

FCC RF Exposure Report

FCC ID : HDC-17600072

Equipment : WiFi 6 Mesh AP

Model No. : SDG-8622

Brand Name : Adtran
Applicant : Adtran

Address : 901 Explorer Boulevard, Huntsville, Alabama,

United States, 35806-2807

Standard : 47 CFR FCC Part 2.1091

Received Date : May 31, 2023

Tested Date : Jun. 02 ~ Jul. 05, 2023

We, International Certification Corporation, would like to declare that the tested sample has been evaluated and in compliance with the requirement of the above standards. The test results contained in this report refer exclusively to the product. It shall not be reproduced except in full without the written approval of our laboratory.

Reviewed by: Approved by:

Along Cheld/ Assistant Manager Gary Cha

Report No.: FA353101 Page: 1 of 7

Table of Contents

1	MPE EVALUATION OF MOBILE DEVICES	4
1.1	LIMITS FOR GENERAL POPULATION/UNCONTROLLED EXPOSURE	
1.2	MPE EVALUATION FORMULA	4
1.3	REFERENCE GUIDANCE	4
1.4	DEVIATION FROM TEST STANDARD AND MEASUREMENT PROCEDURE	4
1.5	MEASUREMENT UNCERTAINTY	4
1.6	MPE EVALUATION RESULTS	5
1.7	MPE EVALUATION OF SIMULTANEOUS TRANSMISSION	6
2	TEST LABORATORY INFORMATION	7

Report No.: FA353101 Report Version: Rev. 01

Release Record

Report No.	Version	Description	Issued Date
FA353101	Rev. 01	Initial issue	Sep. 01, 2023

Report No.: FA353101 Page: 3 of 7

1 MPE EVALUATION OF MOBILE DEVICES

1.1 LIMITS FOR GENERAL POPULATION/UNCONTROLLED EXPOSURE

Frequency Range (MHz)	Power Density (mW /cm²)	Averaging Time (minutes)
300~1500	F/1500	30
1500~100000	1.0	30

1.2 MPE EVALUATION FORMULA

$$Pd = \frac{Pt}{4 * Pi * R^2}$$

Where

Pd= Power density in mW/cm²

Pt= EIRP in mW Pi= 3.1416

R= Measurement distance

1.3 REFERENCE GUIDANCE

447498 D01 General RF Exposure Guidance v06

1.4 DEVIATION FROM TEST STANDARD AND MEASUREMENT PROCEDURE

None

1.5 MEASUREMENT UNCERTAINTY

The measurement uncertainties given below are based on a 95% confidence level (based on a coverage factor (k=2)).

Parameters	Uncertainty
Conducted power	±0.808 dB

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

Report No.: FA353101 Page: 4 of 7

1.6 MPE EVALUATION RESULTS

Non-beamforming mode

Frequency Range (MHz)	Maximum Conducted Power (dBm)	Maximum Tune Up limit (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)	*Ratio	Pass / Fail
2412-2462	27.02	27.5	4.574	31	0.133	1	0.133	Pass
5180-5240	26.86	27	4.338	31	0.113	1	0.113	Pass
5260-5320	23.35	23.5	4.690	31	0.055	1	0.055	Pass
5500-5720	23.83	24	4.634	31	0.060	1	0.06	Pass
5745-5825	27.77	28	4.634	31	0.152	1	0.152	Pass

^{*}Ratio = Power density / Limit.

Beamforming mode

Frequency Range (MHz)	Maximum Conducted Power (dBm)	Maximum Tune Up limit (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)	*Ratio	Pass / Fail
2412-2462	26.04	26.5	9.715	31	0.346	1	0.346	Pass
5180-5240	25.91	26	9.882	31	0.321	1	0.321	Pass
5260-5320	19.42	20	10.338	31	0.090	1	0.09	Pass
5500-5720	19.46	20	10.385	31	0.090	1	0.09	Pass
5745-5825	25.44	25.5	10.365	31	0.320	1	0.32	Pass

^{*}Ratio = Power density / Limit.

Remarks:

For 2412~2462MHz:

Directional gain = $10 \times \log((10^{3.618/20} + 10^{3.414/20} + 10^{3.099/20} + 10^{4.574/20})^2/4) = 9.715 \text{ dBi}$

For 5180~5240MHz:

Directional gain = $10 \times \log((10^{3.983/20} + 10^{3.713/20} + 10^{3.385/20} + 10^{4.338/20})^2/4) = 9.882 \text{ dBi}$

For 5260~5320MHz:

Directional gain = $10 \times \log((10^{3.544/20} + 10^{4.354/20} + 10^{4.633/20} + 10^{4.69/20})^2/4) = 10.338 \text{ dBi}$

For 5500~5700MHz:

Directional gain = $10 \times \log((10^{4.341/20} + 10^{4.289/20} + 10^{4.634/20} + 10^{4.188/20})^2/4) = 10.385 \text{ dBi}$

For 5745~5825MHz:

Directional gain = $10 \times \log((10^{4.341/20} + 10^{4.174/20} + 10^{4.634/20} + 10^{4.223/20})^2/4) = 10.365 \text{ dBi}$

The device contains one certified BT module, FCC ID: Y82-DA14531MOD.

Frequency Range (MHz)	Maximum Tune Up limit (dBm)	Antenna Gain (dBi)	Distance (cm)	Power Density (mW/cm²)	Limit (mW/cm²)	*Ratio	Pass / Fail
2402-2480	2.2	-0.5	31	0.0001	1	0.0001	Pass

Note: Above output power value is from module's test report

Report No.: FA353101 Page: 5 of 7

1.7 MPE EVALUATION OF SIMULTANEOUS TRANSMISSION

Non-beamforming mode

ton beamforming meas						
Mode	Max Ratio of Each Mode					
WLAN 2.4GHz	0.133					
WLAN 5G Low	0.113					
WLAN 5G High	0.152					
ВТ	0.0001					
Sum	0.398					
Limit	1					
Pass / Fail	Pass					

Beamforming mode

Mode	Max Ratio of Each Mode
Beamforming-WLAN 2.4GHz	0.346
Beamforming- WLAN 5G Low	0.321
Beamforming- WLAN 5G High	0.320
Non-beamforming-BT	0.0001
Sum	0.987
Limit	1
Pass / Fail	Pass

Report No.: FA353101 Page: 6 of 7

2 Test laboratory information

Established in 2012, ICC provides foremost EMC & RF Testing and advisory consultation services by our skilled engineers and technicians. Our services employ a wide variety of advanced edge test equipment and one of the widest certification extents in the business.

International Certification Corporation (EMC and Wireless Communication Laboratory), it is our definitive objective is to institute long term, trust-based associations with our clients. The expectation we set up with our clients is based on outstanding service, practical expertise and devotion to a certified value structure. Our passion is to grant our clients with best EMC / RF services by oriented knowledgeable and accommodating staff.

Our Test sites are located at Linkou District and Kwei Shan District. Location map can be found on our website http://www.icertifi.com.tw.

Linkou

Tel: 886-2-2601-1640 No.30-2, Ding Fwu Tsuen, Lin Kou District, New Taipei City, Taiwan (R.O.C.)

Kwei Shan

Tel: 886-3-271-8666
No.3-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)
No.2-1, Lane 6, Wen San 3rd
St., Kwei Shan Dist., Tao Yuan
City 33381, Taiwan (R.O.C.)

Kwei Shan Site II

Tel: 886-3-271-8640 No.14-1, Lane 19, Wen San 3rd St., Kwei Shan Dist., Tao Yuan City 333, Taiwan (R.O.C.)

If you have any suggestion, please feel free to contact us as below information.

Tel: 886-3-271-8666 Fax: 886-3-318-0345

Email: ICC Service@icertifi.com.tw

==END==

Report No.: FA353101 Page: 7 of 7