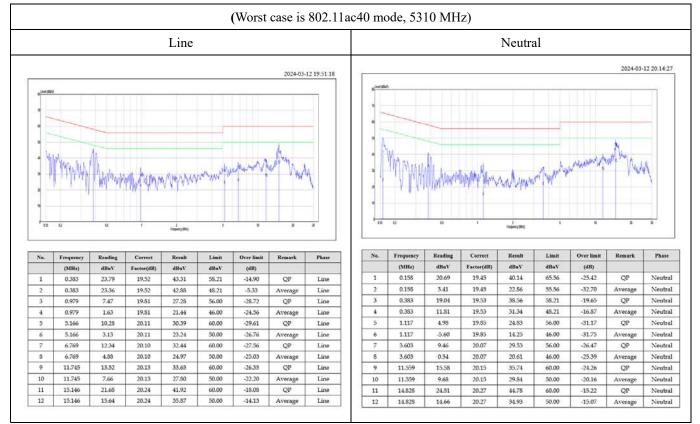
During the conducted emission test, the adapter was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

7.5 Corrected Factor & Over Limit Calculation

The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

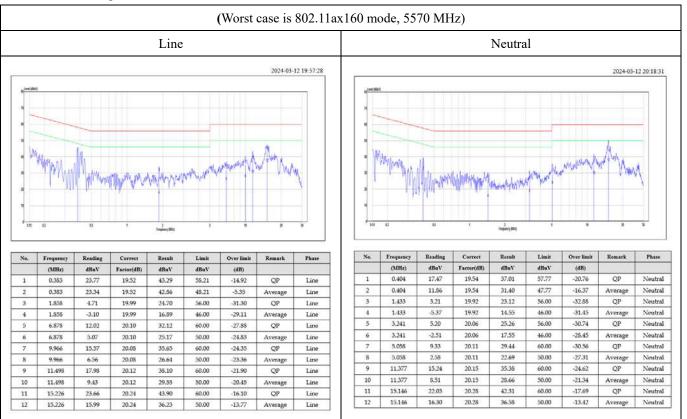

Over Limit = Result – Limit Line

7.6 Test Results

Test Mode: Transmitting

Main: AC120 V, 60 Hz

Non Beamforming Mode:


Note:

Result = Reading + Factor

Over Limit = Result – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

Beamforming Mode:

Note:

Result = Reading + Factor

Over Limit = Result – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

8 FCC §15.209, §15.205, §15.407(b) – Spurious Emissions

8.1 Applicable Standard

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	608 - 614	4.5 - 5.15
0.495 - 0.505	16.69475 - 16.69525	960 - 1240	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	1300 - 1427	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1435 - 1626.5	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1645.5 - 1646.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1660 - 1710	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1718.8 - 1722.2	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	2200 - 2300	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2310 - 2390	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2483.5 - 2500	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2690 - 2900	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	3260 - 3267	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3.332 - 3.339	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3 3458 - 3 358	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3.600 - 4.400	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4		Above 38.6
13.36 - 13.41	399.9 - 410		

As per FCC §15.209(a): Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

Note 1: Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.

According to ANSI C63.10-2013, section 5.3.3

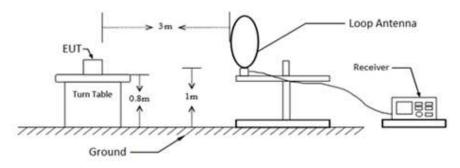
Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field, and the emissions to be measured can be detected by the measurement equipment (see 4.3.4). Measurements shall not be performed at a distance greater than 30 m for frequencies above 30 MHz, unless it can be further demonstrated that measurements at a distance of 30 m or less are impractical. Measurements from

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 29 of 423

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

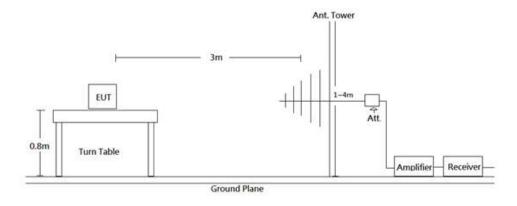
18 GHz to 40 GHz are typically made at distances significantly less than 3 m from the EUT. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade of distance (inverse of linear distance for field-strength measurements or inverse of linear distance-squared for power-density measurements).

- As per FCC Part 15.407 (b)
- For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- For transmitters operating in the 5.25–5.35 GHz band: All emissions outside of the 5.15–5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

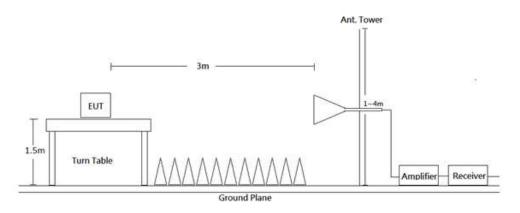

For transmitters operating in the 5.47–5.725 GHz band: All emissions outside of the 5.47–5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.

- For transmitters operating in the 5.725-5.85 GHz band: All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.
- Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in §15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.
- The emission measurements shall be performed using a minimum resolution bandwidth of 1 MHz. A lower resolution bandwidth may be employed near the band edge, when necessary, provided the measured energy is integrated to show the total power over 1 MHz.

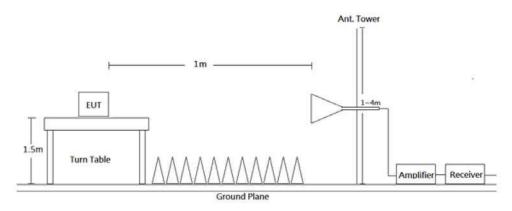
'Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.


8.2 EUT Setup

9kHz-30MHz:



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 30 of 423


30MHz-1GHz:

1-18 GHz:

18-40 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209, FCC 15.407 Limits.

8.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 40 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Duty cycle	Measurement method
9 kHz - 150 kHz	200 Hz/300 Hz	1 kHz	/	QP/AV
150 kHz - 30 MHz	9 kHz/10 kHz	30 kHz	/	QP/AV
30-1000 MHz	120 kHz	300 kHz	/	QP
Above 1 GHz	1 MHz	3 MHz	/	РК
	1 MHz	10 Hz	>98%	Ave
	1 MHz	1/T	<98%	Ave

Note: T is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

8.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in Quasi-peak and average detector mode from 9 kHz to 30 MHz, Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz. According to C63.10, emission shall be computed as: $E [dB\mu V/m] = EIRP[dBm] + 95.2$, for d = 3 meters.

All emissions under the average limit and under the noise floor have not recorded in the report

8.5 Corrected Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

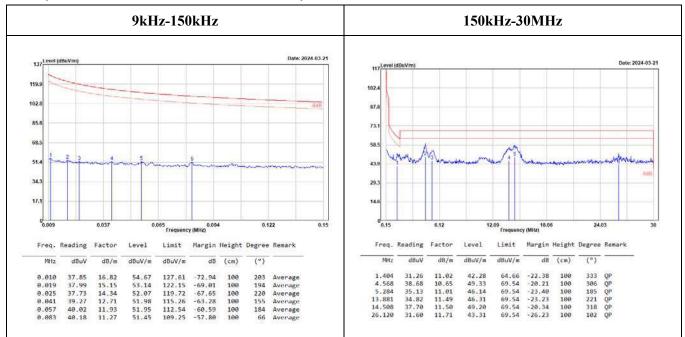
Margin = Level - Limit

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ240304007RF01

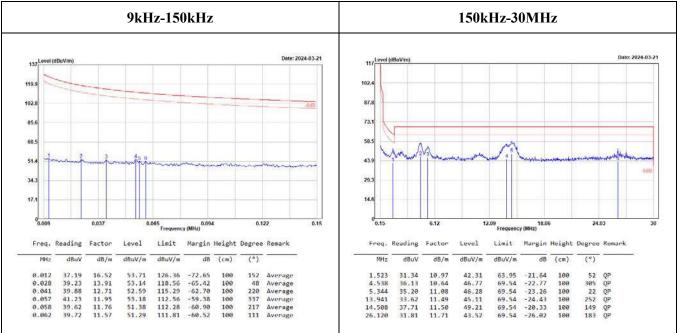
8.6 Test Results

Test Mode: Transmitting


(Pre-scan with three orthogonal axis, and worse case as Z axis.)

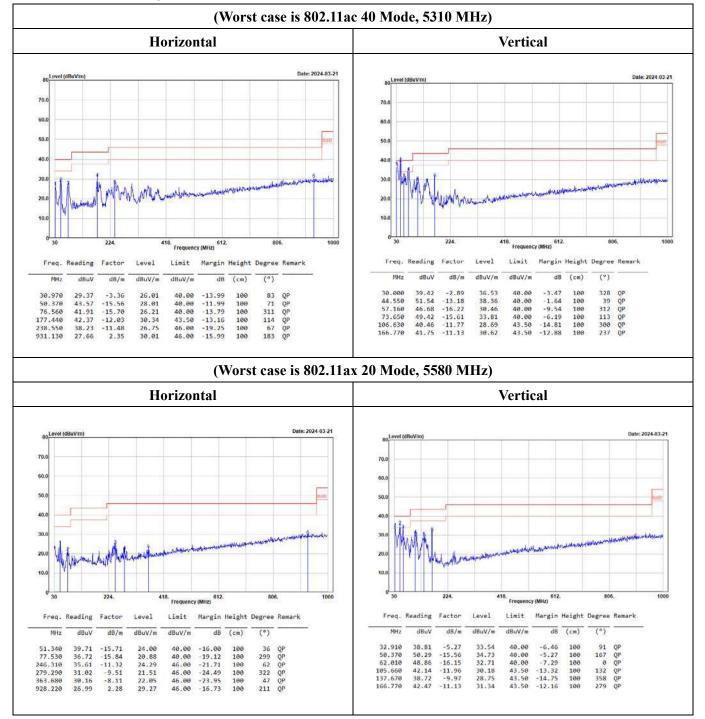
9kHz-30MHz:

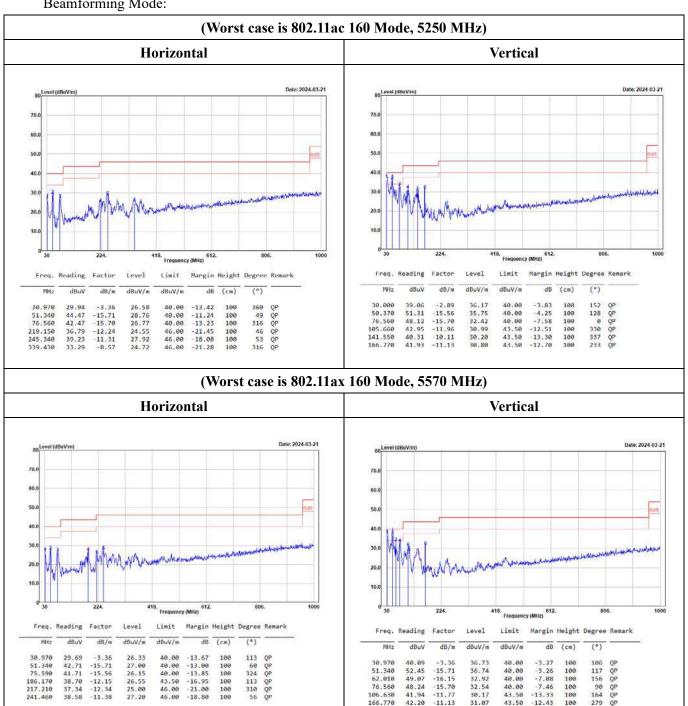
(Pre-scan using three directional polarities, worst case as parallel.)


Non Beamforming Mode:

(Worst case is 802.11ax20 mode 5700 MHz)

Beamforming Mode:


(Worst case is 802.11ax160 mode 5570 MHz)


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 33 of 423

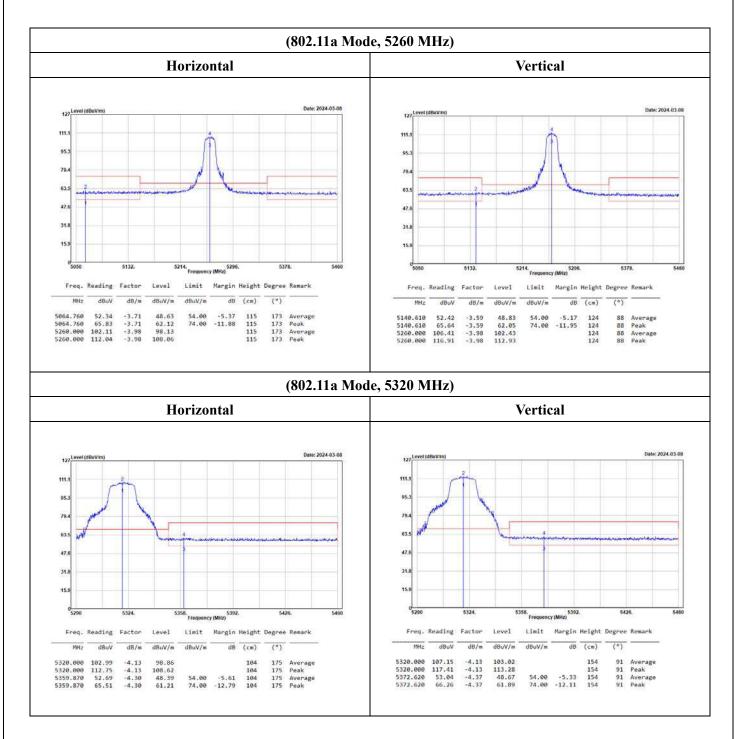
30MHz-1GHz:

Non Beamforming Mode:

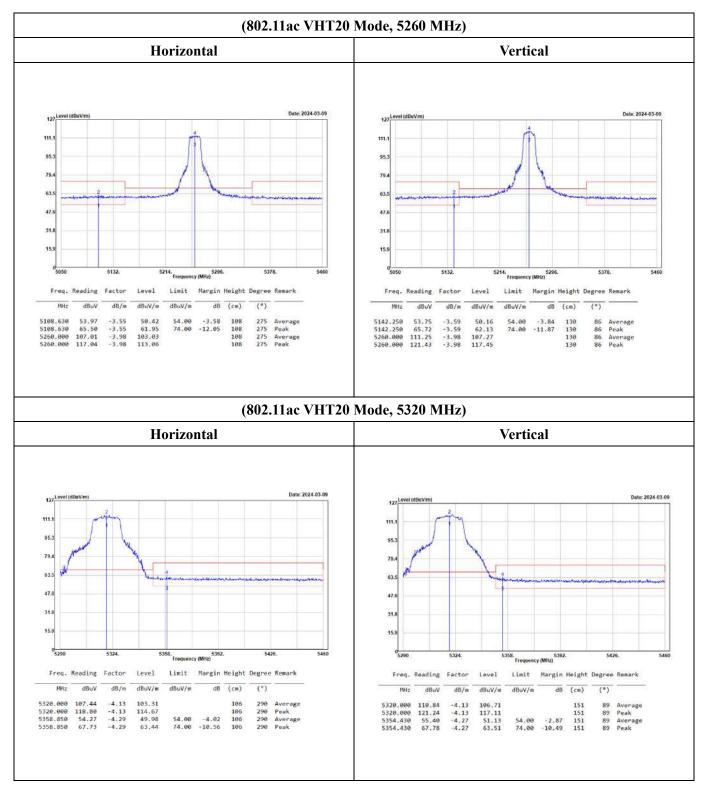
Beamforming Mode:

Level = Reading + Factor.

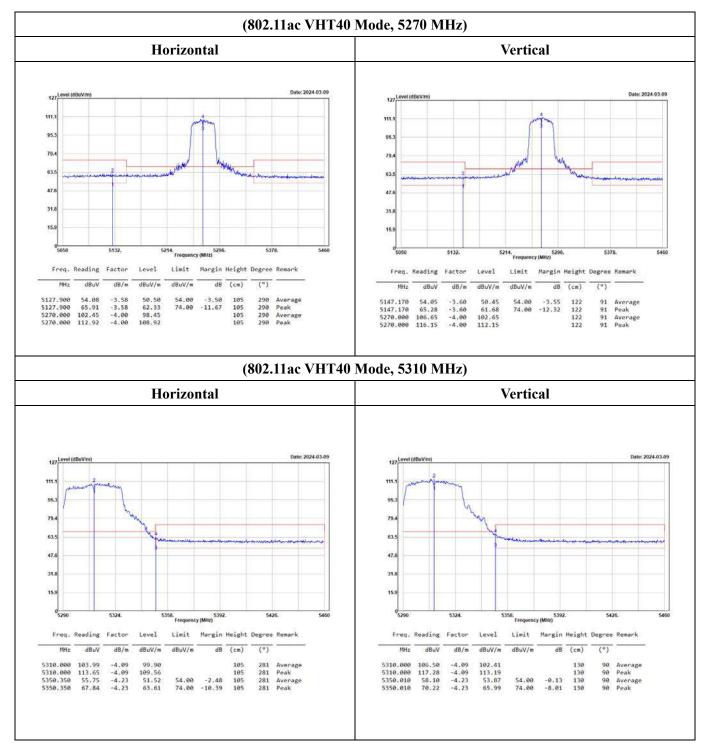
Margin = Level - Limit.


Factor = Antenna Factor + Cable Loss - Amplifier Gain.

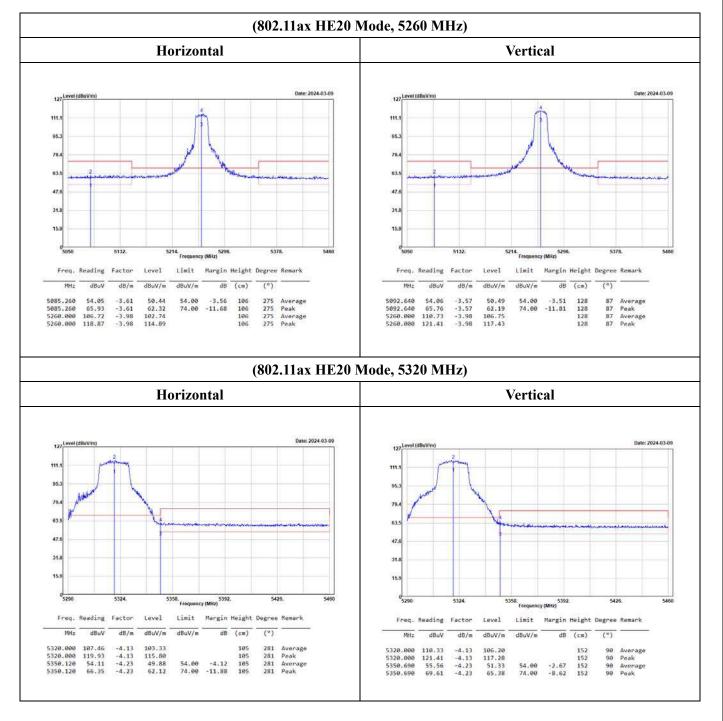
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 35 of 423

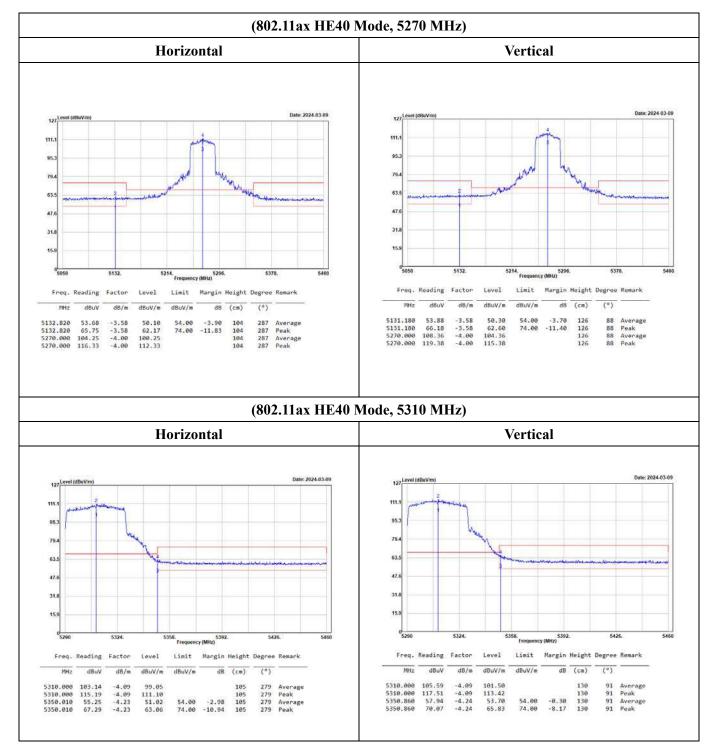

Band-Edge

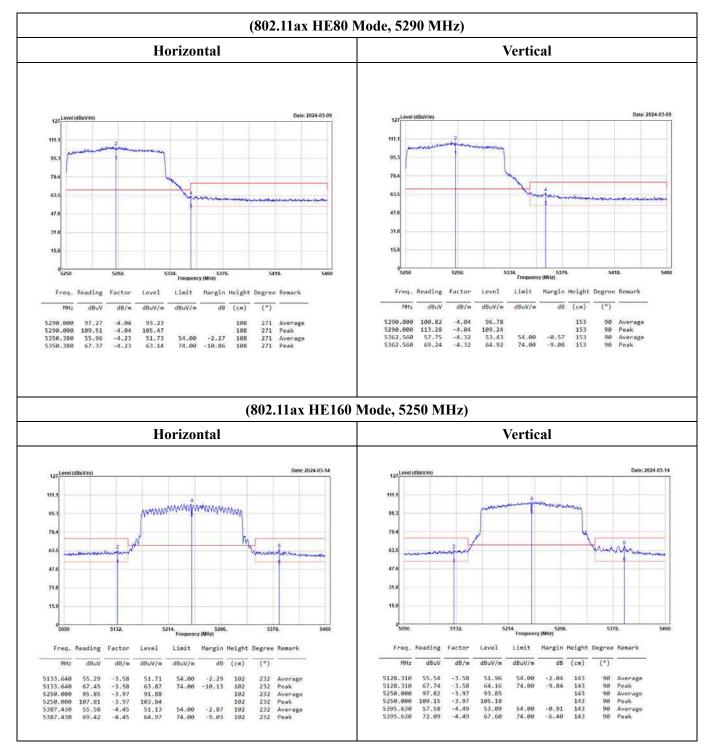
Non Beamforming Mode:

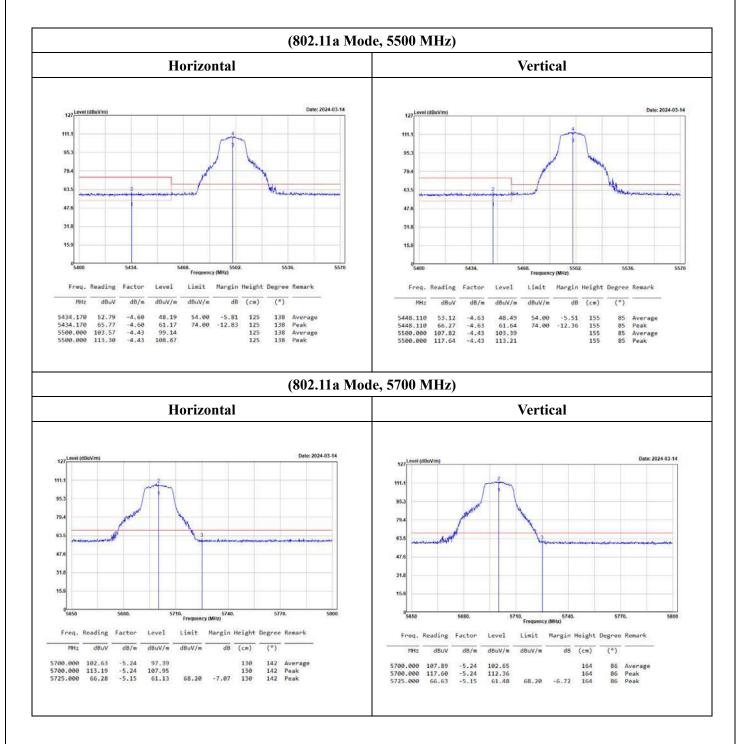

5250-5350 MHz

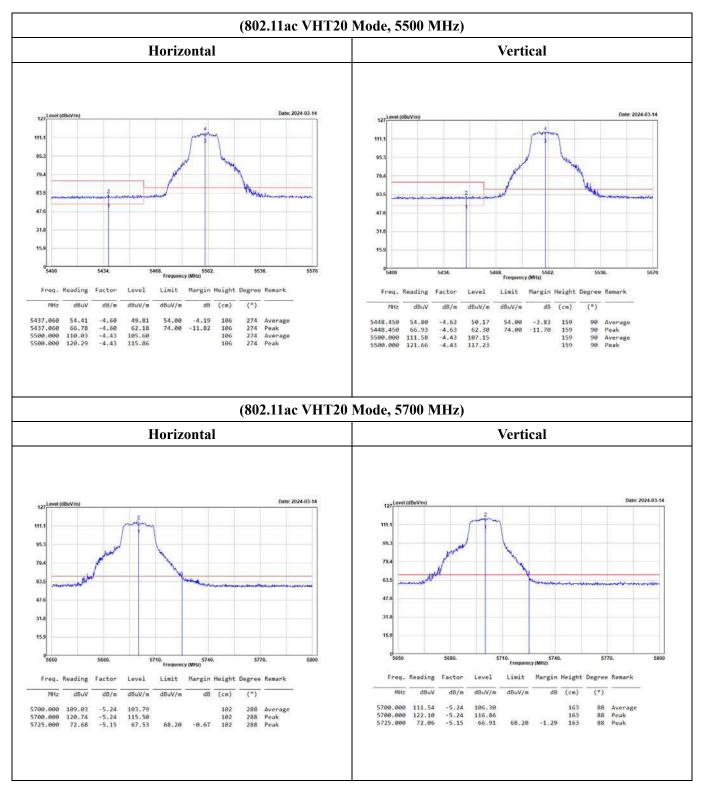
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 36 of 423

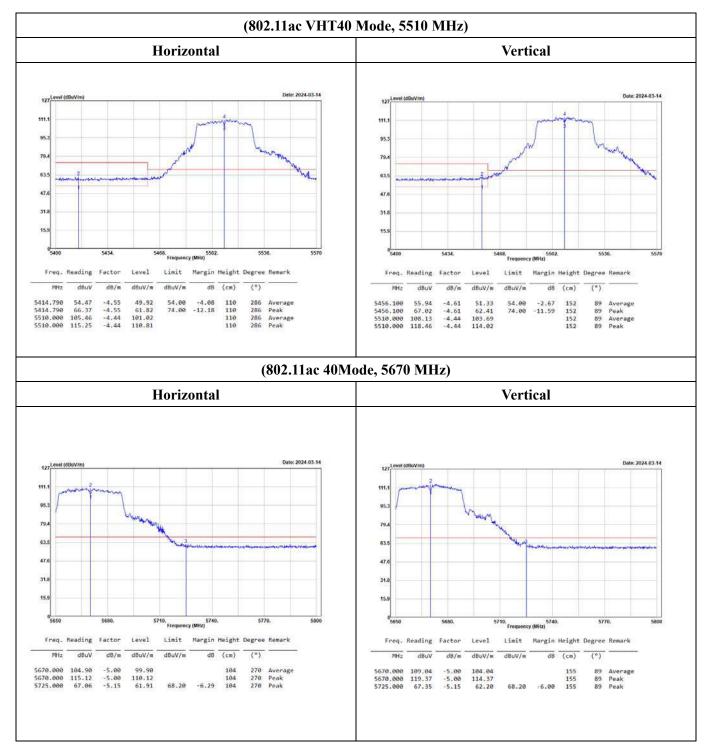


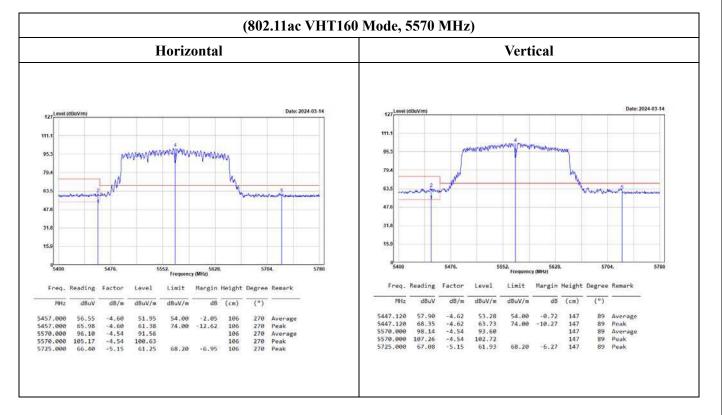


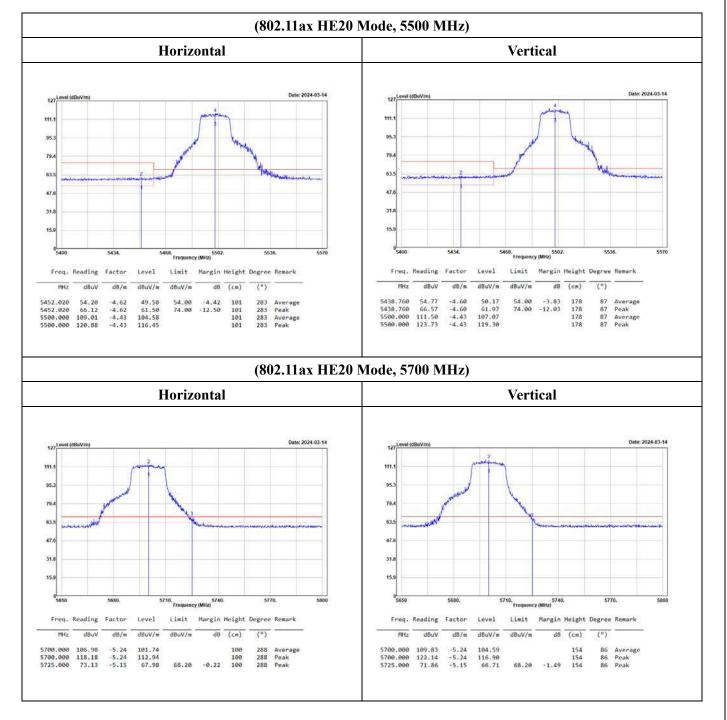

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 38 of 423

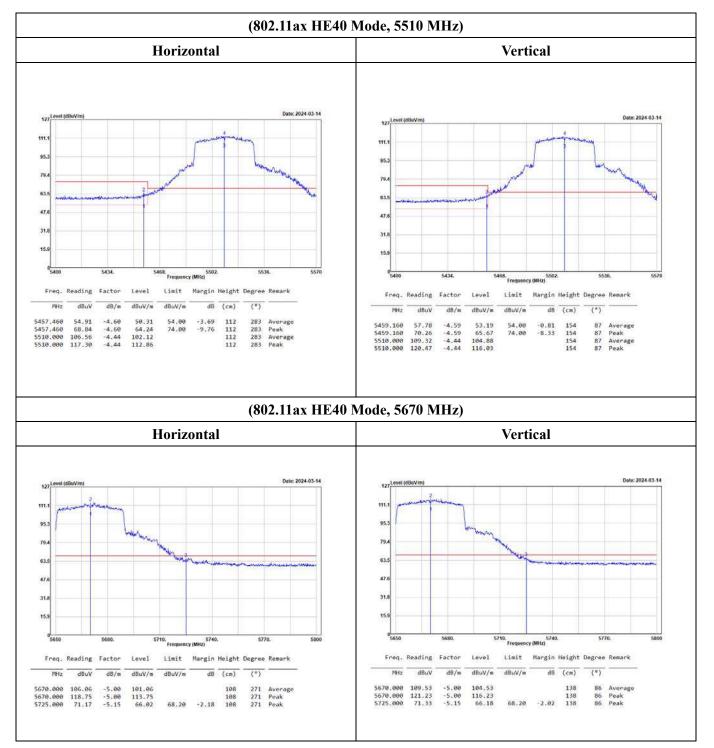


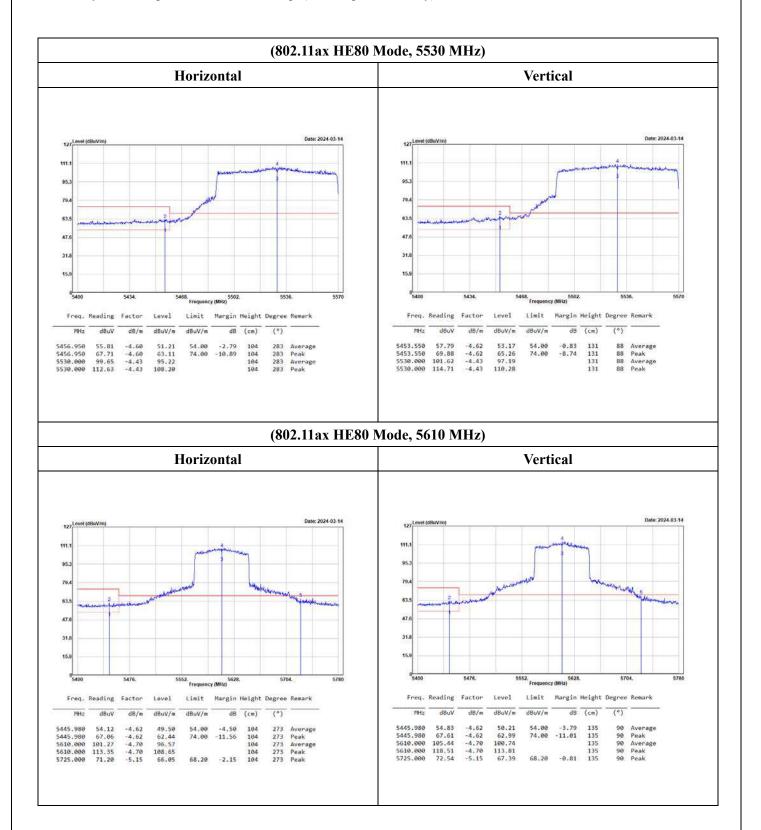


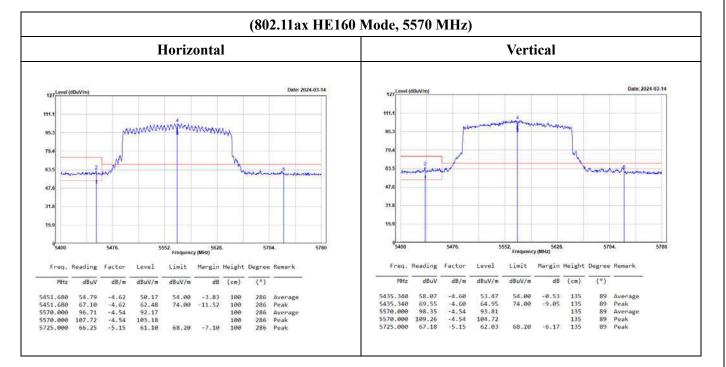

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

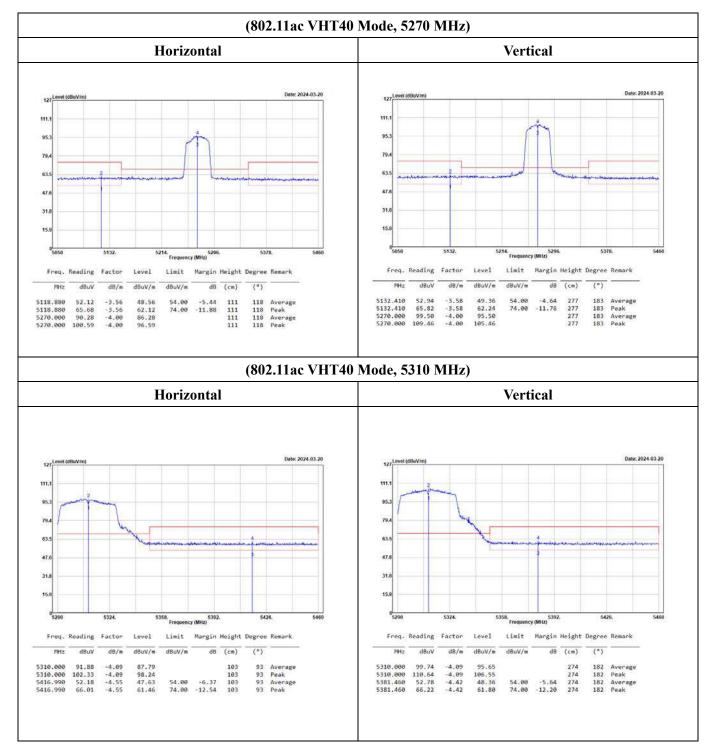

5470-5725 MHz



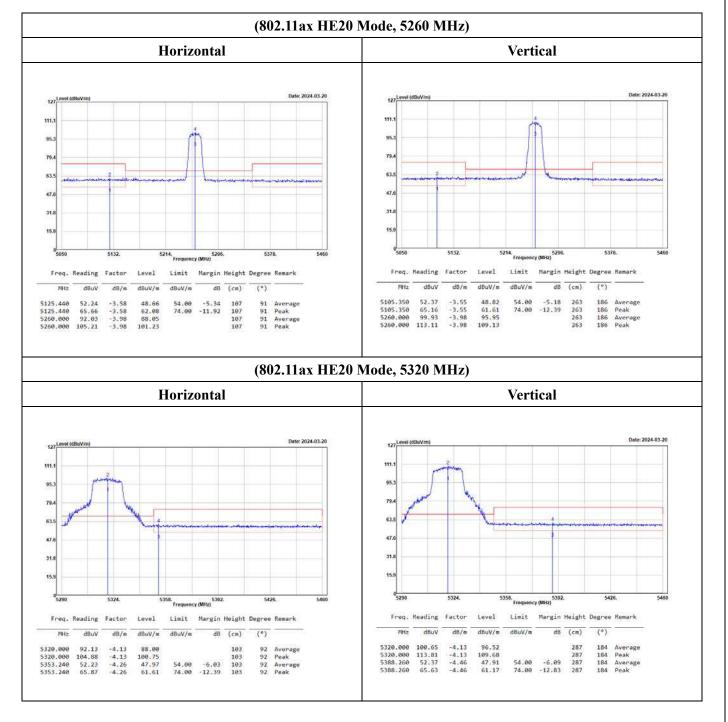




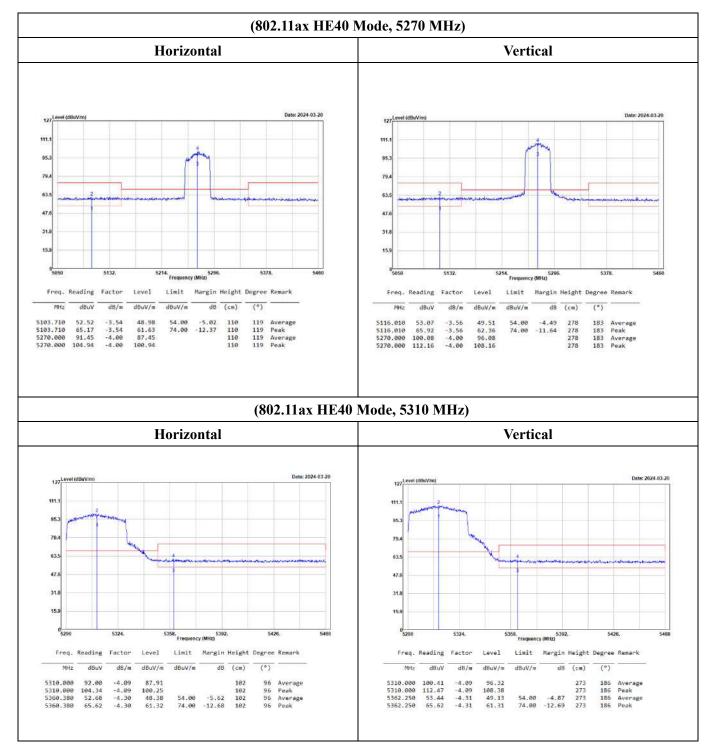




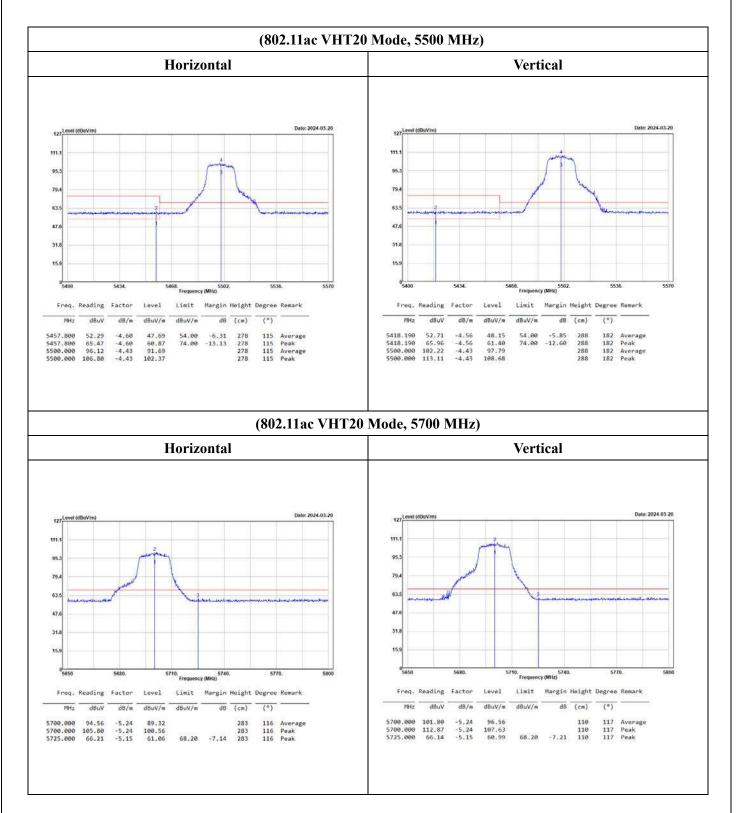
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 51 of 423


Beamforming Mode:

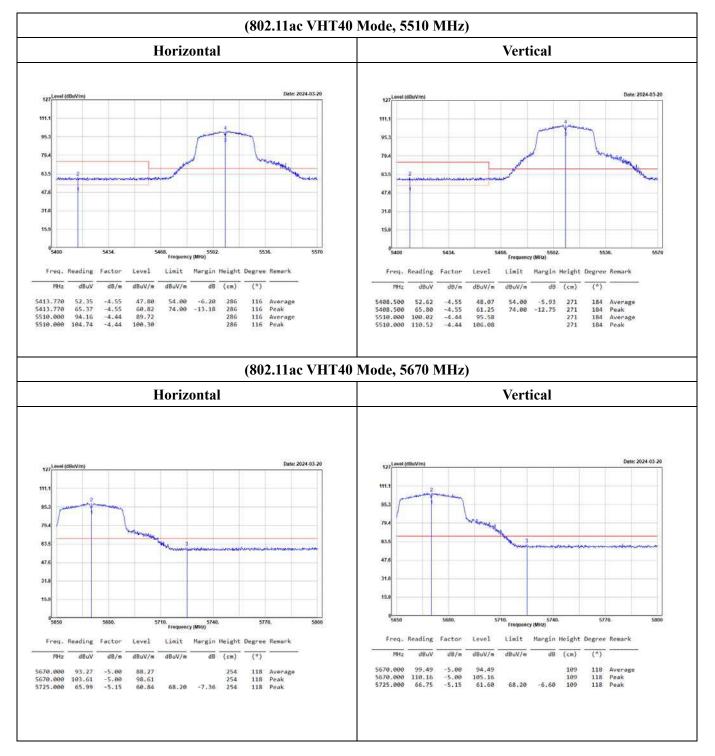
5250-5350 MHz





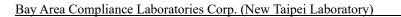


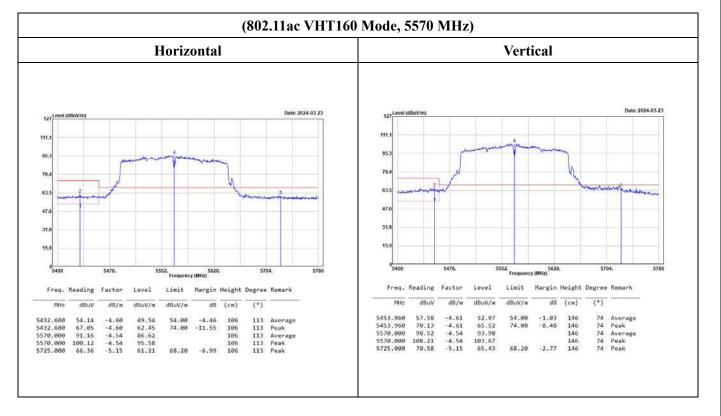
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 55 of 423

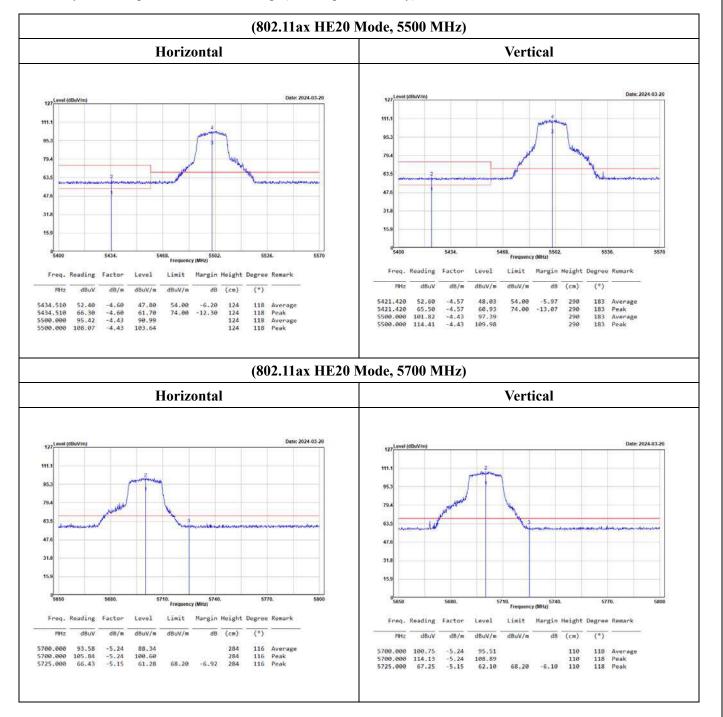


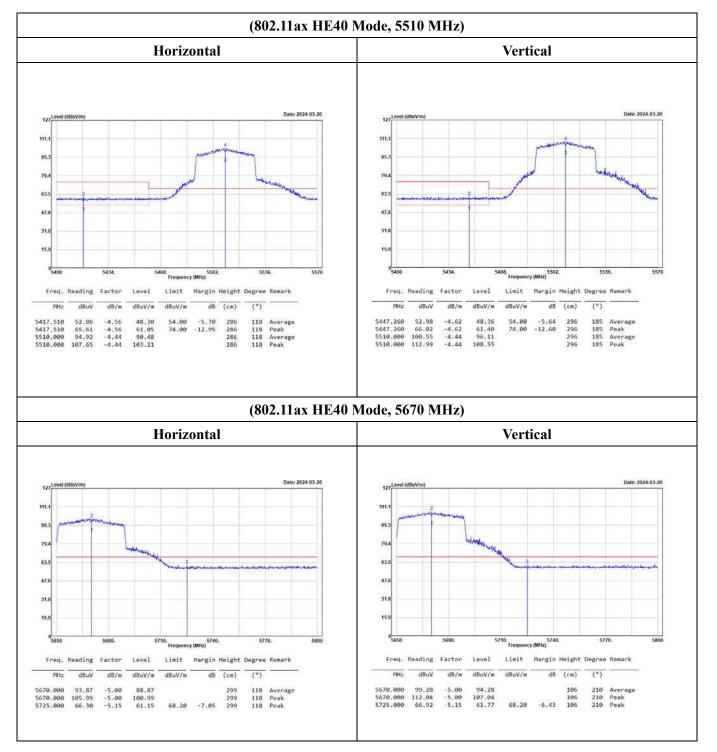


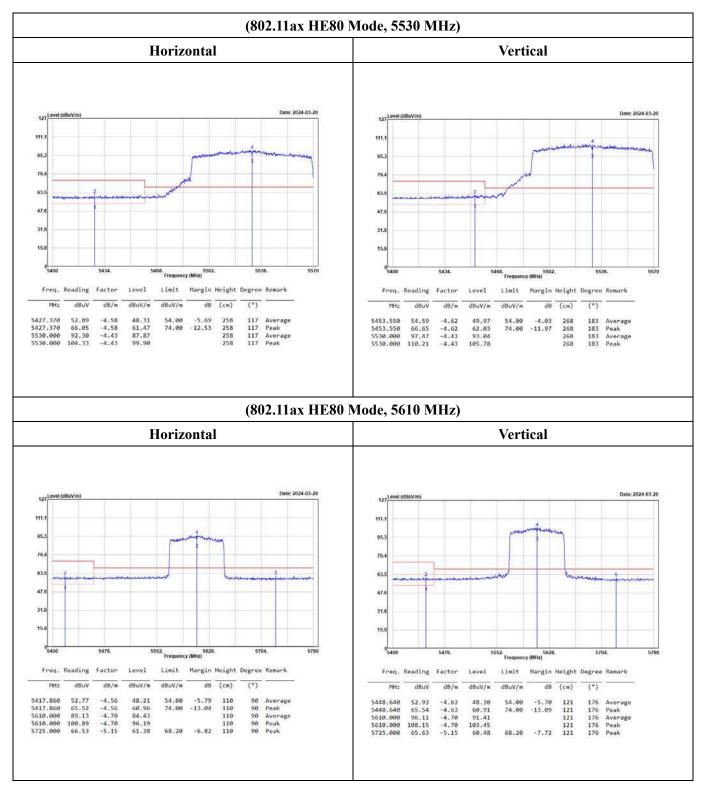
5470-5725 MHz

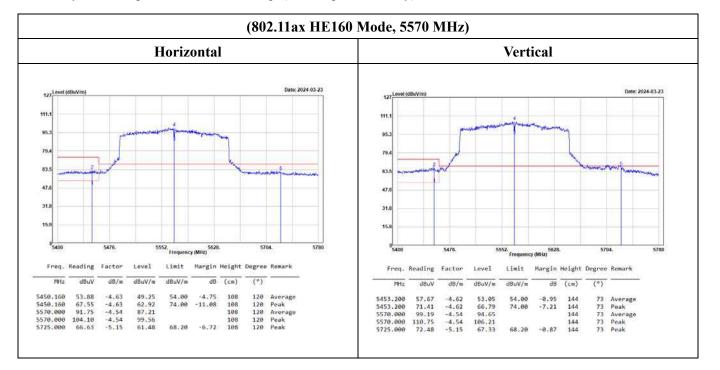


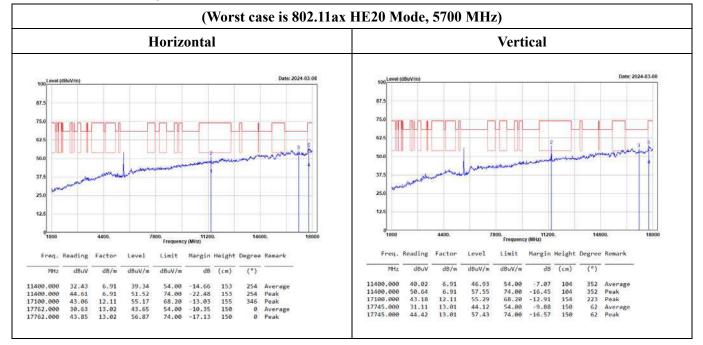

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 58 of 423



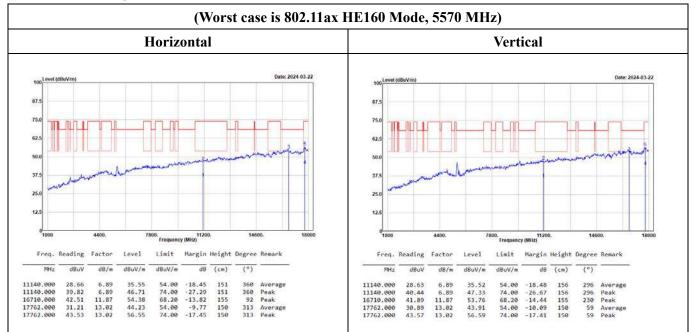



Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 60 of 423




Level = Reading + Factor.

Margin = Level – Limit.

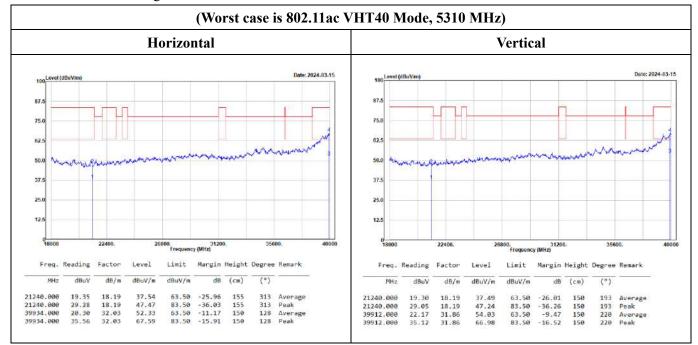

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

1GHz-18GHz:

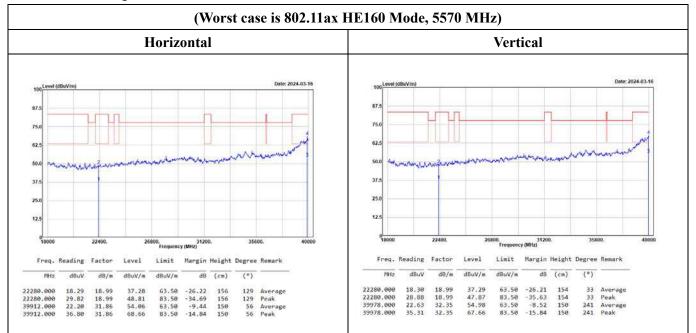
Non Beamforming Mode

Beamforming Mode:

Level = Reading + Factor.


Margin = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 66 of 423

18GHz-40GHz:

Non Beamforming Mode

Beamforming Mode:

Level = Reading + Factor.

Margin = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 67 of 423

Above 1GHz

Non Beamforming Mode:

5250-5350 MHz

802.11a Mode:

								5260	MHz								
			Hori	zonta	1							Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10520.000	40.92	5.69	46.61		-21.59	154		Peak	10520.000	41.10	5.69	46.79		-21.41	155		Peak
15780.000 15780.000	31.09 42.01	9.96 9.96	41,05 51,97		-12.95 -22.03	151 151		Average Peak	15780.000 15780.000	31.07 43.31	9.96 9.96	41.03 53.27		-12.97 -20.73	152 152		Average Peak
					•			5300	MHz			• 7	<i>·</i> • •				
			Hori	zonta	<u> </u>							Vei	rtical				
	Reading		Level		Margin	BT C	- 22	Remark		Reading		Level	Lisit	Margin	- 17. 	50	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10600.000	29.40	5.67	35.07 46.62		-18.93	153 153		Average Peak	10600.000	29.79 41.28	5.67	35.46		-18.54	156 156		Average Peak
15900.000 15900.000	30.30 43.00	10.07 10.07	40.37 53.07		-13.63 -20.93	155 155	357 357	Average Peak	15900.000 15900.000	30.30 41.79	10.07 10.07	40.37 51.86	54.00	-13.63 -22.14	153 153	105 105	Average Peak
			Hori	zonta	1			5320	MHz			Ver	rtical				
Free	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	1028	(°)		MHz		dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10640.000	29.43	5.67	35.10	54.00			122		10640.000		5.67	35.02		-18.98	154		Average
10640.000 15960.000 15960.000	31.26	5.67 10.57 10.57	46.45	74.00 54.00 74.00	-12.17	151	122	Average	10640.000 15960.000 15960.000	31.21	5.67 10.57 10.57	47.09 41.78 52.99	74.00 54.00 74.00	-26.91 -12.22 -21.01	154 156 156		Peak Average Peak
13300.000	42.30	10.57	53.13	74.00	-20.67	151	56	Peak	15500.000	42.42	10.37	52.55	74.00	21.01	150	511	Teak

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 68 of 423

802.11ac VHT20 Mode:

								5260	MHz								
			Hori	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	d8uV/m	dB	(cm)	(*)		MHz	dBuV	d8/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10520.000 15780.000 15780.000	43.38 39.63 55.59	5.69 9.96 9.96	49.07 49.59 65.55	68.20 54.00 74.00	-19.13 -4.41 -8.45	156 193 193	127 348 348	Peak Average Peak	10520.000 15780.000 15780.000	40.55	5.69 9.96 9.96	51.27 50.51 67.49	68.20 54.00 74.00	-16.93 -3.49 -6.51		0 359 359	Peak Average Peak
								5300	MHz								
			Hori	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	d8uV/m	dBuV/m	d8	(cm)	(°)		MH2	dBuV	dB/m	d8uV/m	d8uV/m	dß	(cm)	(°)	
10600.000	31.88	5.67	37.55		-16.45	156	116	Average	10600.000	34.05	5.67	39.72	54.00	-14.28	158		Average
10500.000	44.20	5.67 10.07	49.87	58.20 54.00	-18.33 -11.40	156 151	115 208	Peak Average	10600.000	46.81 33.90	5.67	52.48 43.97	68.20 54.00	-15.72	158 154		Peak Average
								5320	MHz								
			Hori	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
0640.000	31.13	5.67	36.80	54.00	-17.20	152	282	Average	10640.000	33.05	5.67	38.72	54.00	-15.28			Averag
L0640.000 L5960.000	43.88 34.34	5.67 10.57	49.55 44.91	74.00 54.00	-24.45 -9.09	152 158	282 344	Peak Average	10640.000 15960.000	45.73 33.72	5.67 10.57	51.40 44.29	74.00 54.00	-22.60 -9.71		0 319	Peak Averag
5960.000	47.40	10.57	57.97		-16.03	158	344	Peak	15960.000	49.13	10.57	59.70	74.00	-14.30	156		Peak

Level = Reading + Factor.

Margin = Level – Limit.

 $Factor = Antenna \ Factor + Cable \ Loss - Amplifier \ Gain.$

802.11ac VHT40 Mode:

							5270	MHz									
		Hori	izonta	1				Vertical									
Reading	Factor	Level	Limit	Margi	n Height	t Degree	e Remark	Freq	. Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark	
dBuV	dB/m	dBuV/m	dBuV/m	dl	3 (cm)	(°)		MH:	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		
42.09	5,69	47.78	68.20	-20.4	2 151	351	Peak	10540.000	9 41.98	5.69	47.67	68.20	-20.53	154	7	Peak	
34.80	10.11	44.91	54.00	-9.09	9 156	41	Average				43.60					Averag	
45.60	10.11	55.71	74.00	-18.29	9 156	41	Peak	15810.000	9 42.69	10.11	52.80	74.00	-21.20	152	42	Peak	
		Hori	zonta	1			5310	MHz			Vei	rtical					
		1101	ZUIIta	1							ve	ucai					
Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin I	Height	Degree	Remark	
dBuV	dB∕m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		
31.22	5.67	36.89			152			10620.000	31.66	5.67	37.33	54.00	-16.67	156	82	Average	
								10620.000	41.70	5.67	47.37	74.00	-26.63	156		Peak	
42.15	10.33	52.48			155					10.33	43.09 52.09			151		Average Peak	
	Reading dBuV 42.09 34.80 45.60 45.60 45.60 31.22 41.71 32.46	42.09 5.69 34.80 10.11 45.60 10.11 45.60 10.11	Reading Factor Level dBuV dB/m dBuV/m 42.09 5.69 47.78 34.80 10.11 44.91 45.60 10.11 55.71 45.60 10.11 55.71 General Science Hort 45.60 10.11 55.71 10.11 55.71 45.60 10.11 55.71 45.60 10.11 55.71 45.60 10.11 55.71 45.60 10.11 55.71 45.60 10.11 55.71 40.17 5.67 6.89 41.71 5.67 47.38 32.46 10.33 2.79	Reading Factor Level Limit dBuV dB/m dBuV/m dBuV/m 42.09 5.69 47.78 68.20 34.80 10.11 44.91 54.90 45.60 10.11 55.71 74.00 Horizonta dBuV/m dBuV/m dBuV dB/m dBuV/m dBuV/m dB/m dBuV/m dBuV dB/m dBuV/m dBuV/m 31.22 5.67 36.89 54.00 41.71 5.67 47.38 74.00	dBuV dB/m dBuV/m dBuV/m dd 42.09 5.69 47.78 68.20 -20.43 34.80 10.11 44.91 54.00 -9.62 45.60 10.11 55.71 74.00 -18.25 45.60 10.11 55.71 74.00 -18.25 Horizontal dBuV dB/m dBuV/m dB 31.22 5.67 36.89 54.00 -17.11 41.71 5.67 47.38 74.00 -17.11 42.79 5.400 -10.33 42.79 54.60 -17.11	Reading Factor Level Limit Margin Height dBuV dB/m dBuV/m dBuV/m dB (cm) 42.09 5.69 47.78 68.20 -20.42 151 34.80 10.11 44.91 54.00 -9.09 156 45.60 10.11 55.71 74.00 -18.29 156 Horizontal Reading Factor Level Limit Margin Height dBuV dB/m dBuV/m dBuV/m dB (cm) 31.22 5.67 36.89 54.00 -17.11 152 32.46 10.33 42.79 54.60 -115 155	Reading Factor Level Limit Margin Height Degree dBuv dB/m dBuV/m dBuV/m dB (cm) (°) 42.09 5.69 47.78 68.20 -20.42 151 351 34.80 10.11 44.91 54.00 -9.09 156 41 45.60 10.11 55.71 74.00 -18.29 156 41 Horizontal Reading Factor Level Limit Margin Height Degree dBuv dB/m dBuV/m dBuV/m dB (cm) (*) 31.22 5.67 36.89 54.00 -17.11 152 0 32.46 10.33 42.79 54.60 -17.11 152 0	Horizontal Reading Factor Level Limit Margin Height Degree Remark dBuV dBv/m dBuV/m dBuV/m dBv/m dBv/m (°) 42.09 5.69 47.78 68.20 -20.42 151 351 Peak 34.80 10.11 44.91 54.00 -9.09 156 41 Average 45.60 10.11 55.71 74.00 -18.29 156 41 Peak Morizontal Morizontal Morizontal Morizontal Margin Height Degree Remark dBuV dBuV/m dBuV/m dBuV/m (°) (°) 31.22 5.67 36.89 54.00 -17.11 152 0 Average 41.71 5.67 47.38 74.69 -26.62 152 0 Peak 32.46 10.33 42.79 54.69 -112.11	Reading Factor Level Limit Margin Height Degree Remark Freq. 42.09 5.69 47.78 68.20 -20.42 151 351 Peak 10540.000 15810.000 34.80 10.11 44.91 54.00 -9.09 156 41 Average 15810.000 45.60 10.11 55.71 74.00 -18.29 156 41 Peak 15810.000 Status Horizontal Gauge Factor Limit Margin Height Degree Remark Freq. dBuV dB/m dBuV/m dBuV/m dB (cm) (°) MHz Status Gauge Factor Level Limit Margin Height Degree Remark Freq. dBuV dBuV/m dB (cm) (°) MHz Status 1061/m 1061/m 1061/m 1061/m	Horizontal Reading Factor Level Limit Margin Height Degree Remark Freq. Reading dBuV dBuV/m dBuV/m dBuV/m dBuV/m dBuV (°) MHz Margin Height Degree Remark Freq. Reading 42.09 5.69 47.78 68.20 -20.42 151 351 Peak 10540.000 41.98 34.80 10.11 44.91 54.00 -9.09 156 41 Average 15810.000 33.49 45.60 10.11 55.71 74.00 -18.29 156 41 Peak 15810.000 42.69 Horizontal Mereg. Reading dBuV dBuV/m dBuV/m dBuV/m dBuV/m Margin Height Degree Remark Freq. Reading Mereg. 100 dBuV dBuV/m dBuV/m dBuV Margin Height Degree Remark Freq. Reading Mir dBuV/m dBuV/m dBuV/m dBuV/m dBuV Mir dBuV/m	Horizontal Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor dBuV dBuV/m dBuV/m dBuV/m dBuV/m dBuV (°) MHz MB/w dB/w dB/m 42.09 5.69 47.78 68.20 -20.42 151 351 Peak 10540.000 41.98 5.69 34.80 10.11 44.91 54.00 -9.09 156 41 Average 10540.000 41.98 5.69 35.60 10.11 55.71 74.00 -18.29 156 41 Peak 15810.000 42.69 10.11 15810.000 42.69 10.11 55.71 74.00 -18.29 156 41 Peak Salto MHz Horizontal Merg. Evel Limit Margin Height Degree Remark Freq. Reading Factor dBuV dBuV/	Horizontal Ver Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor Level dBuV dBuV/m dBuV/m	Horizontal Vertical Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor Level Limit dBuv dBuv/m dBuv/m dBuv/m dB (°) MHz dBuv dBv/m dBuv/m d	Vertical Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor Level Limit Margin Margin Height Degree Remark Freq. Reading Factor Level Limit Margin M	Horizontal Vertical Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor Level Limit Margin Height 42.09 5.69 47.78 68.20 -20.42 151 351 Peak 45.60 10.11 43.51 54.00 -9.09 156 41 Average 45.60 10.11 55.71 74.00 -18.29 156 41 Average 45.60 10.11 55.71 74.00 -18.29 156 41 Peak 15810.000 42.69 10.11 52.60 74.00 -12.20 152 5310 MHz Example Example Example Example Example 60//v 40//v dBuV d	Vertical Vertical Reading Factor Level Limit Margin Height Degree Remark dBuV dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m Margin Height Degree Margin Height Degree Margin Height Degree Margin Height Degree Margin Height Degree Margin Margin Height Degree Margin Margin Height Degree Margin Height Degree Margin Margin <t< td=""></t<>	

802.11ac VHT80 Mode:

								5290	MHz									
			Hori	zontal	[Vertical									
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		
10420.000 15630.000 15630.000	40.10 33.03 41.58	5.32 9.31 9.31	45.42 42.34 50.89	54.00	-22.78 -11.66 -23.11	153 155 155	273	Peak Average Peak	10420.000 15630.000 15630.000	32.91	5.32 9.31 9.31	45.85 42.22 50.05	54.00	-22.35 -11.78 -23.95	152 155 155		Peak Average Peak	

802.11ac VHT160 Mode:

			Horiz	zontal					Vertical									
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	0	
10500.000		5.70	46.60	68.20	-21.60			Peak	10500.000	41.27	5.70	46.97		-21.23	153		Peak	
15750.000		9.75	42.11 52.13	54.00 74.00	-11.89			Average Peak	15750.000		9.75	41.93 52.34		-12.07	151 151		Average Peak	

802.11ax HE20 Mode:

								5260) MHz								
			Hori	zontal								Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10520.000	43.68	5.69	49.37	68.20	-18.83	155	270	Peak	10520.000		5.69	55.22		-12.98	153		Peak
15780.000 15780.000	40.59 56.57	9.96 9.96	50.55 66.53	54.00 74.00	-3.45 -7.47	199 199		Average Peak	15780.000 15780.000		9.96 9.96	51.12 66.98	54.00 74.00	-2.88 -7.02	210 210	354 354	Average Peak
								5300) MHz								
			Hori	zontal								Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	d8uV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10600.000	31.58 43.64	5.67 5.67	37.25 49.31	54.00 68.20	-16.75	157 157	110 110	Average Peak	10600.000 10600.000	35.66	5.67	41.33 53.11	54.00	-12.67	154 154		Average Peak
15900.000	33.21 45.70	10.07	43.28	54.00	-10.72	153 153	240 240	Average Peak	15900.000	35.74	10.07	45.81	54.00	-8.19	156	10	Average Peak
								5320	MHz								
			Hori	zontal								Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degre	e Remark	Freq.	Reading	Factor	Level	Limit	Margir	n Heigh	t Degre	e Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	di	3 (cm)	(°)	
10640.000 10640.000	31.21 43.49	5.67 5.67	36.88 49.16	54.00 74.00			91 91	Average Peak	10640.000			39.69	54.00				
15960.000 15960.000	33.51 45.57	10.57 10.57	44.08 56.14	54.00 74.00		154	357 357	Average	10640.000 15960.000	34.54	10.57	51.67 45.11	74.00 54.00	-8.89	9 152	154	Average
									15960.000	47.61	10.57	58.18	74.00	-15.82	2 152	154	Peak

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ240304007RF01

802.11ax HE40 Mode:

								52	70 MHz								
			Hori	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Heigh	t Degree	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	t Degree	e Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
0540.000	42.63	5.69	48.32	68 20	-19.88	152	116	Peak	10540.000	46.41	5.69	52.10	68.20	-16.10	168	357	Peak
5810.000	37.57	10.11	47.68	54.00	-6.32	199	353	Average	15810.000	38.21	10.11	48.32	54.00	-5.68	206	353	
5810.000	51.51	10.11	61.62	74.00	-12.38	199	353	Peak	15810.000	52.86	10.11	62.97	74.00	-11.03	206	353	Peak
								53	10 MHz								
			Hori	zontal	l							Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	d8uV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
0620.000		5.67	35.89		-18.11	152		Average	10620.000	30.98	5.67	36.65		-17.35	157		Average
10620.000		5.67 10.33	47.05	74.00	-26.95	152 156	281 351	Peak Average	10620.000 15930.000	41.49 33.00	5.67 10.33	47.16 43.33	74.00 54.00	-26.84 -10.67	157 151	52 52	Peak Average
15930.000	42.19	10.33	52.52	74.00	-21.48	156	351	Peak	15930.000	42.19	10.33	52.52	74.00	-21.48	151	52	Peak

802.11ax HE80 Mode:

									MHz								
			Hori	zontal								Ver	tical				
Freq. Rea	ading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
5870.000	42.30 34.85 47.04	5.68 10.08 10.08	47.98 44.93 57.12	68.20 54.00 74.00	-9.07	153 206 206	111 208 208	Peak Average Peak	10580.000 15870.000 15870.000	43.84 36.60 48.71	5.68 10.08 10.08	49.52 46.68 58.79	68.20 54.00 74.00	-18.68 -7.32 -15.21	158 102 102	160	Peak Average Peak

802.11ax HE160 Mode:

								5250	MHz								
			Hori	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10500.000	40.37	5.70	46.07		-22.13	158	75	Peak	10500.000	41.50	5.70	47.20		-21.00	153	0	Peak
15750.000	32.18	9.75	41.93	54.00	-12.07	156	145	Average	15750.000	32.29	9.75	42.04	54.00	-11.96	153	22	Average
15750.000	43.78	9.75	53.53	74.00	-20.47	156	145	Peak	15750.000	42.75	9.75	52.50	74.00	-21.50	153	22	Peak

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

5470-5725 MHz

802.11a Mode:

Instance State State <th< th=""><th></th><th>5500 I</th><th>MHz</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		5500 I	MHz								
PHC dBuV dBuV/m	Horizontal					Ver	rtical				
11000.000 29.95 6.42 36.37 54.00 -17.63 151 241 Average 11000.000 41.93 6.42 48.95 74.00 -25.65 151 241 Peak 11000.000 41.90 12.00 53.90 66.28 -14.30 152 274 Peak 11000.000 41.90 12.00 53.90 66.28 -14.43 152 274 Peak 11000.000 41.90 12.00 53.90 66.28 -14.43 152 274 Peak 11000.000 41.90 12.00 53.90 66.28 -14.43 152 274 Peak 11000.000 41.90 12.00 53.90 66.28 -14.43 152 274 Peak 11000.000 45.90 12.00 53.90 62.28 -13.90 133 43 Peak 11000.000 45.90 12.00 53.30 66.28 -17.63 133 40 Peak 11160.000 42.31 11.77 54.22 69.20 133 30 <t< th=""><th>Freq. Reading Factor Level Limit Margin Height</th><th>Degree Remark</th><th>Freq.</th><th>Reading</th><th>Factor</th><th>Level</th><th>Limit</th><th>Margin</th><th>Height</th><th>Degree</th><th>Remark</th></t<>	Freq. Reading Factor Level Limit Margin Height	Degree Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
I18000.000 41.93 6.42 48.35 74.00 -25.65 151 241 Peak I15500.000 41.90 12.00 53.90 68.20 -14.30 154 104 Peak IS500.000 41.90 12.00 53.90 68.20 -13.32 199 43 Peak IS500.000 Vertical Freq. Reading Factor Limit Margin Height Degree Remark Freq. Reading Factor Limit Margin Height Degree Remark MH dbuv dbuv/m		(°)	MH2	dBuV		d8uV/m	d8uV/m	dB	(cm)	(°)	-
110000.000 41.93 6.42 48.35 74.00 -25.65 151 241 Peak 11000.000 40.40 60.42 52.90 74.00 -21.10 152 2/4 Peak 11000.000 41.90 12.00 53.90 68.20 -14.30 154 104 Peak S580 MHz Vertical Freq. Reading Factor Level Limit Margin Height Degree Remark (164.00 040/m 40/m 40/m 40/m 40/m 40/m 40/m 4			11000 000	33 15							Average
5580 MHz Horizontal Vertical Freq. Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor Level Limit Margin Height Degree Remark M12 dBuv dBuv dBuv/m	11000.000 41.93 6.42 48.35 74.00 -25.65 151	241 Peak	11000.000	46.48	6.42	52.90	74.00	-21.10	152	274	Peak
Horizontal Vertical Freq. Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor Level Limit Margin Height Degree Remark MHz dBuV/m	10300.000 41.90 12.00 55.90 00.20 -14.30 134	104 Peak	10300.000	42.30	12.00	54.30	66.20	-13.22	134	43	геак
Freq. Reading Factor Level Limit Margin Height Degree Remark MHz dBuV dBuV dBuV/m <		5580	MHz				· •				
MHz dBuV dBuV/m dBuV/m dB (cm) (°) MHz dBuV dBuV/m dB uV/m dB (cm) (°) MHz dBuV dBuV/m dB uV/m dB (cm) (°) MHz dBuV dBuV/m dB uV/m dB (cm) (°) MHz dBuV dBuV/m dB (cm) (°) (°) 11160.000 33.51 6.83 40.34 54.00 -13.66 156 206 Average 11160.000 42.43 11.79 54.22 68.20 -13.98 153 133 Peak Mitelow 000 30.61 56.20 51.33.98 153 133 Peak	Horizontal					Ver	tical				
State State <th< td=""><td>Freq. Reading Factor Level Limit Margin Height (</td><td>Degree Remark</td><td>Freq.</td><td>Reading</td><td>Factor</td><td>Level</td><td>Limit</td><td>Margin</td><td>Height</td><td>Degree</td><td>Remark</td></th<>	Freq. Reading Factor Level Limit Margin Height (Degree Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
State State <th< td=""><td>MHz dBuV dB/m dBuV/m dBuV/m dB (cm)</td><td>(°)</td><td>MHz</td><td>dBuV</td><td>dB/m</td><td>dBuV/m</td><td>dBuV/m</td><td>dB</td><td>(cm)</td><td>(°)</td><td></td></th<>	MHz dBuV dB/m dBuV/m dBuV/m dB (cm)	(°)	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
I6740.000 42.43 11.79 54.22 68.20 -13.98 153 133 Peak 16740.000 43.71 11.79 55.50 68.20 -12.70 155 357 Peak S700 MHz Freq. Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor Level Limit Margin Height Degree Remark Freq. Reading Factor Level Limit Margin Height Degree Remark Margin dBuV/m											
Horizontal Vertical Freq. Reading Factor Level Limit Margin Height Degree Remark MHz dBuV dB/m dBuV/m dBuV/m dB (cm) 1400.000 30.09 6.91 37.00 54.00 -17.00 151 83 Average 11400.000 32.61 6.91 39.52 54.00 -14.48 156 249 Average 1400.000 41.69 6.91 43.60 -26.40 151 83 Average 11400.000 32.61 6.91 39.52 54.00 -14.48 156 249 Average 1400.000 32.61 6.91 39.52 54.00 -19.87 156 249 Peak	16740.000 42.43 11.79 54.22 68.20 -13.98 153	133 Peak									
Freq. Reading Factor Level Limit Margin Height Degree Remark MHz dBuV dB/m dBuV/m dBuV/m dB (cm) (°) 1400.000 30.09 6.91 37.00 54.00 -17.00 151 83 Average 11400.000 32.61 6.91 39.52 54.00 -14.48 156 249 Average 11400.000 47.22 6.91 34.13 74.00 -19.87 156 249 Peak	Hovizontel	5700 1	MHz			Va	rtical				
MHz dBuV dBuV/m dBuV/m dBuV/m dB (cm) (°) 1400.000 30.09 6.91 37.00 54.00 -17.00 151 83 Average 11400.000 32.61 6.91 39.52 54.00 -14.48 156 249 Average 1400.000 41.69 6.91 48.60 74.00 -25.40 151 83 Peak 11400.000 47.22 6.91 54.13 74.00 -19.87 156 249 Peak	Horizoitai					vei	utai				
1400.000 30.09 6.91 37.00 54.00 -17.00 151 83 Average 11400.000 32.61 6.91 39.52 54.00 -14.48 156 249 Average 1400.000 41.69 6.91 48.60 74.00 -25.40 151 83 Peak 11400.000 47.22 6.91 54.13 74.00 -19.87 156 249 Peak	TO PARTY AND ADDRESS TO OTHER ADDRESS A	Source and Section								g durining	Remark
1400.000 41.69 5.91 48.50 74.00 -25.40 151 83 Peak 11400.000 47.22 6.91 54.13 74.00 -19.87 156 249 Peak		(*)							27.0.3000.000 0		
	1400.000 41.69 6.91 48.60 74.00 -25.40 151	83 Peak	11400.000	47.22	6.91	54.13	74.00	-19.87	156	249	Peak

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

802.11ac VHT20 Mode:

								5500	MHz								
			Horiz	zontal	l							Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	e Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11000.000 11000.000 16500.000	31.71 44.05 41.63	6.42 6.42 12.00	38.13 50.47 53.63	74.00	-15.87 -23.53 -14.57	155	216	Average Peak Peak	11000.000 11000.000 16500.000	46.93	6.42 6.42 12.00	40.58 53.35 54.73	74.00	-13.42 -20.65 -13.47	154	261	Average Peak Peak
								5580	MHz								
			Horiz	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	n Heigh	t Degre	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m		3 (cm)			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11160.000 11160.000	31.50 43.92	6.83 6.83	38.33 50.75	54.00 74.00					11160.000 11160.000		6.83 6.83	45.09 57.46	54.00	-8.91 -16.54	104		Average Peak
16740.000	41.94	11.79	53.73	68.20	-14.47	7 153	332	Peak	16740.000	43.28	11.79	55.07	68.20	-13.13	157	229	reaк
								5700	MHz								
			Horiz	zontal	l							Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11400.000 11400.000	32.76 45.71	6.91 6.91	39.67 52.62	54.00 74.00		153 153		Average Peak	11400.000 11400.000		6.91 6.91	46.27 58.72	54.00 74.00	-7.73 -15.28	102 102	346 346	Average
17100.000	42.15	12.11	54.26	68.20		155		Peak	17100.000		12.11	53.71		-14.49	159	214	

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

802.11ac VHT40 Mode:

								5510	MHz								
			Hori	zonta	l							Vei	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin I	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11020.000	31.28	6.53	37.81	54.00	-16,19	156	0	Average	11020.000	32.60	6.53	39.13		-14.87	153		Average
1020.000		6.53	47.78		-26.22	156 155	0 39	Peak Peak	11020.000 16530.000	43.65 42.01	6.53	50.18 54.08		-23.82	153 155	305 285	Peak Peak
								5550	MHz								
			Hori	zonta	1							Vei	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11100.000 11100.000		6.99 6.99	38.04		-15.96		344 344	Average Peak	11100.000 11100.000			40.09	54.00 74.00	-13.91 -22.49	156 156	246	Average Peak
16650.000	43.06	12.07	55.13	68.20	-13.07	153	174	Peak	16650.000	43.54	12.07	55.61	68.20	-12.59	154	176	Peak
								5670	MHz								
			Hori	zonta	1							Vei	rtical				
Freq.	Reading	Factor	Level	Limit	Margir	Heigh	t Degre	e Remark	Freq	. Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	di	(cm)	(°)		MH:	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	-
11340.000	32.69	6.99	39.68	54.00	-14.32	155	7	Average	11340.000			43.42		-10.58			Average
11340.000			50.46 52.54	74.00	-23.54	155	7	Peak Peak	11340.000			55.81 52.43	68.20	-18.19	105 152		Peak Peak

Level = Reading + Factor.

Margin = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

802.11ac VHT80 Mode:

								5530	MHz								
			Hori	zontal								Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11060.000	32.17	6.76	38.93		-15.07	158	18	Average	11060.000	32.98	6.76	39.74	54.00	-14.26	152		Averag
11060.000 16590.000	43.05 44.82	6.76 12.21	49.81 57.03	74.00 68.20	-24.19 -11.17	158 156	18 357	Peak Peak	11060.000 16590.000	43.54 44.18	6.76 12.21	50.30 56.39	74.00 68.20	-23.70 -11.81	152 156		Peak Peak
			Hori	zontal				5610	MHz			Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remar
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11220.000	32.14	6.80	38.94		-15.06			Average	11220.000	37.09	6.80	43.89	54.00	-10.11			Avera
11220.000	42.61 43.97	6.80 11.57	49.41 55.54	74.00 68.20	-24.59 -12.66	153 154	122 315	Peak Peak	11220.000 16830.000	47.30 44.28	6.80 11.57	54.10 55.85	74.00 68.20	-19.90 -12.35			Peak Peak
16830.000																	
16830.000																	
6830.000																	

802.11ac VHT160 Mode:

								5570	MHz								
			Horiz	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11140.000	29.65	6.89	36.54		-17.46	150	317	Average	11140.000		6.89	36.53	54.00		152		Average
11140.000 16710.000	40.50 43.49	6.89 11.87	47.39 55.36		-26.61 -12.84	150 156	317 3	Peak Peak	11140.000 16710.000		6.89 11.87	47.04 53.70		-26.96 -14.50			Peak Peak

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ240304007RF01

802.11ax HE20 Mode:

								5500	MHz								
			Hori	izontal								Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11000.000	31.46	6.42	37.88		-16.12	151	289	Average	11000.000		6.42	44.58	54.00		106	170	Average
11000.000 16500.000	43.52 45.98	6.42 12.00	49.94 57.98	74.00 68.20		151 153	289 144	Peak Peak	11000.000 16500.000		6.42 12.00	55.20 57.32	74.00 68.20	-18.80 -10.88	106 156	170 189	Peak Peak
								5580	MHz								
			Hori	zontal								Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11160.000	31.30		38.13	54.00		154	249	Average	11160.000 11160.000		6.83 6.83	45.74 56.95	54.00 74.00	-8.26 -17.05	104 104		Average Peak
11160.000 16740.000	43.83 44.83	6.83 11.79	50.66 56.62	74.00 68.20		154 153	249 315	Peak Peak	16740.000		11.79	58.06	68.20		157	45	Peak
			Hori	izontal				5700	MHz			Va	rtical				
			11011	ZUIIta								VC	i ticai		10.01		
Freq. R	eading	Factor	Level	Limit	Margin H	leight	Degree	Remark	Freq.	Reading	Factor	Level		Margin H	leight		Remark
MHz	dBuV	d8/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)	
1400.000 1400.000	32.43	6.91 6.91	39.34 51.52	54.00 74.00	-14.66	153 153		Average Peak	11400.000 11400.000	40.02 50.64	6.91 6.91	46.93 57.55		-7.07 -16.45	104 104	352 F	Average Peak
7100.000 7762.000	43.06	12.11	55.17 43.65		-13.03	155 150	346	Peak Average	17100.000 17745.000	43.18 31.11	12.11 13.01	55.29 44.12	54.00	-12.91	154 150	62 /	Peak Average
7762.000							0		17745.000	44,42	13.01	57.43	74.00	-16,57	150	62 6	Peak

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ240304007RF01

802.11ax HE40 Mode:

5	510 MHz
Horizontal	Vertical
Freq. Reading Factor Level Limit Margin Height Degree Remark	Freq. Reading Factor Level Limit Margin Height Degree Remark
MHz dBuV dB/m dBuV/m dBuV/m dB (cm) (°)	MHz dBuV dB/m dBuV/m dBuV/m dB (cm) (°)
11020.000 30.61 6.53 37.14 54.00 -16.86 153 177 Average 11020.000 42.05 6.53 48.58 74.00 -25.42 153 177 Peak 16530.000 41.14 12.07 53.21 68.20 -14.99 155 185 Peak	11020.000 34.30 6.53 40.83 54.00 -13.17 105 333 Average 11020.000 47.41 6.53 53.94 74.00 -20.06 105 333 Peak 16530.000 41.25 12.07 53.32 68.20 -14.88 161 236 Peak
5. Horizontal	550 MHz Vertical
	Vertical
Freq. Reading Factor Level Limit Margin Height Degree Remark	Freq. Reading Factor Level Limit Margin Height Degree Remark
MHz dBuV dB/m dBuV/m dBuV/m dB (cm) (°)	MHz dBuV dB/m dBuV/m dBuV/m dB (cm) (°)
11100.000 30.63 6.99 37.62 54.00 -16.38 156 115 Average 11100.000 40.87 6.99 47.86 74.00 -26.14 156 115 Peak 16550.000 42.71 12.07 54.78 68.20 -13.42 152 293 Peak	11100.000 34.03 6.99 41.02 54.00 -12.98 152 0 Average 11100.000 46.41 6.99 53.40 74.00 -20.60 152 0 Peak 16650.000 43.09 12.07 55.16 68.20 -13.04 156 273 Peak
5 Horizontal	670 MHz Vertical
ΗοΓιζοπτάι	vertical
Freq. Reading Factor Level Limit Margin Height Degree Remark	Freq. Reading Factor Level Limit Margin Height Degree Remark
MHz dBuV dB/m dBuV/m dBuV/m dB (cm) (°) 11340.000 32.65 6.99 39.64 54.00 -14.36 156 260 Average	MHz dBuV dB/m dBuV/m dBuV/m dB (cm) (°) 11340.000 37.51 6.99 44.50 54.00 -9.50 119 354 Average
11340.000 44.20 6.99 51.19 74.00 -22.81 156 260 Peak 17010.000 41.08 11.95 53.03 68.20 -15.17 152 360 Peak	11340.000 37.51 6.99 44.50 54.00 -9.50 119 354 Average 11340.000 50.25 6.99 57.24 74.00 -16.76 119 354 Peak 17010.000 40.11 11.95 52.06 68.20 -16.14 156 217 Peak

802.11ax HE80 Mode:

								5530	MHz								
			Hori	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11060.000 11060.000 16590.000	42.48	6.76 6.76 12.21	36.87 49.24 56.35	74.00	-17.13 -24.76 -11.85	156 156 152		Average Peak Peak	11060.000 11060.000 16590.000	33.04 46.03 44.81	6.76 6.76 12.21	39.80 52.79 57.02	74.00	-14.20 -21.21 -11.18	104 104 152	1	Average Peak Peak
								5610	MHz								
			Hori	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11220.000 11220.000 16830.000	31.38 43.15 42.21	6.80 6.80 11.57	38.18 49.95 53.78	74.00		152	271 271 65	Average Peak Peak	11220.000 11220.000 16830.000	34.58 46.90 44.33	6.80 6.80 11.57	41.38 53.70 55.90	74.00	-12.62 -20.30 -12.30	108	359	Average Peak Peak

802.11ax HE160 Mode:

								5570	MHz								
			Hori	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11140.000 11140.000 16710.000	40.57	6.89 6.89 11.87	36.43 47.46 53.86	74.00	-17.57 -26.54 -14.34	158 158 150	159 159 27	Average Peak Peak	11140.000 11140.000 16710.000	29.55 40.87 41.95	6.89 6.89 11.87	36.44 47.76 53.82	74.00	-17.56 -26.24 -14.38	151 151 154	158 158 197	Average Peak Peak

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 81 of 423

Beamforming Mode:

5250-5350 MHz

802.11ac VHT20 Mode:

ing Factor BuV dB/m .23 5.69 .08 9.96 .88 9.96	Level 	Limit dBuV/m 68.20 54.00	Margin dB	(cm)	Degree (°)	e Remark 	Freq. MHz	Reading 	Factor 	Level	tical		Height	Degree	Remark
BuV dB/m .23 5.69 .08 9.96	dBuV/m 47.92 41.04	dBuV/m 68.20	dB	(cm)		e Remark 							Height	Degree	Remark
.23 5.69 .08 9.96	47.92 41.04	68.20			(-)		PIEZ					dB	(cm)	(°)	
	52.84		-12.96 -21.16	152	253 42 42	Average	10520.000 15780.000 15780.000	41.79 31.16 42.18	5.69 9.96 9.96	dBuV/m 47.48 41.12 52.14	dBuV/m 68.20 54.00 74.00	-20.72 -12.88 -21.86	(cm) 151 150 150	188 292	Peak Average Peak
	Hori	zontal				5300	MHz			Ver	tical				
2 T 1922 - M	11. T 52	10122-029-00	60 = 10 - 1		28 Y	29 W									
						Remark	MHz	dBuV	dB/m	dBuV/m	dBuV/m				Kemark
.31 5.67 .66 5.67 .40 10.07 .04 10.07	34.98 46.33 40.47 51.11	54.00 68.20 54.00	-19.02 -21.87 -13.53 -22.89	157 157 154 154	98 98 94	Peak Average	10600.000 10600.000 15900.000 15900.000	29.36 41.34 30.31 41.08	5.67 5.67 10.07 10.07	35.03 47.01 40.38 51.15	68.20 54.00	-21.19 -13.62	151 151 155 155	103 103 122	Average Peak Average Peak
	Hori	zontal				5320	MHz			Ver	tical				
ing Factor				Height	Degree	Remark	Ener	Reading	Factor			Mangin	Height	Degree	Remark
BuV dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m			(°)	
.27 5.67 .11 5.67 .09 10.57 .22 10.57	34.94 47.78 41.66 52.79	54.00 74.00 54.00 74.00	-19.06 -26.22 -12.34 -21.21	154 154 155 155	360 360 225 225	Average Peak Average Peak	10640.000 10640.000 15960.000 15960.000	29.16 41.79 30.96 43.31	5.67 5.67 10.57 10.57	34.83 47.46 41.53 53.88	54.00 74.00 54.00 74.00	-19.17 -26.54 -12.47 -20.12	155 155 153 153	110 206	Average Peak Average Peak
i	ing Factor 30V dB/m 227 5.67 11 5.67 09 10.57	ing Factor Level 3uV dB/m dBuV/m .31 5.67 34.98 .66 5.67 46.33 .40 10.07 40.47 .64 10.07 51.11 Horri .64 10.07 .64 10.07 51.11	Ing Factor Level Limit 3uV dB/m dBuV/m dBuV/m dBuV/m 31 5.67 36.98 54.00 36 5.67 46.33 68.20 40 10.07 40.47 54.00 .04 10.07 51.11 74.00 Horizonta ing Factor Level Limit 3uV dB/m dBuV/m dBuV/m dBuV/m .27 5.67 34.94 54.00 .11 5.67 47.78 74.00	Buv dB/m dBuV/m dBuV/m dBuV/m dB .31 5.67 34.98 54.00 -19.02 .66 5.67 46.33 68.20 -21.87 .40 10.07 40.47 54.00 -13.53 .44 10.07 51.11 74.00 -22.89	Ing Factor Level Limit Margin Height 3uV dB/m dBuV/m dBuV/m dB (cm) .31 5.67 34.98 54.00 -19.02 157 .66 5.67 46.33 68.20 -21.87 157 .40 10.07 40.47 54.00 -13.53 154 .04 10.07 51.11 74.00 -22.89 154	Ing Factor Level Limit Margin Height Degree 3uV dB/m dBuV/m dBuV/m dB (cm) (°) .31 5.67 34.98 54.00 -19.02 157 98 .66 5.67 46.33 68.20 -21.87 157 98 .40 10.07 40.47 54.00 -13.53 154 94 .64 10.07 51.11 74.00 -22.89 154 94 .64 10.07 51.41 dBuV/m Margin Height Degree .64 10.67 51.41 74.00 -22.89 154 94 .64 10.67 51.41 74.00 -22.89 154 94 .64 10.67 34.94 54.00 -19.06 (cm) (°) .27 5.67 34.94 54.00 -19.06 154 360 .11 5.67 47.78 74.00 -22.2	Horizontal ing Factor Level Limit Margin Height Degree Remark 3uV dB/m dBuV/m dB/V/m dB (cm) (°) .31 5.67 34.98 54.00 -19.02 157 98 Average .66 5.67 46.33 68.20 -21.87 157 98 Peak .40 10.07 51.11 74.00 -22.89 154 94 Peak .04 10.07 51.11 74.00 -22.89 154 94 Peak S320 Horizontal Sign field bulk/m Margin Height Degree Remark .04 10.07 51.11 74.00 -22.89 154 94 Peak Sign field bulk/m .04 10.07 51.11 74.00 -22.89 154 94 Peak Sign field bulk/m .04 B/M dBuV/m dBuV/m dB	Ing Factor Level Limit Margin Height Degree Remark Freq. 3uV dB/m dBuV/m dBuV/m dB (cm) (°) MHz .3uV dB.07 34.98 54.00 -19.02 157 98 Average 10600.000 .66 5.67 46.33 68.20 -21.87 157 98 Average 10600.000 .40 10.07 40.47 54.00 -13.53 154 94 Average 15900.000 .04 10.07 51.11 74.00 -22.89 154 94 Peak 15900.000 S320 MHz Horizontal Image: Factor Level Limit Margin Height Degree Remark Freq. .3uv dB/m dBuV/m dB (cm) (°) MHz .21 5.67 34.94 54.00 -19.06 154 360 Average 10640	Horizontal ing Factor Level Limit Margin Height Degree Remark 3uV dB/m dBuV/m dBuV/m dB (cm) (°) mit Freq. Reading .31 5.67 34.98 54.000 -19.02 157 98 Average 10600.000 29.36 .66 5.67 46.33 68.20 -21.87 157 98 Poak .04 10.07 51.11 74.00 -22.89 154 94 Average 15900.000 30.31 15900.000 41.08 15900.000 41.08 15900.000 41.08 Horizontal Freq. Reading Mitz Junv Gala Average Junv Junv Junv Margin Height Degree Remark Freq. Reading Junv Junv Junv Junv Junv Junv Junv Junv	Horizontal ing Factor Level Limit Margin Height Degree Remark SuV dB/m dBuV/m dB/W/m dB (cm) (°) MH_2 MH_2 GB/W dB/W .31 5.67 34.98 54.00 -19.02 157 98 Average 10660.000 29.36 5.67 .40 10.67 51.11 74.00 -13.53 154 94 Average 10660.000 41.34 5.67 .04 10.67 51.11 74.00 -22.89 154 94 Peak 15900.000 30.31 10.07 15900.000 41.08 10.07 51.11 74.00 -22.89 154 94 Peak 15900.000 41.08 10.07 Image: Sign of the state of th	Ver Ing Factor Level Limit Margin Height Degree Remark SuV dBuV/m dBuV/m dBuV/m dBuV/m Generation SuV dBuV/m dBuV/m <	Horizontal Vertical ing Factor Level Limit Margin Height Degree Remark SuV dB/m dBuV/m dB (cm) (°) Freq. Reading Factor Level Limit	Vertical ing Factor Level Limit Margin Height Degree Remark 3uV dB/m dBuV/m dBuV/m dB (cm) (°) ml ml ml ml feading Factor Level Limit Margin Margin 3uV dB/m dBuV/m dB (cm) (°) ml ml ml dBuV/m dBuV/m <t< td=""><td>Vertical Ing Factor Level Limit Margin Height Degree Remark 3uV dB/m dBuV/m dBuV/m dB (°) (°) .31 5.67 34.98 54.00 -11.87 157 98 Average .40 10.07 40.47 54.00 -13.53 154 94 Average .804 10.07 51.11 74.00 -22.89 154 94 Average .804 10.07 51.11 74.00 -22.89 154 94 Average .804 10.07 51.11 74.00 -22.89 154 94 Peak</td><td>Vertical Ing Factor Level Limit Margin Height Degree Remark 3UV $dB_{UV/m}$ <t< td=""></t<></td></t<>	Vertical Ing Factor Level Limit Margin Height Degree Remark 3uV dB/m dBuV/m dBuV/m dB (°) (°) .31 5.67 34.98 54.00 -11.87 157 98 Average .40 10.07 40.47 54.00 -13.53 154 94 Average .804 10.07 51.11 74.00 -22.89 154 94 Average .804 10.07 51.11 74.00 -22.89 154 94 Average .804 10.07 51.11 74.00 -22.89 154 94 Peak	Vertical Ing Factor Level Limit Margin Height Degree Remark 3UV $dB_{UV/m}$ <t< td=""></t<>

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

802.11ac VHT40 Mode:

								5270 I	MHz								
			Hori	zontal								Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10540.000	41.51	5.69	47.20	68.20	-21.00	150	133	Peak	10540.000	40.44	5.69	46.13	68.20	-22.07	156		Peak
15810.000	31.08	10.11	41.19	54.00			241	Average	15810.000	30.94	10.11	41.05	54.00	-12.95			Average
15810.000	42.43	10.11	52.54	74.00	-21.46	152	241	Peak	15810.000	42.49	10.11	52.60	74.00	-21.40	153	217	Peak
								5310	MHz								
			Horn	zontal								Ver	tical				
Freq	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
cq.							(0)		MHz	dBuV			10 111	1.0	(cm)	(°)	
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		19012	ubuv	dB/m	dBuV/m	dBuV/m	dB	(cm)	()	
MHz	dBuV	dB/m	dBuV/m 34.94		dB -19.06	(cm) 151		Average	10620.000	29.40	5.67	35.07	54.00	-18.93	151	295	Average
MHz 10620.000 10620.000	29.27 40.96	5.67 5.67	34.94 46.63	54.00 74.00	-19.06 -27.37	151 151	332 332	Peak	10620.000 10620.000	29.40 41.13	5.67	35.07 46.80	54.00 74.00	-18.93 -27.20	151 151	295 295	Peak
	29.27	5.67	34.94	54.00 74.00 54.00	-19.06	151	332 332 184		10620.000	29.40	5.67	35.07	54.00 74.00 54.00	-18.93	151 151 158	295 295 323	Peak
MHz 10620.000 10620.000 15930.000	29.27 40.96 30.67	5.67 5.67 10.33	34.94 46.63 41.00	54.00 74.00 54.00	-19.06 -27.37 -13.00	151 151 156	332 332 184	Peak Average	10620.000 10620.000 15930.000	29.40 41.13 30.76	5.67 5.67 10.33	35.07 46.80 41.09	54.00 74.00 54.00	-18.93 -27.20 -12.91	151 151 158	295 295 323	Peak Average
MHz 10620.000 10620.000 15930.000	29.27 40.96 30.67	5.67 5.67 10.33	34.94 46.63 41.00	54.00 74.00 54.00	-19.06 -27.37 -13.00	151 151 156	332 332 184	Peak Average	10620.000 10620.000 15930.000	29.40 41.13 30.76	5.67 5.67 10.33	35.07 46.80 41.09	54.00 74.00 54.00	-18.93 -27.20 -12.91	151 151 158	295 295 323	Peak Average
MHz 10620.000 10620.000 15930.000	29.27 40.96 30.67	5.67 5.67 10.33	34.94 46.63 41.00	54.00 74.00 54.00	-19.06 -27.37 -13.00	151 151 156	332 332 184	Peak Average	10620.000 10620.000 15930.000	29.40 41.13 30.76	5.67 5.67 10.33	35.07 46.80 41.09	54.00 74.00 54.00	-18.93 -27.20 -12.91	151 151 158	295 295 323	Peak Average

802.11ac VHT80 Mode:

								5290	MHz								
			Horiz	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	d8/m	dBuV/m	dBuV/m	dB	(cm)	(*)	
10580.000	41.61	5.68	47.29	68.20		151	90	Peak	10580.000		5.68	46.87		-21.33			Peak
15870.000	30.10 42.07	10.08 10.08	40.18 52.15	54.00 74.00		152 152	76 76	Average Peak	15870.000 15870.000		10.08	40.31	54.00 74.00		150 150		Average Peak

802.11ac VHT160 Mode:

			Hor	izonta	1			5250				Ve	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	d8/m	dBuV/m	dBuV/m	dB	(cm)	(°)	<u></u> ^	MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(<i>c</i> m)	(°)	
0500.000 5750.000	40.46	5.70 9.75	46.16 40.99	68.20 54.00	-22.04	150 152		Peak Average	10500.000	42.60	5.70	48.30	68.20 54.00	-19,90	154 155	105 17	Peak Average
5750.000	42.24	9.75	51.99	74.00	-22.01	152		Peak	15750.000	42.57	9.75	52.32		-21.68	155	17	Peak

802.11ax HE20 Mode:

								5260	MHz								
			Hori	zontal								Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10520.000	40.79	5.69	46.48		-21.72	151		Peak	10520.000	41.60	5.69	47.29	68.20		149	256	Peak
15780.000 15780.000	31.12 42.25	9.96 9.96	41.08 52.21	54.00 74.00	-12.92 -21.79	147 147	130 130	Average Peak	15780.000 15780.000	31.05 42.54	9.96 9.96	41.01 52.50	54.00 74.00	-12.99 -21.50	152 152		Average Peak
								5300	MHz				<u> </u>				
			Horn	zontal								Vei	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height		e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB		(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10600.000 10600.000	29.34 40.79	5.67 5.67	35.01 46.46	54.00 68.20			325 325		10600.000 10600.000	29.43 40.43	5.67 5.67	35.10 46.10	54.00 68.20	-18.90 -22.10	150 150	115 115	Average Peak
15900.000 15900.000	30.16 41.32	10.07 10.07	40.23 51.39	54.00		158	169 169	Average	15900.000 15900.000	30.23 41.03	10.07 10.07	40.30 51.10	54.00 74.00	-13.70 -22.90	152 152	0 0	Average Peak
								5320	MHz								
			Hori	zontal								Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Free	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)	
10640.000	29.28	5.67	34.95	54.00	-19.05	152	56	Average	10640.000	29.26	5.67	34.93		-19.07	157		Average
10640.000 15960.000	40.72 31.04	5.67 10.57	46.39 41.61	74.00	-27.61 -12.39	152 156	56 288	Peak Average	10640.000	41.14	5.67	46.81	74.00	-27.19	157	306	Peak
15960.000	42.89	10.57	53.46		-20.54	156	288	Peak	15960.000 15960.000	31.19 42.46	10.57 10.57	41.76 53.03	54.00 74.00	-12.24 -20.97	156 156		Average Peak

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ240304007RF01

802.11ax HE40 Mode:

								52	270 MHz								
			Hori	zontal								Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10540.000 15810.000 15810.000	40.50 30.91 43.28	5.69 10.11 10.11	46.19 41.02 53.39	54.00	-22.01 -12.98 -20.61	157 152 152	237 133 133	Peak Average Peak	10540.000 15810.000 15810.000	40.36 31.06 42.13	5.69 10.11 10.11	46.05 41.17 52.24	54.00	-22.15 -12.83 -21.76	152 152 152	289	Peak Average Peak
								53	310 MHz								
			Hori	zontal	l							Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10620.000 10620.000 15930.000 15930.000	29.28 40.36 30.60 42.39	5.67 5.67 10.33 10.33	34.95 46.03 40.93 52.72	74.00 54.00	-13.07	151 151 153 153	133 133 172 172	Average Peak Average Peak	10620.000 10620.000 15930.000 15930.000	29.43 40.28 30.74 42.45	5.67 5.67 10.33 10.33	35.10 45.95 41.07 52.78	74.00 54.00		154 157	0 234 234	Average Peak Average Peak

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ240304007RF01

802.11ax HE80 Mode:

								5290	MHz								
			Hori	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10580.000	40.43	5.68	46.11	68.20	-22.09	152	81	Peak	10580.000		5.68	46.86		-21.34	155		Peak
15870.000	30.30	10.08	40.38	54.00	-13.62	155	40	Average	15870.000		10.08	40.26		-13.74	152		Average
15870.000	42.03	10.08	52.11	74.00	-21.89	155	40	Peak	15870.000	41.30	10.08	51.38	74.00	-22.62	152	293	Peak

802.11ax HE160 Mode:

								5250	MHz								
			Hori	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
10500.000 15750.000 15750.000	40.54 31.28 43.35	5.70 9.75 9.75	46.24 41.03 53.10		-21.96 -12.97 -20.90	152	40 328 328	Peak Average Peak	10500.000 15750.000 15750.000	31.35	5.70 9.75 9.75	46.61 41.10 52.93	54.00	-21.59 -12.90 -21.07	151	66	Peak Average Peak

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

5470-5725 MHz

802.11ac VHT20 Mode:

								5500	MHz								
			Horiz	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11000.000	28.96	6.42	35.38		-18.62	154		Average	11000.000		6.42	35.72		-18.28	158		Average
11000.000 16500.000	40.04 41.12	6.42 12.00	46.46 53.12		-27.54 -15.08	154 151		Peak Peak	11000.000 16500.000		6.42 12.00	47.36 53.04		-26.64 -15.16	158 153	337 126	Peak Peak
								5580	MHz								
			Horiz	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11160.000 11160.000	28.60 40.51	6.83	35.43 47.34		-18.57 -26.66			Average Peak	11160.000 11160.000		6.83 6.83	36.65 47.41	54.00 74.00			147 147	Average Peak
16740.000	43.06	11.79	54.85	00.20	-13.35	151	127	Peak	16740.000	41.82	11.79	53.61		-14.59	153	290	Peak
								5700	MHz								
			Horiz	zontal								Ver	tical				
Frea.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11400.000	29.10	6.91	36.01		-17.99		277	Average	11400.000		6.91	35.96	54.00	-18.04			Averag
11400.000 17100.000	40.48 41.35	6.91 12.11	47.39 53.46		-26.61 -14.74			Peak Peak	11400.000 17100.000		6.91 12.11	47.60 52.09	74.00 68.20	-26.40 -16.11		191 155	Peak Peak

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

802.11ac VHT40 Mode:

								5510	MHz								
			Hori	zontal	l							Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11020.000 11020.000	29.07 40.60	6.53 6.53	35.60 47.13		-18.40 -26.87	155 155	13 13	Average Peak	11020.000 11020.000	29.20 40.06	6.53 6.53	35.73		-18.27	151 151		Average Peak
16530.000	41.33	12.07	53.40		-14.80	150	216	Peak	16530.000	41.38	12.07	53.45		-14.75	158		Peak
								5550	MHz								
			Hori	zontal								Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margir	Height	: Degree	e Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dE	(cm)	(°)	
11100.000 11100.000	28.68 39.66	6.99 6.99	35.67 46.65		-18.33 -27.35	148 148	113 113	Average Peak	11100.000 11100.000	29.22 40.38	6.99 6.99	36.21 47.37	54.00 74.00	-17.79			Average Peak
16650.000	42.27	12.07	54.34		-13.86	155	297	Peak	16650.000	42.91	12.07	54.98	00.20	-13.22	152	14	Peak
			Hori	zontal				5670	MHz			Vor	·tical				
			поп	zontai								ver	ucai				
	Reading		Level		Margin			Remark		Reading		Level	Limit				Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)	
11340.000 11340.000 17010.000	29.41 40.10 40.50	6.99 6.99 11.95	36.40 47.09 52.45	74.00	-17.60 -26.91 -15.75	155 155 153	129 129 87	Average Peak Peak	11340.000 11340.000 17010.000	29.62 40.97 40.67	6.99 6.99 11.95	36.61 47.96 52.62	74.00	-17.39 -26.04 -15.58	152 152 154		Average Peak Peak

Level = Reading + Factor.

Margin = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

802.11ac VHT80 Mode:

								5530	MHz								
			Hor	izonta	1							Ver	rtical				
Freq.	. Reading	Factor	Level	Limit	Margir	Height	Degree	e Remark	Freq.	Reading	Factor	Level	Limit	Margi	n Heigh	t Degree	e Remark
MHz	z dBuV	dB/m	dBuV/m	dBuV/m	dE	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	d	B (cm)	(°)	
11060.000	9 29.01	6.76	35.77	54.00	-18.23	154	221	Average	11060.000	29.00	6.76	35.76	54.00	-18.2	4 156	70	Averag
11060.000			46.88	74.00		154	221 360	Peak Peak	11060.000 16590.000		6.76 12.21	47.33 53.75	74.00	-26.6 -14.4			Peak Peak
10390.000	9 41.57	12.21	53.78	08.20	-14.42	. 152	995	FEAK									
			Hor	izonta	1			5610	MHz			Ver	·tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	d8/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	d8uV/m	dBuV/m	dB		(°)	
1220.000	28.83	6.80	35.63	54.00	-18.37	156	4	Average	11220.000	29.07	6.80	35.87	54.00	-18.13	154	247	Average
1220.000	40.99	6.80	47.79	74.00	-26.21	156	4	Peak	11220.000 16830.000	40.59 41.26	6.80 11.57	47.39 52.83	74.00	-26.61	154 156		Peak
16830.000	41.74	11.57	53.31	00.20	-14.89	153	243	r con				57225					

802.11ac VHT160 Mode:

								5570	MHz								
			Horiz	zontal								Ver	tical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11140.000 11140.000	28.59 40.61	6.89	35.48 47.50	54.00 74.00	-18.52 -26.50		252 252	Average Peak	11140.000 11140.000		6.89	35.59 46.45	54.00 74.00	-18.41 -27.55	158 158		Average Peak
16710.000	42.27	11.87	54.14		-14.06		188	Peak	16710.000		11.87	53.84		-14.36			Peak

802.11ax HE20 Mode:

								5500	M	Hz								
			Horiz	zontal									Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark		Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11000.000 11000.000 16500.000	29.03 41.67 42.00	6.42 6.42 12.00	35.45 48.09 54.00	74.00	-18.55 -25.91 -14.20	150 150 155	360 360 88	Average Peak Peak		11000.000 11000.000 16500.000	42.14	6.42 6.42 12.00	35.61 48.56 53.97	74.00	-18.39 -25.44 -14.23	157 157 151	0	Average Peak Peak
								5580) M	Hz								
			Horiz	zontal									Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark		Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)			MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11160.000 11160.000	28.77 40.95	6.83 6.83	35.60 47.78	54.00 74.00	-18.40 -26.22	156 156	360 360	Average Peak		11160.000 11160.000		6.83 6.83	36.69 47.88	54.00 74.00			358 358	Average Peak
16740.000	42.24	11.79	54.03	68.20	-14.17	157	311	Peak		16740.000	41.95	11.79	53.74		-14.46	152	101	Peak
			Horiz	zontal				5700) M]	Hz			Ver	·tical				
Freg.	Reading	Factor	Level	Limit	Margin	Height	t Degre	e Remark		Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)			MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)	
11400.000 11400.000 17100.000	29.21 40.36 40.96	6.91 6.91 12.11	36.12 47.27 53.07	54.00 74.00 68.20		154	201 201 190	Peak		11400.000 11400.000 17100.000	41.32	6.91 6.91 12.11	36.86 48.23 52.84	54.00 74.00 68.20	-17.14 -25.77 -15.36	152	6	Average Peak Peak

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

No.: RXZ240304007RF01

802.11ax HE40 Mode:

	5510 MHz								
Horizont	al			Vert	tical				
Freq. Reading Factor Level Limit MHz dBuV dB/m dBuV/m dBuV/m dBuV/m 11020.000 29.17 6.53 35.70 54.0 11020.000 40.79 6.53 47.32 74.0 16530.000 41.89 12.07 53.96 68.2	/m dB (cm) (°) (°) 00 -18.30 154 202 Average 11020	000 40.02	Factor dB/m 6.53 6.53 12.07	Level dBuV/m 35.78 46.55 53.32	74.00	Margin dB -18.22 -27.45 -14.88	Height (cm) 158 158 157	(°) 91 91	Remark Average Peak Peak
Horizont:	5550 MHz			Vert	ical				
Freq. Reading Factor Level Limit MHz		req. Reading 		Level 	Limit dBuV/m	Margin 	Height (cm)	Degree (°)	Remark
11100.000 28.65 6.99 35.64 54.6 11100.000 40.48 6.99 47.47 74.6	00 -18.36 153 354 Average 11100	.000 29.10 .000 40.08	6.99 6.99	36.09 47.07 54.37	54.00 74.00	-17.91 -26.93 -13.83	156 156 154	2	Average Peak Peak
Horizont	5670 MHz			Vert	ical				
Freq. Reading Factor Level Limit MHz dBuV dB/m dBuV/m dBuV/m dBuV/m 11340.000 29.15 6.99 36.14 54.0 11340.000 40.79 6.99 47.78 74.0	t Margin Height Degree Remark /m dB (cm) (°) 00 -17.86 158 0 Average 11340 09 -26.22 158 0 Peak 11340	req. Reading MHz dBuV 000 29.51 000 41.48 000 40.16	dB/m 6.99 6.99	Level dBuV/m 36.50 48.47 52.11	Limit dBuV/m 54.00 74.00	Margin dB -17.50 -25.53 -16.09	(cm) 152 152	(°) 359 359	Average Peak Peak

802.11ax HE80 Mode:

								5530	MHz								
			Hori	zontal								Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11060.000 11060.000 16590.000	40.22	6.76 6.76 12.21	35.87 46.98 54.30	74.00	-18.13 -27.02 -13.90	156 156 155	111	Average Peak Peak	11060.000 11060.000 16590.000	28.99 41.65 41.21	6.76 6.76 12.21	35.75 48.41 53.42	74.00	-18.25 -25.59 -14.78	155 155 158	169	Average Peak Peak
								5610	MHz								
			Hori	zontal								Ver	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	t Degre	e Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11220.000 11220.000 16830.000		6.80 6.80 11.57	35.70 46.98 53.19	74.00	-18.30 -27.02 -15.01	151	33 33 33	Peak	11220.000 11220.000 16830.000	29.13 40.26 42.83	6.80 6.80 11.57	35.93 47.06 54.40	54.00 74.00 68.20	-26.94	158	13	Average Peak Peak

802.11ax HE160 Mode:

								5570	MHz								
			Hori	zontal								Vei	rtical				
Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark	Freq.	Reading	Factor	Level	Limit	Margin	Height	Degree	Remark
MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	(cm)	(°)	
11140.000	28.66	6.89	35.55	54.00		151	360	Average	11140.000	28.63	6.89	35.52	54.00	-18.48	156	296	Average
11140.000	39.82	6.89	46.71	74.00		151	360	Peak	11140.000	40.44	6.89	47.33	74.00	-26.67	156	296	Peak
16710.000	42.51	11.87	54.38	68.20	-13.82	155	92	Peak	16710.000	41.89	11.87	53.76	68.20	-14.44	155	230	Peak
17762.000	31.21 43.53	13.02 13.02	44.23 56.55	54.00 74.00	-9.77 -17.45	150 150	313 313	Average Peak	17762.000 17762.000	30.89 43.57	13.02 13.02	43.91 56.59	54.00 74.00	-10.09 -17.41	150 150	59 59	Average Peak

Level = Reading + Factor.

Margin = Level – Limit.

Factor = Antenna Factor + Cable Loss – Amplifier Gain.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 93 of 423

9 FCC §15.407(a) – Emission Bandwidth And Occupied Bandwidth

9.1 Applicable Standard

For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

9.2 Test Procedure

26dB Emission Bandwidth (EBW)

According to ANSI C63.10-2013 Section 12.4.1

a) Set RBW = approximately 1% of the emission bandwidth.

b) Set the VBW > RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

99% Occupied Bandwidth:

According to ANSI C63.10-2013 Section 12.4.2&6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 94 of 423 Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

frequencies.

h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

9.3 Test Results

Test mode: Transmitting

Non Beamforming Mode:

5250-5350 MHz

Mode	Channel	Frequency	26dB E	mission Baı (MHz)	ndwidth	99% Emission Bandwidth (MHz)				
		(MHz)	Chain 0	Chain 1	Chain 2	Chain 0	Chain 1	Chain 2		
	52	5260	20.76	21.32	21.52	16.50	16.62	16.54		
802.11a	60	5300	28.32	26.88	29.04	16.74	16.82	16.78		
	64	5320	28.00	28.40	26.72	16.78	16.78	16.86		
	52	5260	22.08	21.76	21.76	17.66	17.66	17.66		
802.11ac 20	60	5300	37.28	33.96	37.00	17.94	17.90	17.94		
	64	5320	34.60	33.88	34.28	17.86	17.90	17.90		
802.11ac 40	54	5270	41.12	41.12	41.20	36.28	36.28	36.28		
802.11ac 40	62	5310	60.48	62.32	60.88	36.52	36.60	36.60		
802.11ac 80	58	5290	111.52	115.52	113.28	75.76	75.76	75.76		
802.11ac 160	50	5250	166.00	165.20	163.60	155.36	156.00	155.36		
	52	5260	22.28	22.68	22.52	18.98	18.98	18.98		
802.11ax 20	60	5300	28.12	24.64	25.68	19.10	19.10	19.14		
	64	5320	28.36	27.00	29.20	19.14	19.10	19.10		
802 11 40	54	5270	39.68	39.76	39.68	37.56	37.56	37.56		
802.11ax 40	62	5310	55.36	59.20	51.20	37.64	37.80	37.72		
802.11ax 80	58	5290	105.28	102.40	102.40	77.04	77.04	77.04		
802.11ax 160	50	5250	162.80	163.44	165.52	155.36	155.36	155.36		

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 95 of 423

Mode	Channel	Frequency (MHz)	26dB E	mission Ba (MHz)	ndwidth	99% Emission Bandwidth (MHz)				
		(14112)	Chain 0	Chain 1	Chain 2	Chain 0	Chain 1	Chain 2		
	100	5500	27.20	26.56	26.32	16.66	16.82	16.74		
802.11a	116	5580	20.84	21.28	20.68	16.50	16.54	16.50		
	140	5700	24.88	25.04	26.88	16.66	16.66	16.66		
	100	5500	29.68	29.32	27.76	17.90	17.86	17.86		
802.11ac 20	116	5580	21.36	22.20	21.72	17.74	17.62	17.74		
	140	5700	32.60	33.52	32.28	17.82	17.78	17.82		
	102	5510	62.96	60.88	63.76	36.52	36.52	36.60		
802.11ac 40	118	5550	42.00	41.36	41.20	36.28	36.20	36.28		
	134	5670	67.76	67.20	68.80	36.68	36.68	36.68		
802.11ac 80	106	5530	113.92	113.92	112.96	75.76	75.76	75.76		
002.11ac 00	122	5610	80.48	80.16	80.32	75.28	75.28	75.28		
802.11ac 160	114	5570	172.23	172.07	170.95	153.77	153.77	153.77		
	100	5500	29.36	27.96	26.20	19.06	19.02	19.14		
802.11ax 20	116	5580	22.48	22.52	21.84	18.98	19.02	18.94		
	140	5700	24.36	26.88	25.32	19.02	19.02	19.02		
	102	5510	57.28	53.04	57.20	37.72	37.72	37.72		
802.11ax 40	118	5550	39.76	39.68	39.84	37.48	37.56	37.56		
	134	5670	60.64	63.92	62.24	37.80	37.80	37.80		
802.11ax 80	106	5530	94.56	96.64	93.76	77.20	77.20	77.20		
002.11ax 00	122	5610	80.48	80.48	80.64	77.04	76.88	76.88		
802.11ax 160	114	5570	164.56	168.40	163.44	155.36	155.36	155.68		

5470-5725MHz

Beamforming Mode:

Mode	Channel	Frequency	26dB E	mission Baı (MHz)	ndwidth	99% Emission Bandwidth (MHz)				
		(MHz)	Chain 0	Chain 1	Chain 2	Chain 0	Chain 1	Chain 2		
	52	5260	21.72	21.88	21.48	17.74	17.70	17.70		
802.11ac 20	60	5300	26.52	25.44	23.32	17.82	17.82	17.86		
	64	5320	25.56	27.28	26.60	17.78	17.86	17.82		
802.11ac 40	54	5270	41.36	41.04	41.12	36.28	36.20	36.28		
802.11ac 40	62	5310	49.47	49.47	46.75	36.60	36.52	36.60		
802.11ac 80	58	5290	109.60	109.44	109.12	75.60	75.60	75.92		
802.11ac 160	50	5250	173.51	173.19	174.47	154.09	154.09	154.09		
	52	5260	23.00	22.92	22.20	19.02	18.94	18.94		
802.11ax 20	60	5300	28.84	26.96	27.72	19.18	19.06	19.06		
	64	5320	27.60	28.32	27.72	19.06	18.98	19.18		
802 11 40	54	5270	40.24	40.40	40.56	37.56	37.64	37.56		
802.11ax 40	62	5310	58.00	57.52	57.92	37.72	37.72	37.72		
802.11ax 80	58	5290	112.16	112.48	108.32	77.20	77.20	77.36		
802.11ax 160	50	5250	170.95	175.11	173.19	155.68	155.68	155.68		

5250-5350MHz

No.: RXZ240304007RF01

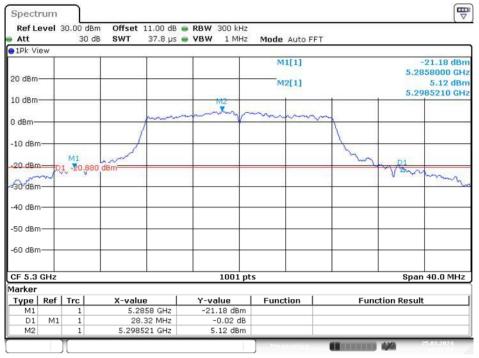
Mode	Channel	Frequency (MHz)	26dB E	mission Baı (MHz)	ndwidth	99% Emission Bandwidth (MHz)				
		(141112)	Chain 0	Chain 1	Chain 2	Chain 0	Chain 1	Chain 2		
	100	5500	24.96	26.00	25.28	17.78	17.78	17.82		
802.11ac 20	116	5580	21.92	21.96	21.92	17.66	17.66	17.74		
	140	5700	24.88	25.36	23.88	17.82	17.78	17.74		
	102	5510	49.13	48.41	48.49	36.60	36.60	36.60		
802.11ac 40	118	5550	41.20	41.04	40.88	36.28	36.28	36.28		
	134	5670	71.12	70.48	70.00	36.76	36.84	36.84		
002.11 00	106	5530	109.60	114.56	108.64	75.60	75.60	75.60		
802.11ac 80	122	5610	80.16	80.48	80.00	75.12	75.28	75.28		
802.11ac 160	114	5570	172.40	176.55	174.95	153.77	153.77	153.77		
	100	5500	28.60	25.72	26.52	19.02	19.06	18.98		
802.11ax 20	116	5580	22.84	22.08	22.12	18.98	19.02	18.94		
	140	5700	25.96	27.92	26.28	19.14	18.98	19.02		
	102	5510	53.12	54.00	54.32	37.80	37.72	37.80		
802.11ax 40	118	5550	39.76	39.76	39.76	37.56	37.48	37.56		
	134	5670	65.44	64.64	62.72	37.88	37.80	37.80		
802.11ax 80	106	5530	108.96	109.12	106.40	77.20	77.20	77.36		
002.11ax 80	122	5610	80.48	80.32	80.48	76.88	76.88	77.04		
802.11ax 160	114	5570	177.19	176.71	176.71	155.68	155.68	155.68		

5470-5725MHz

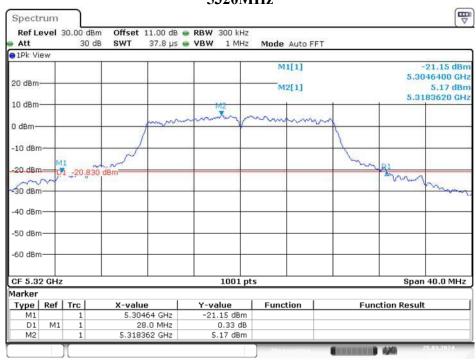

Please refer to the following plots

UNII-2A Band II / BW 26dBc

Non Beamforming Mode:

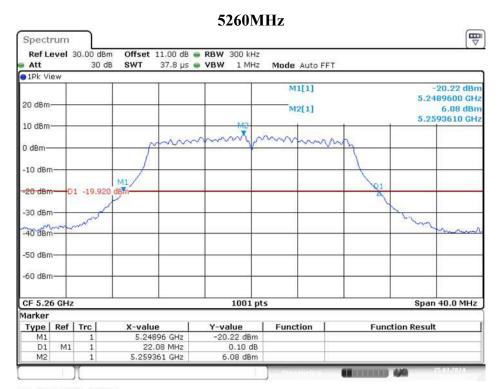

Chain 0

IEEE 802.11a Mode / 5250 ~ 5350MHz

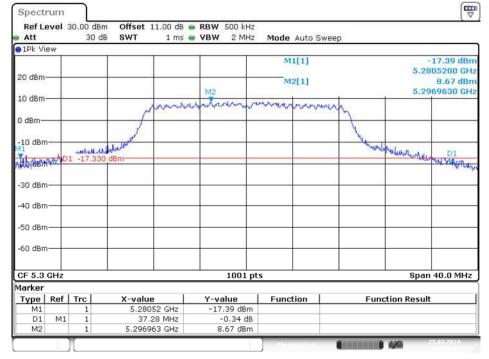

Date: 25.MAR.2024 10:45:30

5300MHz

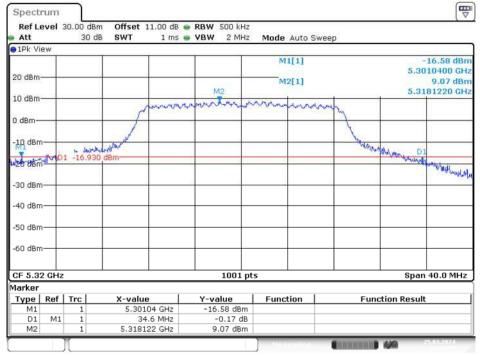
Date: 25.MAR.2024 11:32:00


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 99 of 423

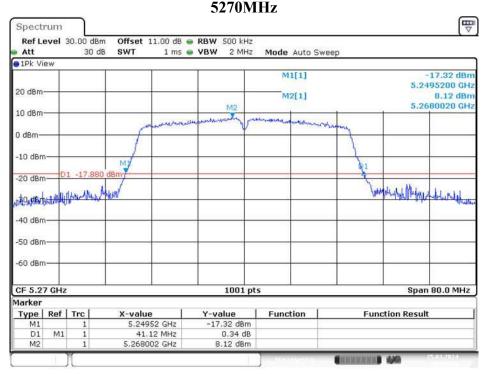
5320MHz


Date: 25.MAR.2024 11:52:43

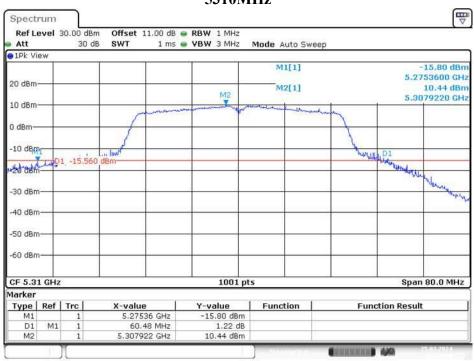
IEEE 802.11ac VHT20 Mode / 5250 ~ 5350MHz


Date: 25.MAR.2024 12:23:15

5300MHz


Date: 25.MAR.2024 12:35:23

5320MHz



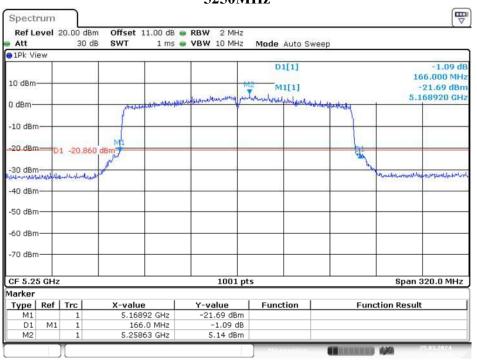
Date: 25.MAR.2024 12:40:57

IEEE 802.11ac VHT40 Mode / 5250 ~ 5350MHz

Date: 25.MAR.2024 14:28:33

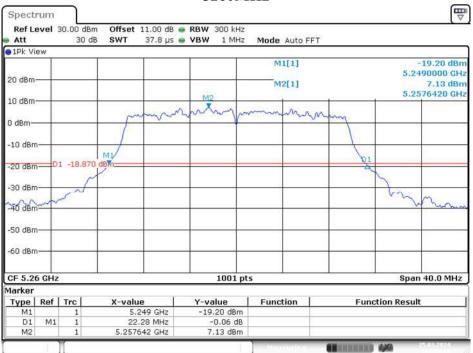
5310MHz

Date: 25.MAR.2024 15:59:40

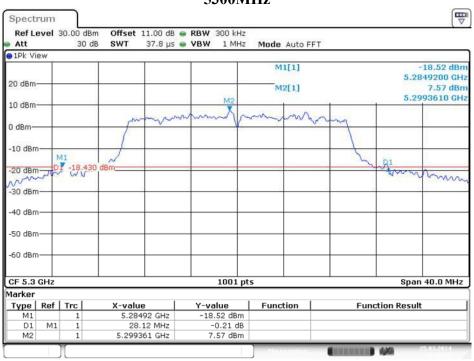

IEEE 802.11ac VHT80 Mode / 5250 ~ 5350MHz

5290MHz

Date: 25.MAR.2024 16:27:21

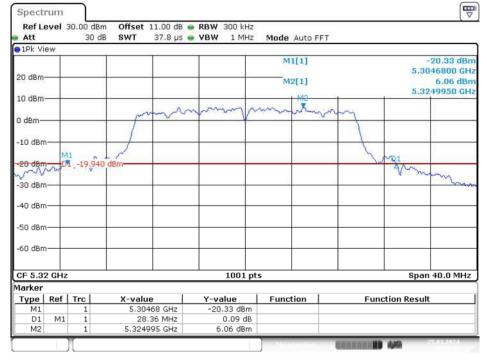

IEEE 802.11ac VHT160 Mode / 5250 ~ 5350MHz

5250MHz

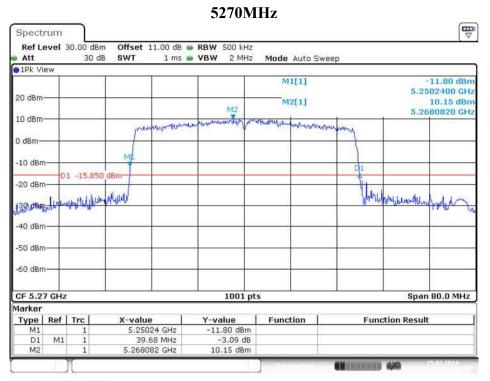

Date: 25.MAR.2024 19:43:40

IEEE 802.11ax HE20 Mode / 5250 ~ 5350MHz

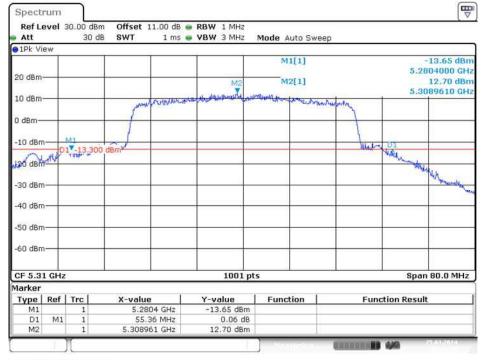
5260MHz


Date: 25.MAR.2024 16:35:09

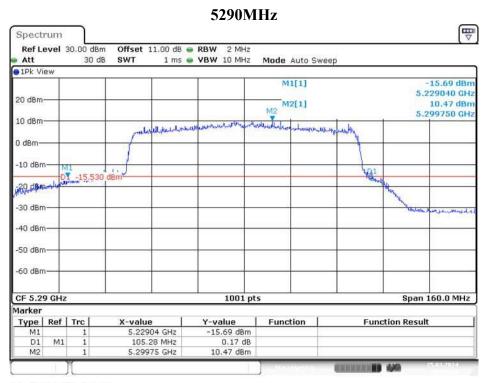
5300MHz


Date: 25.MAR.2024 16:45:35

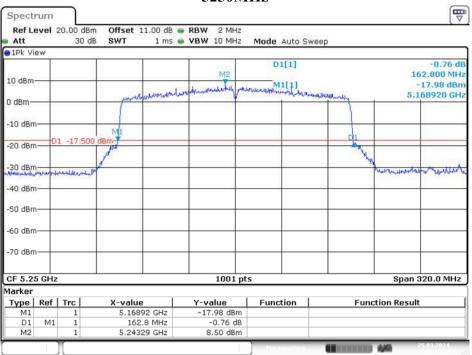
5320MHz


Date: 25.MAR.2024 16:54:11

IEEE 802.11ax HE40 Mode / 5250 ~ 5350MHz


Date: 25.MAR.2024 17:30:29

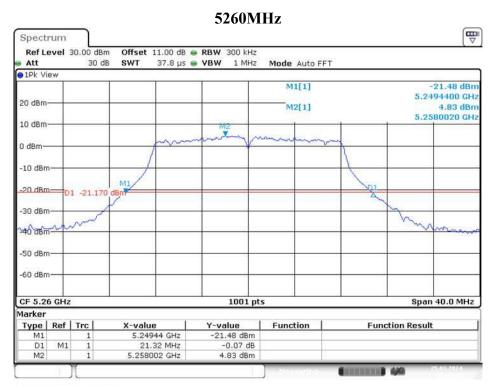
5310MHz


Date: 25.MAR.2024 17:41:20

IEEE 802.11ax HE80 Mode / 5250 ~ 5350MHz

Date: 25.MAR.2024 19:10:10

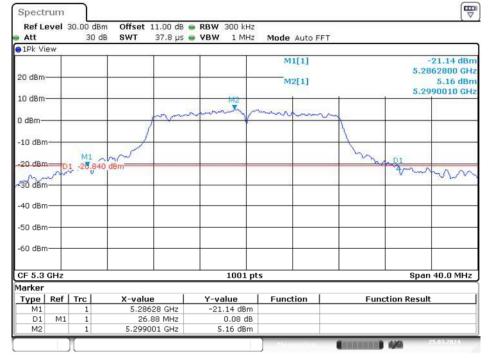
IEEE 802.11ax HE160 Mode / 5250 ~ 5350MHz



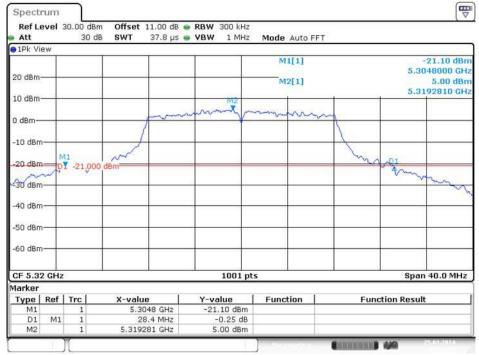
5250MHz

Date: 25.MAR.2024 19:51:38

Chain 1


IEEE 802.11a Mode / 5250 ~ 5350MHz

Date: 25.MAR.2024 11:23:20

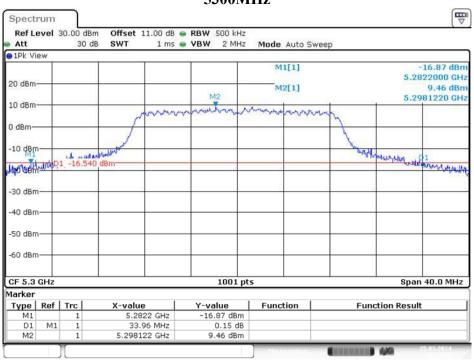

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 107 of 423

5300MHz

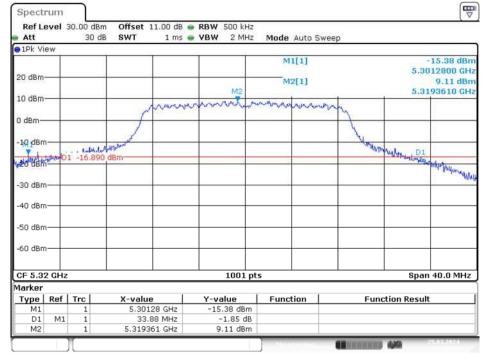
Date: 25.MAR.2024 11:39:38

5320MHz

Date: 25.MAR.2024 11:54:04


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 108 of 423

IEEE 802.11ac VHT20 Mode / 5250 ~ 5350MHz


5260MHz

Date: 25.MAR.2024 12:24:48

5300MHz

Date: 25.MAR.2024 12:37:11

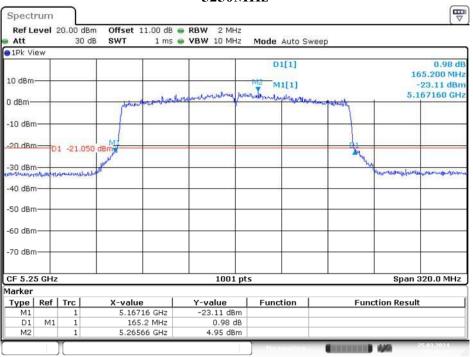
Date: 25.MAR.2024 12:42:30

IEEE 802.11ac VHT40 Mode / 5250 ~ 5350MHz

5270MHz Spectrum Ref Level 30.00 dBm Offset 11.00 dB 📾 RBW 500 kHz Att 30 dB SWT 1 ms 👄 VBW 2 MHz Mode Auto Sweep 1Pk View M1[1] -17.63 dBn 5.2495200 GHz 20 dBm M2[1] 8.41 dBm 5.2684020 GHz M2 10 dBm 0 dBm--10 dBm M -20 dBm Way who who had a reacher of . Hae lad the property and the property of the INU -40 dBm -50 dBm -60 dBm CF 5.27 GHz Span 80.0 MHz 1001 pts Marker Type | Ref | Trc X-value Y-value -17.63 dBm Function **Function Result** 5.24952 GHz M1 1 D1 M1 41.12 MHz 0.24 dB 5.268402 GHz M2 1 8.41 dBm Same and the second sec

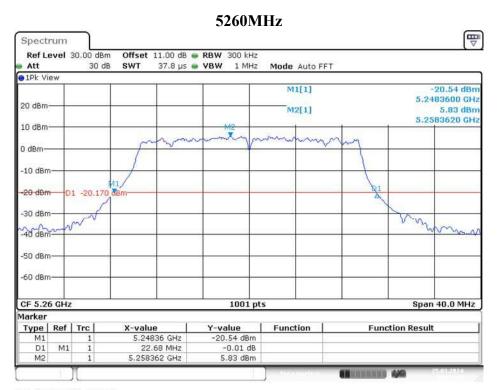
Date: 25.MAR.2024 14:39:43

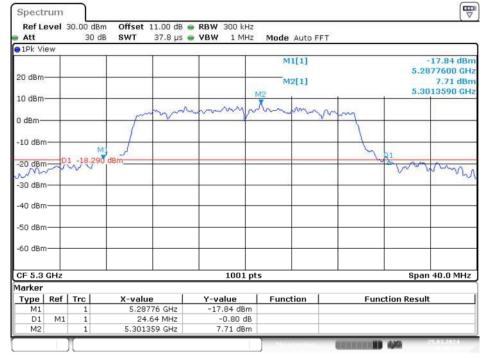
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 110 of 423


Date: 25.MAR.2024 16:03:45

IEEE 802.11ac VHT80 Mode / 5250 ~ 5350MHz

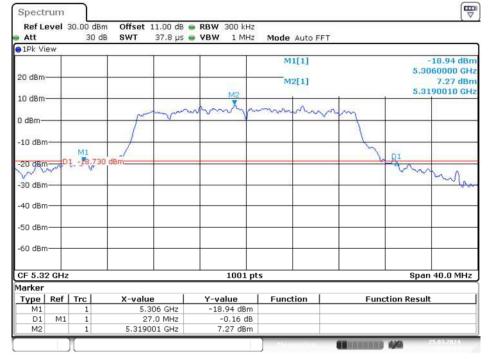
Date: 25.MAR.2024 16:28:20


IEEE 802.11ac VHT160 Mode / 5250 ~ 5350MHz

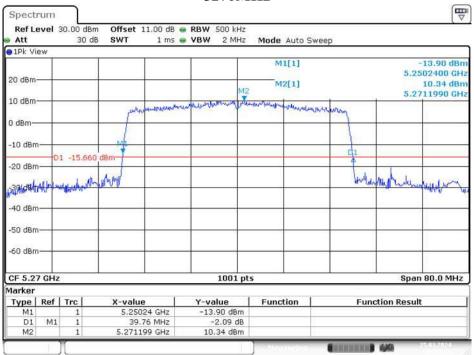

5250MHz

Date: 25.MAR.2024 19:45:33

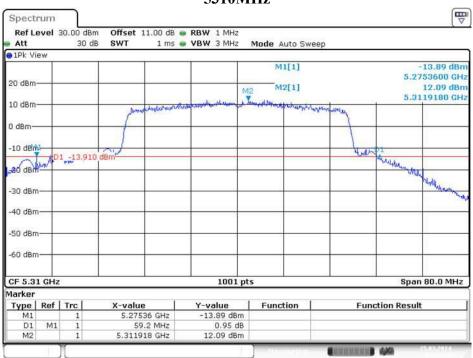
IEEE 802.11ax HE20 Mode / 5250 ~ 5350MHz



Date: 25.MAR.2024 16:38:19

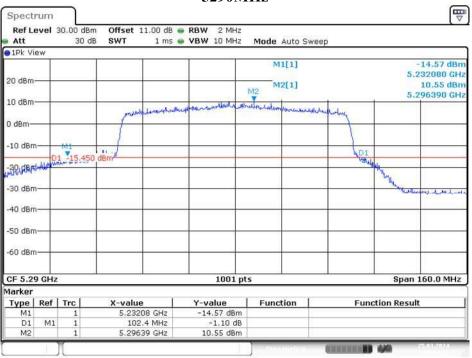

Date: 25.MAR.2024 16:48:13

5320MHz


Date: 25.MAR.2024 16:55:11

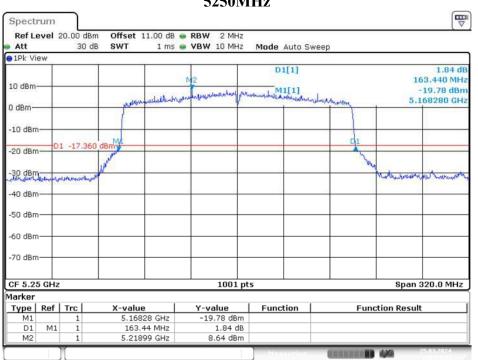
IEEE 802.11ax HE40 Mode / 5250 ~ 5350MHz

5270MHz


Date: 25.MAR.2024 17:32:01

5310MHz

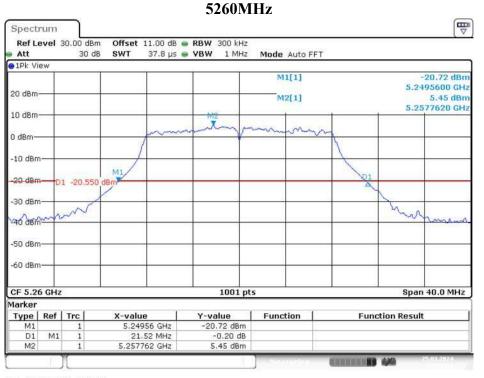
Date: 25.MAR.2024 17:42:43


IEEE 802.11ax HE80 Mode / 5250 ~ 5350MHz

5290MHz

Date: 25.MAR.2024 19:14:51

IEEE 802.11ax HE160 Mode / 5250 ~ 5350MHz

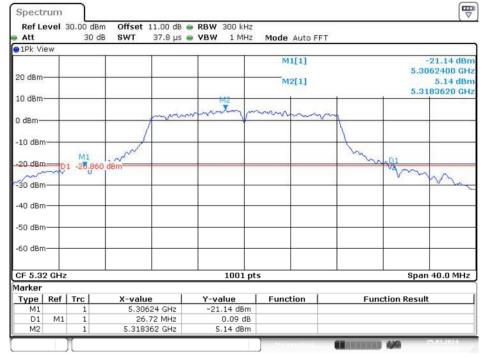


5250MHz

Date: 25.MAR.2024 19:54:05

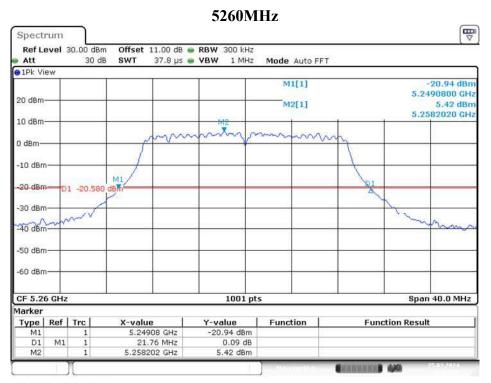
Chain 2

IEEE 802.11a Mode / 5250 ~ 5350MHz

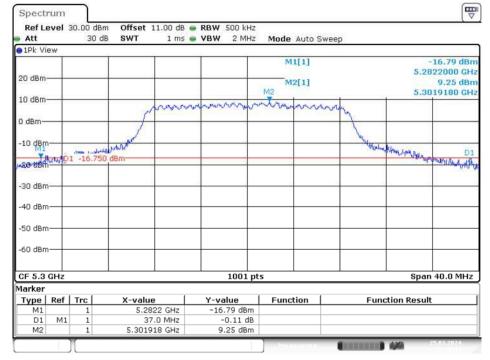


Date: 25.MAR.2024 11:28:02

Spectrum Ref Level 30.00 dBm Offset 11.00 dB 🖷 RBW 300 kHz Att 30 dB SWT 37.8 µs 🖷 VBW 1 MHz Mode Auto FFT ⊖1Pk View M1[1] -20.45 dBn 5.2838800 GH 20 dBm M2[1] 5.94 dBn 5.3010390 GH2 10 dBm 0 dBm--10 dBm DI 20 dB D1 -20.060 -30 dBm 40 dBm -50 dBm -60 dBm Span 40.0 MHz CF 5.3 GHz 1001 pts Marker Type | Ref | Trc X-value Y-value Function Function Result -20.45 dBm 0.02 dB 5.28388 GHz 29.04 MHz М1 D1 M1 1 5.94 dBm M2 5.301039 GHz 1 1

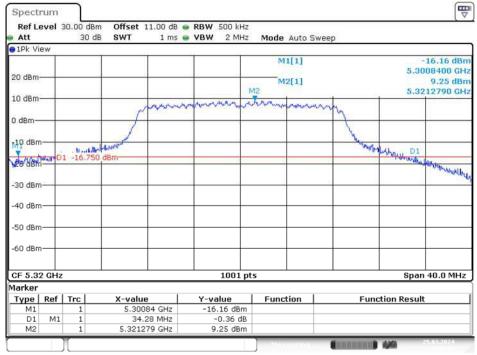

5300MHz

Date: 25.MAR.2024 11:41:41

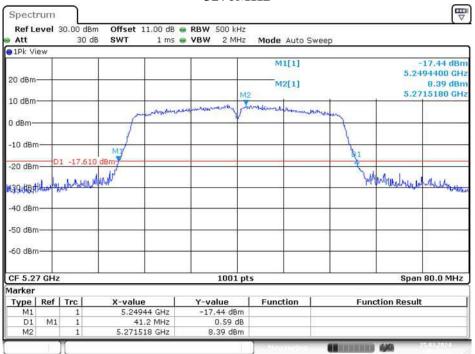


Date: 25.MAR.2024 11:56:01

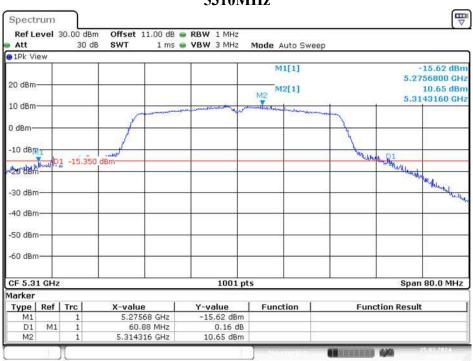
IEEE 802.11ac VHT20 Mode / 5250 ~ 5350MHz



Date: 25.MAR.2024 12:25:57

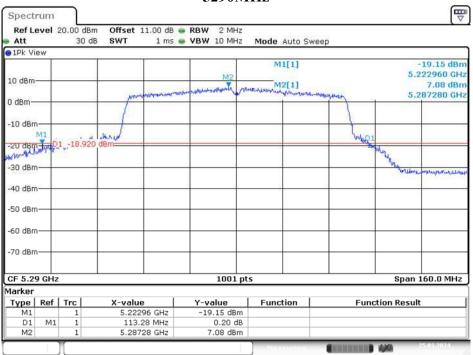

Date: 25.MAR.2024 12:38:41

5320MHz


Date: 25.MAR.2024 12:45:10

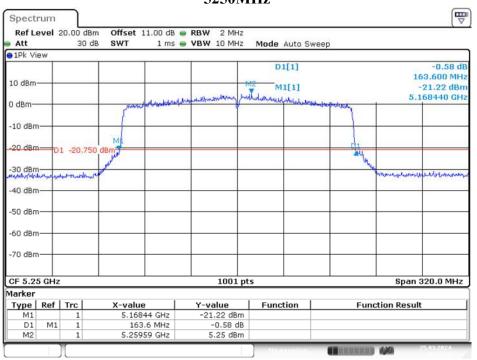
IEEE 802.11ac VHT40 Mode / 5250 ~ 5350MHz

5270MHz


Date: 25.MAR.2024 14:43:32

5310MHz

Date: 25.MAR.2024 16:04:55


IEEE 802.11ac VHT80 Mode / 5250 ~ 5350MHz

5290MHz

Date: 25.MAR.2024 16:29:36

IEEE 802.11ac VHT160 Mode / 5250 ~ 5350MHz

5250MHz

Date: 25.MAR.2024 19:47:24