

FCC C2PC Test Report

FCC ID	:	HDC-17600074
Equipment	:	WiFi 7 10G Router
Model No.	:	SDG-8733, SDG-8734, SDG-8733v, SDG-8734v (Please refer to section 1.1.1 for more details)
Brand Name	:	Adtran
Applicant	:	Adtran
Address	:	901 Explorer Boulevard, Huntsville, Alabama, United States, 35806-2807
Standard	:	47 CFR FCC Part 15.407
Equipment Class / Type	:	 6ID: Indoor access point 6PP: Subordinate device 6XD: Client device
Received Date	:	May 30, 2024
Tested Date	:	Jun. 03 ~ Jun. 11, 2024

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by:

Approved by:

Along Chew/ Assistant Manager Gary Chang / Manager

Table of Contents

1	GENERAL DESCRIPTION	5
1.1	Information	5
1.2	Local Support Equipment List	9
1.3	Test Setup Chart	10
1.4	The Equipment List	14
1.5	Test Standards	15
1.6	Reference Guidance	15
1.7	Deviation from Test Standard and Measurement Procedure	15
1.8	Measurement Uncertainty	16
2	TEST CONFIGURATION	17
2 2.1	TEST CONFIGURATION	17 17
2 2.1 2.2	TEST CONFIGURATION Testing Facility Test Worst Modes and Channel Details	17 17 17
2 2.1 2.2 3	TEST CONFIGURATION Testing Facility Test Worst Modes and Channel Details TRANSMITTER TEST RESULTS	17 17 17 19
2 2.1 2.2 3 3.1	TEST CONFIGURATION Testing Facility Test Worst Modes and Channel Details TRANSMITTER TEST RESULTS Unwanted Emissions	17 17 17 19 19
2.1 2.2 3 3.1 3.2	TEST CONFIGURATION Testing Facility Test Worst Modes and Channel Details TRANSMITTER TEST RESULTS Unwanted Emissions	17 17 17 19 22

Appendix A. Unwanted Emissions

Appendix B. AC Power Line Conducted Emissions

Release Record

Report No.	Version	Description	Issued Date
FR431301-01AO	Rev. 01	Initial issue	Oct. 08, 2024

Summary of Test Results

FCC Rules	Test Items	Measured	Result
15.207	AC Power Line Conducted Emissions	[dBuV]: 0.393MHz 44.21 (Margin -3.78dB) - AV	Pass
15.407(b)(5) 15.209	Unwanted Emission	[dBuV/m at 3m]: 7290.00MHz 53.10 (Margin -0.90dB) - AV	Pass

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Information

This report is prepared for FCC class II change.

This report is issued as a supplementary report to the original project no. FR431301AO. The difference is concerned with following items:

- ♦ Adding two models for configurations with VoIP function
- \diamond Version of I/O board is changed from V02 to V03.

Conducted emission and radiated emission tests had been re-tested and only its data was presented in the following sections.

1.1.1 Product Details (Adding models were marked in boldface.)

The following models are provided to this EUT.

Brand Name	Model Name	Product Name	Description	
Adtran	SDG-8733	WiFi 7 10G Router	W/O VOIP, With 10G RJ45 WAN Port	
	SDG-8734	WiFi 7 10G Router	W/O VOIP, With 10G SFP WAN Port	
	SDG-8733v	WiFi 7 10G Router	W/ VOIP, With 10G RJ45 WAN Port	
	SDG-8734v	WiFi 7 10G Router	W/ VOIP, With 10G SFP WAN Port	

1.1.2 Specification of the Equipment under Test (EUT)

		RF General	Information		
Frequency Range (MHz)	IEEE Std. 802.11	Ch. Freq. (MHz)	Channel Number	Transmit Chains (N⊤x)	Data Rate / MCS
5925 ~ 7125	11a	5955 ~ 7115	1 ~ 233 [59]	4	6-54 Mbps
5925 ~ 7125	ax (HE20)	5955 ~ 7115	1 ~ 233 [59]	4	MCS 0-11
5925 ~ 7125	ax (HE40)	5965 ~ 7085	3 ~ 227 [29]	4	MCS 0-11
5925 ~ 7125	ax (HE80)	5985 ~ 7025	7 ~ 215 [14]	4	MCS 0-11
5925 ~ 7125	ax (HE160)	6025 ~ 6985	15 ~ 207 [7]	4	MCS 0-11
5925 ~ 7125	be (EHT20)	5955 ~ 7115	1 ~ 233 [59]	4	MCS 0-13
5925 ~ 7125	be (EHT40)	5965 ~ 7085	3 ~ 227 [29]	4	MCS 0-13
5925 ~ 7125	be (EHT80)	5985 ~ 7025	7 ~ 215 [14]	4	MCS 0-13
5925 ~ 7125	be (EHT160)	6025 ~ 6985	15 ~ 207 [7]	4	MCS 0-13
5925 ~ 7125	be (EHT320)	6105 ~ 6905	31 ~ 191 [6]	4	MCS 0-13
Note 1: OFDM/OI	FDMA-BPSK, QPS	SK, 16QAM, 64QA	M, 256QAM, 1024	QAM and 4096QA	M modulation.

1.1.3 Antenna Details

Ant. No.	Model	Type	Connector	Operating Frequencies (MHz) / Gain (dBi)			
	model	Type	Connector	5925~6425	6425~6525	6525~6875	6875~7125
1	6G1	Dipole	UFL	3.633	3.27	5.028	3.521
2	6G2	Dipole	UFL	5.509	4.485	4.791	4.287
3	6G3	Dipole	UFL	2.745	2.99	2.441	2.648
4	6G4	Dipole	UFL	4.363	3.851	3.334	3.701
5	6G5	Dipole	UFL	5.989	4.635	4.055	4.055

1.1.4 Configuration of Equipment under Test (EUT)

Power Supply Type	15Vdc from adapter				
Beamforming	Support 🗌 Not support				
RU Configuration	🖾 Full RU	Partial RU			
Channel Puncturing	Support	Not support			

1.1.5 Accessories

	Accessories					
No.	Equipment	Description				
1	AC adapter	Brand: LUCENT TRANS Model: 1A78 I/P: 100-240Vac, 50/60Hz, 1.2A O/P: 15V= 3.0A, 45.0W Power Line: USB 1.8m non-shielded without core				
2	AC adapter	Brand: PHIHONG Model: AA45A-59FKD I/P: 100-240Vac, 50/60Hz, 1.2A O/P: 15V=3.0A, 45.0W Power Line: USB 1.8m non-shielded without core				
3	RJ45	2m non-shielded without core				

1.1.6 Channel List

11a / ax HE20 / be EHT20									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
1	5955	61	6255	121	6555	181	6855		
5	5975	65	6275	125	6575	185	6875		
9	5995	69	6295	129	6595	189	6895		
13	6015	73	6315	133	6615	193	6915		
17	6035	77	6335	137	6635	197	6935		
21	6055	81	6355	141	6655	201	6955		
25	6075	85	6375	145	6675	205	6975		
29	6095	89	6395	149	6695	209	6995		
33	6115	93	6415	153	6715	213	7015		
37	6135	97	6435	157	6735	217	7035		
41	6155	101	6455	161	6755	221	7055		
45	6175	105	6475	165	6775	225	7075		
49	6195	109	6495	169	6795	229	7095		
53	6215	113	6515	173	6815	233	7115		
57	6235	117	6535	177	6835	-	-		

ax HE40 / be EHT40								
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
3	5965	67	6285	131	6605	195	6925	
11	6005	75	6325	139	6645	203	6965	
19	6045	83	6365	147	6685	211	7005	
27	6085	91	6405	155	6725	219	7045	
35	6125	99	6445	163	6765	227	7085	
43	6165	107	6485	171	6805			
51	6205	115	6525	179	6845			
59	6245	123	6565	187	6885			

ax HE80 / be EHT80									
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)		
7	5985	71	6305	135	6625	199	6945		
23	6065	87	6385	151	6705	215	7025		
39	6145	103	6465	167	6785				
55	6225	119	6545	183	6865				

ax HE160 / be EHT160							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
15	6025	79	6345	143	6665	207	6985
47	6185	111	6505	175	6825		

be EHT320						
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	
31	6105	95	6425	159	6745	
63	6265	127	6585	191	6905	

1.2 Local Support Equipment List

	Support Equipment List						
No.	Equipment	Brand	Model	FCC ID	Remarks		
Non-	beamforming mod	le - RJ45 WAN					
1	Laptop	DELL	Latitude 5400	DoC			
2	Laptop	DELL	Latitude 5400	DoC			
3	USB Flash	Transcend(USB 3.0)	JetFlash 700				
4	RJ45 Connector	ICC					
5	RJ45 Load	ICC					
6	Laptop	DELL	Latitude 3440	DoC	Beamforming mode		
7	WiFi 7 10G Router	Adtran	SDG-8733v		Beamforming mode (Provided by applicant)		
8	Telephone	ISITO	IS-333				
9	Telephone	ISITO	IS-333				
Non-	beamforming mod	le - SFP WAN					
1	Laptop	DELL	Latitude 5400	DoC			
2	USB Flash	Transcend(USB 3.0)	JetFlash 700				
3	RJ45 Connector	ICC					
4	RJ45 Load	ICC					
5	Fiber module	MikroTik	S+RJ10		Provided by applicant		
6	Laptop	DELL	Latitude 3440	DoC	Beamforming mode		
7	WiFi 7 10G Router	Adtran	SDG-8733		Beamforming mode (Provided by applicant)		
8	Telephone	ISITO	IS-333				
9	Telephone	ISITO	IS-333				

1.3 Test Setup Chart

Non-beamforming mode

Beamforming mode

1.4 The Equipment List

Test Item	Radiated Emission					
Test Site	966 chamber1 / (03CH01-WS)					
Tested Date	Jun. 03 ~ Jun. 11, 2024					
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until	
Receiver	R&S	ESR3	101657	Mar. 05, 2024	Mar. 04, 2025	
Spectrum Analyzer	R&S	FSV40	101498	Nov. 23, 2023	Nov. 22, 2024	
Loop Antenna	R&S	HFH2-Z2	100330	Oct. 31, 2023	Oct. 30, 2024	
Bilog Antenna	SCHWARZBECK	VULB9168	VULB9168-522	Jul. 31, 2023	Jul. 30, 2024	
Horn Antenna 1G-18G	SCHWARZBECK	BBHA 9120 D	BBHA 9120 D 1096	Nov. 27, 2023	Nov. 26, 2024	
Horn Antenna 18G-40G	SCHWARZBECK	BBHA 9170	BBHA 9170517	Oct. 30, 2023	Oct. 29, 2024	
Preamplifier	EMC	EMC02325	980225	Jun. 28, 2023	Jun. 27, 2024	
Preamplifier	EMC	EMC118A45SE	980898	Jul. 14, 2023	Jul. 13, 2024	
Preamplifier	EMC	EMC184045SE	980903	Jul. 17, 2023	Jul. 16, 2024	
Loop Antenna Cable	KOAX KABEL	101354-BW	101354-BW	Oct. 03, 2023	Oct. 02, 2024	
LF cable 3M	Woken	CFD400NL-LW	CFD400NL-001	Oct. 03, 2023	Oct. 02, 2024	
LF cable 11M	EMC	EMCCFD400-NW-N W-11000	200801	Oct. 03, 2023	Oct. 02, 2024	
LF cable 1M	EMC	EMCCFD400-NM-N M-1000	160502	Oct. 03, 2023	Oct. 02, 2024	
RF Cable	EMC	EMC104-35M-35M- 8000	210920	Oct. 03, 2023	Oct. 02, 2024	
RF Cable	EMC	EMC104-35M-35M- 3000	210922	Oct. 03, 2023	Oct. 02, 2024	
Attenuator	Pasternack	PE7005-10	10-1	Oct. 05, 2023	Oct. 04, 2024	
HIGHPASS FILTER 7.5-18G	STI	STI15-9722	STI-HP7.5G-A	Oct. 05, 2023	Oct. 04, 2024	
Measurement Software	AUDIX	e3	6.120210g	NA	NA	
Note: Calibration Inter	rval of instruments liste	d above is one year.				

Test Item	Conducted Emission					
Test Site	Conduction room 1 / (CO01-WS)				
Tested Date	Jun. 11, 2024					
Instrument	Brand	Model No.	Serial No.	Calibration Date	Calibration Until	
Receiver	R&S	ESR3	101658	Feb. 23, 2024	Feb. 22, 2025	
LISN	R&S	ENV216	101579	May 09, 2024	May 08, 2025	
RF Cable-CON	Woken	CFD200-NL	CFD200-NL-001	Oct. 11, 2023	Oct. 10, 2024	
LISN (Support Unit)	SCHWARZBECK	Schwarzbeck 8127	8127667	Jan. 10, 2024	Jan. 09, 2025	
50 ohm terminal (Support Unit)	NA	50	01	Jun. 14, 2023	Jun. 13, 2024	
Measurement Software	AUDIX	e3	6.120210k	NA	NA	
Note: Calibration Inter	Note: Calibration Interval of instruments listed above is one year.					

1.5 Test Standards

47 CFR FCC Part 15.407 ANSI C63.10-2013

1.6 Reference Guidance

FCC KDB 987594 D02 U-NII 6GHz EMC Measurement v02r01 FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01 FCC KDB 412172 D01 Determining ERP and EIRP v01r01 FCC KDB 662911 D01 Multiple Transmitter Output v02r01

1.7 Deviation from Test Standard and Measurement Procedure

None

1.8 Measurement Uncertainty

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Measurement Uncertainty			
Parameters	Uncertainty		
Bandwidth	±34.130 Hz		
Conducted power	±0.808 dB		
Frequency error	±1x10 ⁻⁹		
Power density	±0.583 dB		
Conducted emission	±2.715 dB		
AC conducted emission	±2.92 dB		
Radiated emission ≤ 1GHz	±3.41 dB		
Radiated emission > 1GHz	±4.59 dB		
Time	±0.1%		
Temperature	±0.4 °C		

2 Test Configuration

2.1 Testing Facility

Test Laboratory	International Certification Corp.
Test Site	CO01-WS, 03CH01-WS, TH01-WS
Address of Test Site	No. 3-1, Lane 6, Wen San 3rd St., Kwei Shan District, Tao Yuan City 33381, Taiwan, R.O.C.
	TN/0700

FCC Designation No.: TW2732

➢ FCC site registration No.: 181692

➢ ISED#: 10807A

➢ CAB identifier: TW2732

2.2 Test Worst Modes and Channel Details

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration
Non-beamforming mode				
AC Power Line Conducted Emissions	be EHT320	6425	MCS 0	1, 2
Unwanted Emissions ≤1GHz	be EHT320	6425	MCS 0	1, 2
	be EHT80	6465	MCS 0	
Unwanted Emissions >1GHz	be EHT160	6025	MCS 0	1
	be EHT320	6745 / 6905	MCS 0	

NOTE:

1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.

Two adapters (LUCENT TRANS & PHIHONG) had been covered during the pretest and found that PHIHONG
adapter was the worst case for radiated emission test and LUCENT TRANS adapter was the worst case for
conducted emission test.

3. 4 configurations were assessed and found Model: SDG-8733v is worst of configurations with 10G RJ45 Wan port and Model: SDG-8734v is worst of configurations with 10G SFP Wan port.

4. The EUT had been tested by following test configurations.

1) Configuration 1: Model: SDG-8733v

2) Configuration 2: Model: SDG-8734v

Test item	Modulation Mode	Test Frequency (MHz)	Data Rate	Test Configuration
Beamforming mode				
AC Power Line Conducted Emissions	be EHT320	6425	MCS 0	1, 2
Unwanted Emissions ≤1GHz	be EHT320	6425	MCS 0	1, 2
	be EHT80	6465	MCS 0	
Unwanted Emissions >1GHz	be EHT160	6025	MCS 0	1
	be EHT320	6745 / 6905	MCS 0	

NOTE:

1. The EUT was pretested with 3 orientations placed on the table for the radiated emission measurement – X, Y, and Z-plane. The **Z-plane** results were found as the worst case and were shown in this report.

Two adapters (LUCENT TRANS & PHIHONG) had been covered during the pretest and found that PHIHONG
adapter was the worst case for radiated emission test and LUCENT TRANS adapter was the worst case for
conducted emission test.

3. 4 configurations were assessed and found Model: SDG-8733v is worst of configurations with 10G RJ45 Wan port and Model: SDG-8734v is worst of configurations with 10G SFP Wan port.

4. The EUT had been tested by following test configurations.

1) Configuration 1: SDG-8733v

2) Configuration 2: SDG-8734v

3 Transmitter Test Results

3.1 Unwanted Emissions

3.1.1 Limit of Unwanted Emissions

Restricted Band Emissions Limit				
Frequency Range (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m)	Measure Distance (m)	
0.009~0.490	2400/F(kHz)	48.5 - 13.8	300	
0.490~1.705	24000/F(kHz)	33.8 - 23	30	
1.705~30.0	30	29	30	
30~88	100	40	3	
88~216	150	43.5	3	
216~960	200	46	3	
Above 960	500	54	3	

Note 1:

Qusai-Peak value is measured for frequency below 1GHz except for 9–90 kHz, 110–490 kHz frequency band. Peak and average value are measured for frequency above 1GHz. The limit on average radio frequency emission is as above table. The limit on peak radio frequency emissions is 20 dB above the maximum permitted average emission limit **Note 2:**

Measurements may be performed at a distance other than what is specified provided. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor as below, Frequency at or above 30 MHz: 20 dB/decade Frequency below 30 MHz: 40 dB/decade.

Un-restricted band emissions above 1GHz Limit					
Operating Band	PK Limit	AV Limit			
5.925 – 7.125 GHz	e.i.r.p7 dBm [88.2 dBuV/m@3m]	e.i.r.p27 dBm [68.2 dBuV/m@3m]			
Note 1: Measurements may be performed at a distance other than the limit distance provided they are not performed in the near field and the emissions to be measured can be detected by the measurement equipment. When performing measurements at a distance other than that specified, the results shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade (inverse of linear distance for field-strength measurements, inverse of linear distance-squared for power-density measurements)					

3.1.2 Test Procedures

- Measurement is made at a semi-anechoic chamber that incorporates a turntable allowing a EUT rotation of 360°. A continuously-rotating, remotely-controlled turntable is installed at the test site to support the EUT and facilitate determination of the direction of maximum radiation for each EUT emission frequency. The EUT is placed at test table. For emissions testing at or below 1 GHz, the table height is 80 cm above the reference ground plane. For emission measurements above 1 GHz, the table height is 1.5 m
- Measurement is made with the antenna positioned in both the horizontal and vertical planes of polarization. The measurement antenna is varied in height (1m ~ 4m) above the reference ground plane to obtain the maximum signal strength. Distance between EUT and antenna is 3 m.
- 3. This investigation is performed with the EUT rotated 360°, the antenna height scanned between 1 m and 4 m, and the antenna rotated to repeat the measurements for both the horizontal and vertical antenna polarizations.

Note:

- 1. 120kHz measurement bandwidth of test receiver and Quasi-peak detector is for radiated emission below 1GHz.
- 2. RBW=1MHz, VBW=3MHz and Peak detector is for peak measured value of radiated emission above 1GHz.
- 3. RBW=1MHz, VBW=1/T and Peak detector is for average measured value of radiated emission above 1GHz.

3.1.3 Test Setup

3.1.4 Test Results

Refer to Appendix A.

3.2 **AC Power Line Conducted Emissions**

3.2.1 Limit of AC Power Line Conducted Emissions

Conducted Emissions Limit					
Frequency Emission (MHz) Quasi-Peak Average					
0.15-0.5 66 - 56 * 56 - 46 *					
0.5-5 56		46			
5-30 60 50					
Note 1: * Decreases with the logarithm of the frequency.					

3.2.2 Test Procedures

- 1. The device is placed on a test table, raised 80 cm above the reference ground plane. The vertical conducting plane is located 40 cm to the rear of the device.
- The device is connected to line impedance stabilization network (LISN) and other accessories are 2. connected to other LISN. Measured levels of AC power line conducted emission are across the 50 Ω LISN port.
- 3. AC conducted emission measurements is made over frequency range from 150 kHz to 30 MHz.
- 4. This measurement was performed with AC 120V/60Hz

3.2.3 Test Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) are 80 cm from EUT and at least 80 cm from other units and other metal planes

3.2.4 Test Result

Refer to Appendix B.

4 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website <u>http://www.icertifi.com.tw</u>.

Linkou

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666 No.3-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.) No.2-1, Lane 6, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640 No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 33381, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345 Email: ICC_Service@icertifi.com.tw

—END—

Non-beamforming mode

Configuration 1: Model: SDG-8733v Unwanted Emissions (Below 1GHz)

Modulation	be EHT80	Test Freq. (MHz)	6465
Polarization Horizontal			
Test By :Sean Yu Temperature(°⊂):24 Humidity(%):64			
$\begin{array}{c} 90\\ 90\\ \hline \\ 80\\ \hline \\ 80\\$	V/m) V/m)	22000. 26000. 30000. 3 22000. 26000. 30000. 3 a 5 a a b 5 a a a 5 a a a 5 a a b 5 a a a 5 a a b 5 a a b 5 a a c 5 a a a 5 a a a 5 a a a 5 a a a 5 a a a 5 a a a 5 a a a 5 a a a 5 a a a 5 a a a 5 a a b a b a b a b a	UNII 5-8 AV UNII 5-8 AV UNII 5-8 AV UNII 5-8 AV 4000. 40000 C ANT Turn High Table cm deg ge 100 264 100 264 ge 100 214 100 214 ge 100 203 100 203
Note 1: Emission Level (dl *Factor includes an Note 2: Margin (dB) = Emi	BuV/m) = SA Reading (dBuV tenna factor , cable loss and ssion level (dBuV/m) – Limit	′) + Factor* (dB/m) amplifier gain (dBuV/m).	

Configuration 2: Model: SDG-8734v Unwanted Emissions (Below 1GHz)

Beamforming mode Configuration 1: Model: SDG-8733v Unwanted Emissions (Below 1GHz)

Configuration 2: Model: SDG-8734v Unwanted Emissions (Below 1GHz)

Non-beamforming mode

Configuration 1: Model: SDG-8733v

Configuration 2: Model: SDG-8734v

Beamforming mode Configuration 1: Model: SDG-8733v

Configuration 2: Model: SDG-8734v

