

FCC Test Report

Report No.: RFBERD-WTW-P22010914-2

FCC ID: HD5-CT60L1N

Test Model: CT60L1N

Received Date: 2022/2/11

Test Date: 2022/2/24 ~ 2022/3/10

Issued Date: 2022/5/12

Applicant: Honeywell International Inc.

Address: 9680 Old Bailes Road, Fort Mill, SC 29707 USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,
Taiwan

FCC Registration / 723255 / TW2022

Designation Number:

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification.

Table of Contents

Release Control Record	3
1 Certificate of Conformity.....	4
2 Summary of Test Results.....	5
2.1 Measurement Uncertainty	5
2.2 Modification Record	5
3 General Information.....	6
3.1 General Description of EUT	6
3.2 Description of Test Modes	9
3.2.1 Test Mode Applicability and Tested Channel Detail.....	10
3.3 Duty Cycle of Test Signal	11
3.4 Description of Support Units	12
3.4.1 Configuration of System under Test	13
3.5 General Description of Applied Standards and References	14
4 Test Types and Results	15
4.1 Radiated Emission and Bandedge Measurement.....	15
4.1.1 Limits of Radiated Emission and Bandedge Measurement	15
4.1.2 Test Instruments	16
4.1.3 Test Procedures.....	18
4.1.4 Deviation from Test Standard	18
4.1.5 Test Setup.....	19
4.1.6 EUT Operating Conditions.....	20
4.1.7 Test Results	21
4.2 Conducted Emission Measurement	24
4.2.1 Limits of Conducted Emission Measurement	24
4.2.2 Test Instruments	24
4.2.3 Test Procedures.....	25
4.2.4 Deviation from Test Standard	25
4.2.5 Test Setup.....	25
4.2.6 EUT Operating Condition	25
4.2.7 Test Results (Mode 1).....	26
4.2.8 Test Results (Mode 2).....	28
5 Pictures of Test Arrangements.....	30
Annex A - Band-Edge Measurement.....	31
Appendix – Information of the Testing Laboratories	32

Release Control Record

Issue No.	Description	Date Issued
RFBERD-WTW-P22010914-2	Original release.	2022/5/12

1 Certificate of Conformity

Product: Dolphin CT60

Brand: Honeywell

Test Model: CT60L1N

Sample Status: Engineering sample

Applicant: Honeywell International Inc.

Test Date: 2022/2/24 ~ 2022/3/10

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by : Vivian Huang, **Date:** 2022/5/12
Vivian Huang / Specialist

Approved by : , **Date:** 2022/5/12
May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)

FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -13.30 dB at 0.15391 MHz.
15.247(a)(1) (iii)	Number of Hopping Frequency Used	NA	Refer to Note 1 below
15.247(a)(1) (iii)	Dwell Time on Each Channel	NA	Refer to Note 1 below
15.247(a)(1)	1. Hopping Channel Separation 2. Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	NA	Refer to Note 1 below
15.247(b)	Maximum Peak Output Power	NA	Refer to Note 1 below
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -6.5 dB at 747.00 MHz.
15.247(d)	Antenna Port Emission	NA	Refer to Note 1 below
15.203	Antenna Requirement	Pass	No antenna connector is used.

Note:

1. The Radiated Emission and AC Power Conducted Emissions test items of specific channel frequencies were performed for this addendum. The others testing data refer to original test report.
2. For 2.4 GHz band compliance with rule 15.247(d) of the band-edge items, the test plots were recorded in Annex A.
3. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.9 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	3.1 dB
	30MHz ~ 1GHz	5.4 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	5.0 dB
	18GHz ~ 40GHz	5.3 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Dolphin CT60
Brand	Honeywell
Test Model	CT60L1N
Status of EUT	Engineering sample
HW Version	V1.1
HW P/N	DVT
SW Version	OS.05.001-HON.03.002
SW P/N	477D
Power Supply Rating	3.6Vdc or 3.85Vdc from battery, 5Vdc from USB interface
Modulation Type	GFSK, $\pi/4$ -DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	Up to 3 Mbps
Operating Frequency	2.402 ~ 2.480 GHz
Number of Channel	79
Output Power	5.176 mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	Battery x1, comfort cover x1
Data Cable Supplied	USB snap-on adapter x 1 (1.25m, Shielded with two cores)

Note:

1. This is a supplementary report of Report No.: RF171122C17-2. The differences between them are as below information:
 - ◆ Add 802.11n (HT40) modulation mode.
 - ◆ Change NFC chip.
 - ◆ Add a battery.
 - ◆ Changes as listed below information.

SOM Change list	
RF Module	Underfill Modified
RF Module	LPDDR4x Layout Optimization
RF Module	Wi-Fi Layout Optimization
RF Module	WWAN Path Optimization
RF Module	WWAN Shielding Frame Optimization
RF Module	WWAN PA Power Optimization
RF Module	SOM PAD Mask Optimization
RF Module	Change DC regulator and WLAN amplifier DC power
RF Module	BOM Change for Optimization
RF Module	B25 Duplexer-AVAGO-ACMD-6225-TR1
RF Module	B40 TRX filter-AVAGO-ACPF-8240-TR1
RF Module	Remove un-used CLK trace WCN_CLK

SOM Change list	
RF Module	WIFI 11b Power reduction from 18+/-1.5 dB to 17.5+/-1.5 dB
RF Module	LTE 7 Power reduction from 23.4 + 1 / -2.7 dB to 23 + 1 / -2.7dB
RF Module	GSM 850 Power reduction for Head with WIFI ON mode from 33.4 + 1 / -2 dB to 32.8 + 1 / -2 dB
RF Module	CDMA2K BC0 Power reduction for Head with WIFI ON mode from 24.4 +/- 1 dB to 23.8 +/- 1dB
RF Module	CDMA2K BC10 Power reduction for Head with WIFI ON mode from 24.4 +/- 1 dB to 23.8 +/- 1dB
RF Module	Enable WIFI 2.4G N40 by software
Carrier board Change list	
Carrier Board	Scanner change to N6703 imager
Carrier Board	Add 1F/2.7V supercap
Carrier Board	Add MAX38888 DC/DC for supercap charge/ change discharge circuit
Carrier Board	Add low battery protection circuit
Carrier Board	Change speaker and add a connector for it
Carrier Board	Change ADS1014 to ADS1015 to add supercap voltage detection
Carrier Board	AUX antenna tuner circuit change placement location
Carrier Board	Upgrade the SOM to SOM4
Carrier Board	Add a new model battery
Carrier Board	NFC Controller from NQ310 to NQ410
Carrier Board	Add the second source (OV13855 Camera, S0703VE insertion)
Carrier Board	Add the second source (ESD, ADC, OPT Sensor, Translator, 6-axis sensor, Pressure sensor, Analog switch)

- According to above conditions and the applicant requirement, only Radiated Emission and AC Power Conducted Emissions test items of specific channel frequencies need to be performed (Final test mode refer to section 3.2.1). And all data were verified to meet the requirements.
- There are WLAN, Bluetooth, WWAN and NFC technology used for the EUT.
- Simultaneously transmission condition.

Condition	Technology		
1	WLAN 2.4GHz	NFC	WWAN
2	WLAN 5GHz	NFC	WWAN
3	Bluetooth	NFC	WWAN

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

- The EUT needs to be supplied from battery, the information is as below table:

Original			
No.	Brand	Model No.	Spec.
1	Inventus	CT50-BTSC	3.6 Vdc, 4040 mAh, 14.6 Wh
Newly			
No.	Brand	Model No.	Spec.
2	Honeywell	CT50-BTSC	3.85 Vdc, 4020 mAh, 15.5 Wh

6. The antennas provided to the EUT, please refer to the following table:

WLAN / Bluetooth Antenna Spec.

Antenna Gain include path loss (dBi)	Frequency Range (GHz)	Antenna type	Connector type	Trace loss (dB)
0.62	2.4~2.4835	PIFA	POGO pin	1
1.14	5.15~5.25			
1.14	5.25~5.35			
1.14	5.47~5.725			
1.14	5.725~5.85			1.7

NFC Antenna Spec.

Antenna Gain (dBi)	Frequency Range (MHz)	Antenna type	Connector type
-1	13~14	Loop	NA

WWAN Antenna Spec.

Chain No.	Antenna Gain include path loss (dBi)	Frequency Range	Antenna type	Connector type	Trace loss (dB)
Chain 0	0	700~960 MHz	PIFA	POGO pin	0.2
	3	1.7~2.0 GHz			0.4
	2.4	2.1~2.4 GHz			0.5
	0.3	2.4~2.7 GHz			0.6
Chain 1 (RX only)	-2	700~960 MHz	PIFA	POGO pin	NA
	0.5	1.7~2.0 GHz			
	0.8	2.1~2.4 GHz			
	0.8	2.4~2.7 GHz			

7. For the radiated emissions, the EUT was pre-tested under the following modes:

Test Mode	Description
Mode A	Power from laptop
Mode B	Power from adapter

Note: In original report, from the above modes, the worst case was found in **Mode A**. Therefore only the test data of the mode was recorded in this report.

8. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or User's Manual.

9. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

79 channels are provided for BT-EDR mode:

Channel	Freq. (MHz)						
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE MODE	APPLICABLE TO			DESCRIPTION
	RE \geq 1G	RE $<$ 1G	PLC	
1	✓	✓	✓	Power from laptop
2	-	-	✓	Power from adapter

Where RE \geq 1G: Radiated Emission above 1GHz RE $<$ 1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission

Note: In original report, the EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Z-plane (Below 1GHz) and X-plane (Above 1GHz).

Radiated Emission Test (Above 1GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0	FHSS	GFSK	DH5

Radiated Emission Test (Below 1GHz):

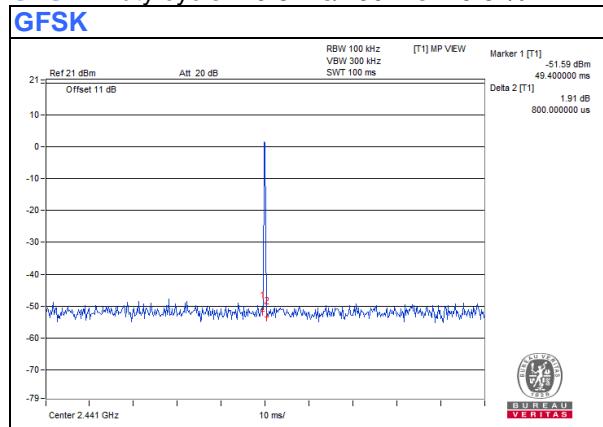
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0	FHSS	GFSK	DH5

Power Line Conducted Emission Test:

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0	FHSS	GFSK	DH5


Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (System)	TESTED BY
RE \geq 1G	24~25deg. C, 68~75%RH	120Vac, 60Hz	Tom Yang, Carter Lin
RE $<$ 1G	24deg. C, 67%RH	120Vac, 60Hz	Tom Yang
PLC	24deg. C, 67%RH	120Vac, 60Hz	Tom Yang

3.3 Duty Cycle of Test Signal

GFSK: Duty cycle = 0.8 ms/100 ms = 0.8 %

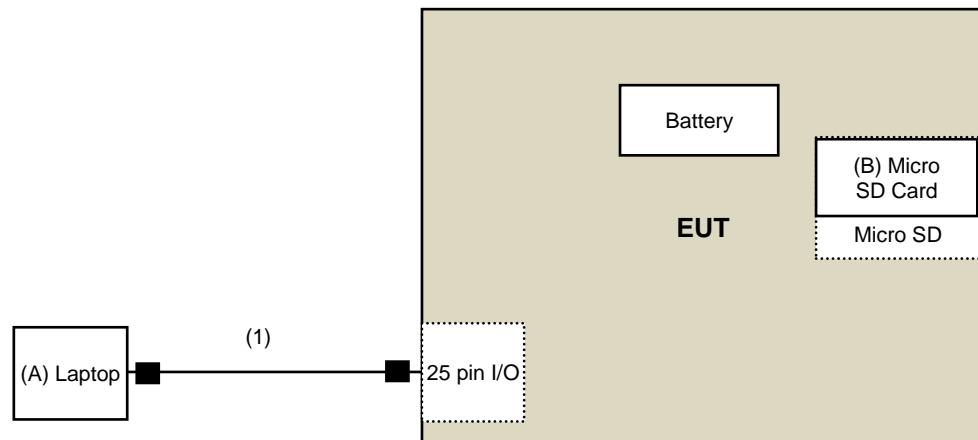
GFSK

3.4 Description of Support Units

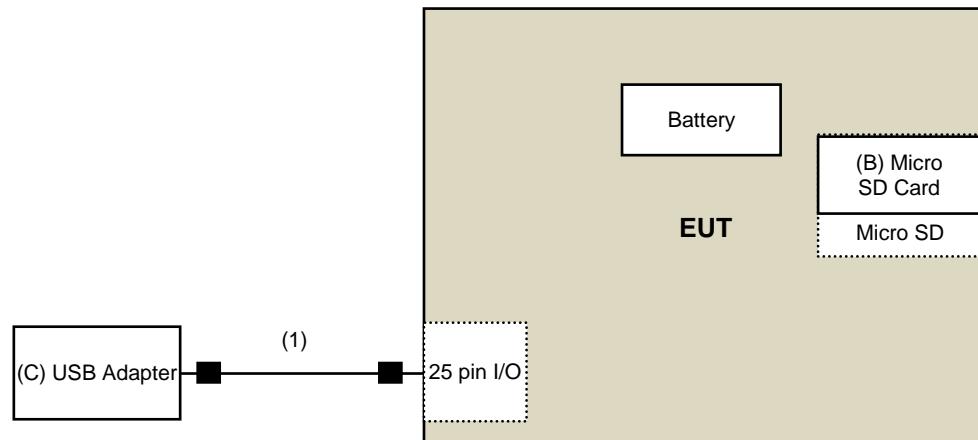
The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	Laptop	ACER	N15W8	NA	NA	Supplied by applicant
B.	Micro SD Card	Transcend	16GB	NA	NA	Provided by Lab
C.	USB Adapter	ASUS	EXA1205UA	NA	NA	Provided by Lab

Note:


1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Charging Cable	1	1.25	Yes	2	Supplied by applicant


Note: The core(s) is(are) originally attached to the cable(s).

3.4.1 Configuration of System under Test

Power from laptop mode

Power from adapter mode

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance:

KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

1. The lower limit shall apply at the transition frequencies.
2. Emission level (dB_{UV}/m) = 20 log Emission level (uV/m).
3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

For Radiated Emission (below 1GHz) & Bandedge test:

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer KEYSIGHT	N9030B	MY57142938	2021/4/26	2022/4/25
Test Receiver KEYSIGHT	N9038A	MY59050100	2021/5/3	2022/5/2
Software	ADT_Radiated_V 8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Pre_Amplifier EMCI	EMC001340	980142	2021/5/24	2022/5/23
Loop Antenna TESEQ	HLA 6121	45745	2021/7/21	2022/7/20
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-001	2022/1/6	2023/1/5
RF Coaxial Cable JYEBO	5D-FB	LOOPCAB-002	2022/1/6	2023/1/5
Pre_Amplifier Mini-Circuits	ZFL-1000VH2	QA0838008	2021/10/19	2022/10/18
Trilog Broadband Antenna Schwarzbeck	VULB 9168	9168-361	2021/10/26	2022/10/25
RF Coaxial Cable COMMATE/PEWC	8D	966-3-1	2021/3/16	2022/3/15
RF Coaxial Cable COMMATE/PEWC	8D	966-3-2	2021/3/16	2022/3/15
RF Coaxial Cable COMMATE/PEWC	8D	966-3-3	2021/3/16	2022/3/15
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	2021/9/23	2022/9/22
Horn Antenna Schwarzbeck	BBHA9120-D	9120D-406	2021/11/14	2022/11/13
Pre_Amplifier EMCI	EMC12630SE	980384	2022/1/10	2023/1/9
RF Coaxial Cable EMCI	EMC104-SM-SM-1500	180504	2021/4/26	2022/4/25
RF Coaxial Cable EMCI	EMC104-SM-SM-2000	180601	2021/6/8	2022/6/7
RF Cable EMCI	EMC104-SM-SM-6000	210201	2021/5/13	2022/5/12
Fix tool for Boresight antenna tower BV	FBA-01	FBA_SIP01	NA	NA
Spectrum Analyzer Keysight	N9030A	MY54490679	2021/7/9	2022/7/8
Pre_Amplifier EMCI	EMC184045SE	980387	2022/1/10	2023/1/9
Horn Antenna Schwarzbeck	BBHA 9170	BBHA9170519	2021/11/14	2022/11/13
RF Cable-Frequency range: 1-40GHz EMCI	EMC102-KM-KM-1200	160924	2022/1/10	2023/1/9
RF Coaxial Cable EMCI	EMC-KM-KM-4000	200214	2021/3/10	2022/3/9

Note: 1. The test was performed in 966 Chamber No. 3.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/2/24 ~ 2022/2/25

For Radiated Emission (above 1GHz) test:

Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Spectrum Analyzer KEYSIGHT	N9030B	MY57142938	2021/4/26	2022/4/25
Test Receiver KEYSIGHT	N9038A	MY59050100	2021/5/3	2022/5/2
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Horn Antenna Schwarzbeck	BBHA9120-D	9120D-406	2021/11/14	2022/11/13
Pre_Amplifier EMCI	EMC12630SE	980384	2022/1/10	2023/1/9
RF Coaxial Cable EMCI	EMC104-SM-SM-1500	180504	2021/4/26	2022/4/25
RF Coaxial Cable EMCI	EMC104-SM-SM-2000	180601	2021/6/8	2022/6/7
RF Cable EMCI	EMC104-SM-SM-6000	210201	2021/5/13	2022/5/12
Fix tool for Boresight antenna tower BV	FBA-01	FBA_SIP01	NA	NA
Spectrum Analyzer Keysight	N9030A	MY54490679	2021/7/9	2022/7/8
Pre_Amplifier EMCI	EMC184045SE	980387	2022/1/10	2023/1/9
Horn Antenna Schwarzbeck	BBHA 9170	9170-739	2021/11/14	2022/11/13
RF Cable-Frequency range: 1-40GHz EMCI	EMC102-KM-KM-1200	160924	2022/1/10	2023/1/9
RF Coaxial Cable EMCI	EMC-KM-KM-4000	200214	2022/3/8	2023/3/7

Note: 1. The test was performed in 966 Chamber No. 3.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/3/10

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

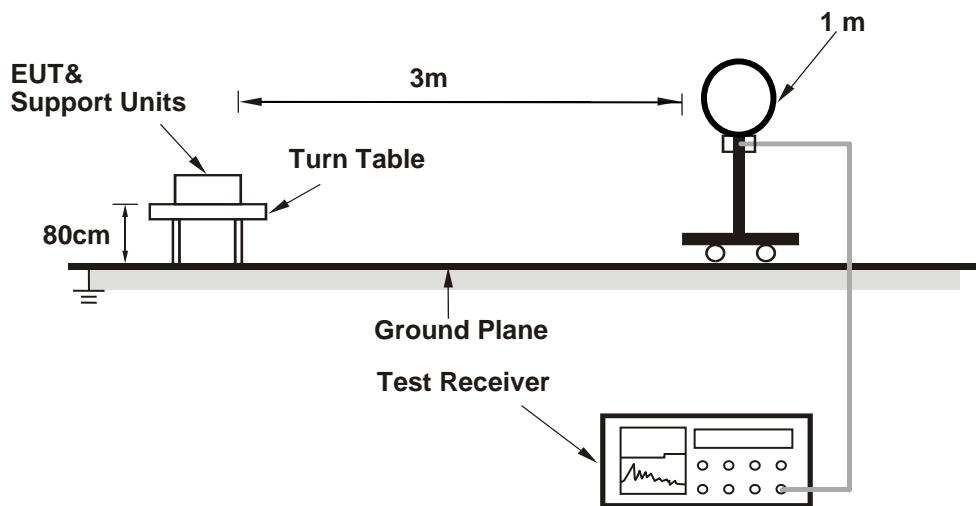
Note:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

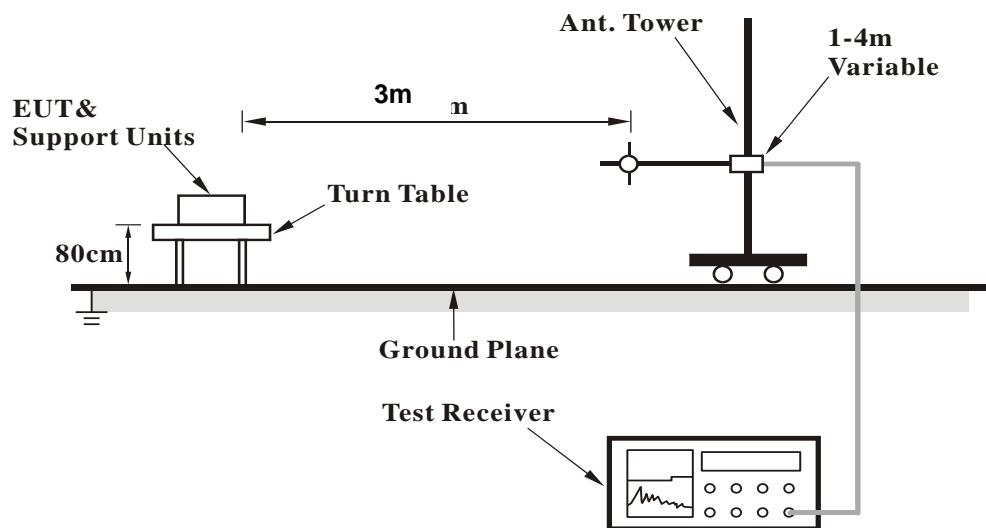
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

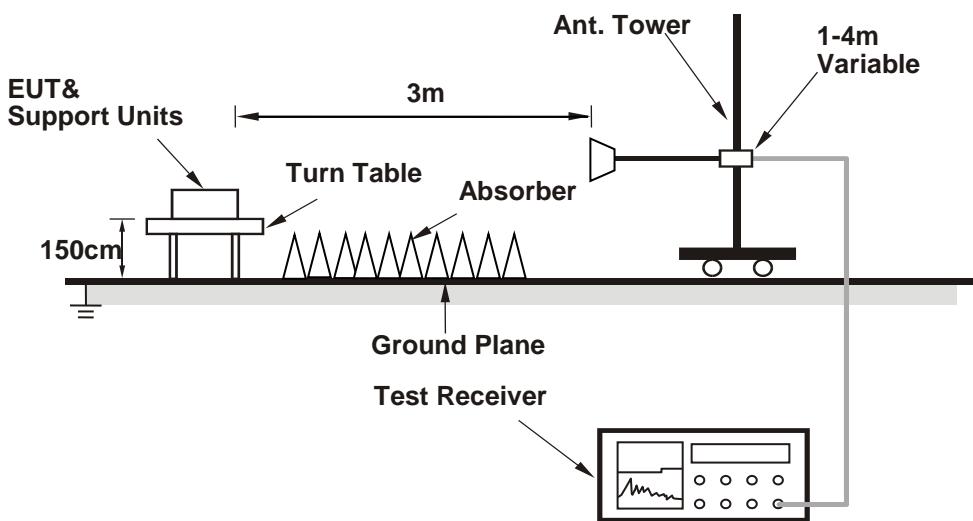
Note:


1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup


For Radiated emission below 30MHz

For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- Placed the EUT on the testing table.
- Controlling software (FTMTOOL 1.8) has been activated to set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Above 1GHz Data:

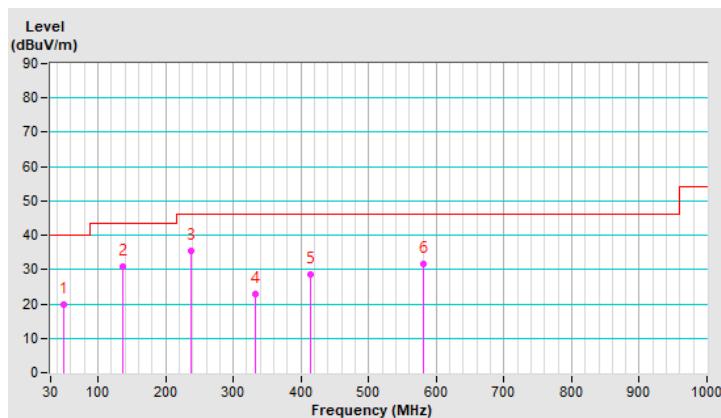
RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	1GHz ~ 25GHz	Detector Function	Peak (PK) Average (AV)

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2353.70	56.6 PK	74.0	-17.4	1.03 H	191	57.5	-0.9
2	2353.70	45.3 AV	54.0	-8.7	1.03 H	191	46.2	-0.9
3	*2402.00	98.6 PK			1.03 H	191	99.7	-1.1
4	*2402.00	56.7 AV			1.03 H	191	57.8	-1.1
5	4804.00	44.3 PK	74.0	-29.7	1.57 H	183	40.6	3.7
6	4804.00	2.4 AV	54.0	-51.6	1.57 H	183	-1.3	3.7
Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2328.10	56.9 PK	74.0	-17.1	2.76 V	107	57.7	-0.8
2	2328.10	45.2 AV	54.0	-8.8	2.76 V	107	46.0	-0.8
3	*2402.00	94.9 PK			2.76 V	107	96.0	-1.1
4	*2402.00	53.0 AV			2.76 V	107	54.1	-1.1
5	4804.00	44.8 PK	74.0	-29.2	1.44 V	243	41.1	3.7
6	4804.00	2.9 AV	54.0	-51.1	1.44 V	243	-0.8	3.7

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit.
5. " * ": Fundamental frequency.
6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

$$20 \log(\text{Duty cycle}) = 20 \log(0.8 \text{ ms} / 100 \text{ ms}) = -41.9 \text{ dB}$$
 Please see section 3.3 for plotted duty.

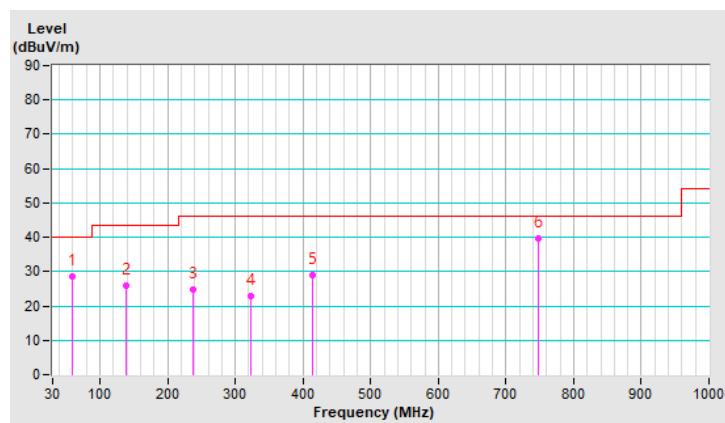

Below 1GHz Data:

RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	50.08	19.9 QP	40.0	-20.1	2.00 H	343	27.9	-8.0
2	135.88	30.7 QP	43.5	-12.8	2.00 H	256	38.9	-8.2
3	238.40	35.5 QP	46.0	-10.5	1.50 H	136	44.6	-9.1
4	332.57	22.8 QP	46.0	-23.2	1.00 H	232	28.1	-5.3
5	415.02	28.7 QP	46.0	-17.3	2.00 H	131	32.1	-3.4
6	581.03	31.6 QP	46.0	-14.4	2.00 H	302	30.6	1.0

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	59.15	28.7 QP	40.0	-11.3	1.00 V	360	37.1	-8.4
2	137.69	25.9 QP	43.5	-17.6	1.50 V	203	34.0	-8.1
3	236.76	24.6 QP	46.0	-21.4	2.00 V	352	33.8	-9.2
4	322.79	22.9 QP	46.0	-23.1	1.50 V	0	28.5	-5.6
5	415.02	29.1 QP	46.0	-16.9	1.00 V	236	32.5	-3.4
6	747.00	39.5 QP	46.0	-6.5	1.50 V	268	34.7	4.8

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)
3. Margin value = Emission Level – Limit value
4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

Frequency (MHz)	Conducted Limit (dBuV)	
	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

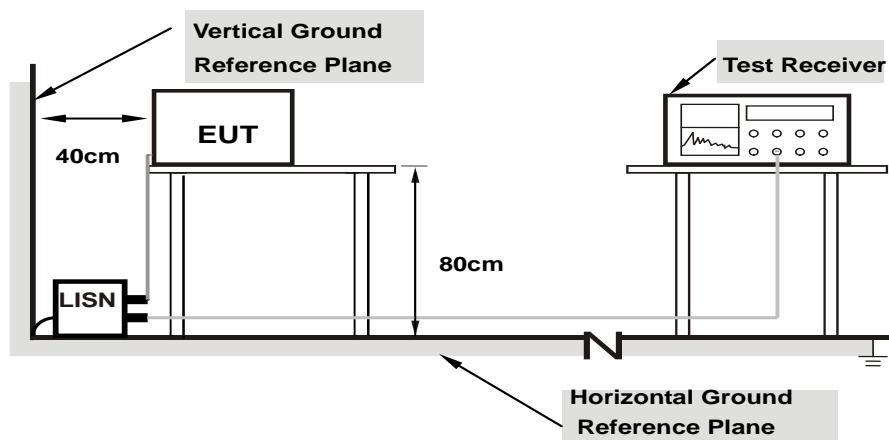
Description & Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
TEST RECEIVER R&S	ESCS 30	847124/029	2021/10/13	2022/10/12
LISN R&S	ESH3-Z5	848773/004	2021/10/29	2022/10/28
LISN R & S	ESH3-Z5	835239/001	2021/3/26	2022/3/25
50 ohms Terminator NA	50	3	2021/10/27	2022/10/26
RF Coaxial Cable JYEBO	5D-FB	COCCAB-001	2021/9/25	2022/9/24
Fixed attenuator STI	STI02-2200-10	005	2021/8/27	2022/8/26
Software BVADT	BVADT_Cond_V7.3.7.4	NA	NA	NA

Note: 1. The test was performed in Conduction 1.

2. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. Tested Date: 2022/2/26

4.2.3 Test Procedures


- The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit - 20dB) was not recorded.

Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

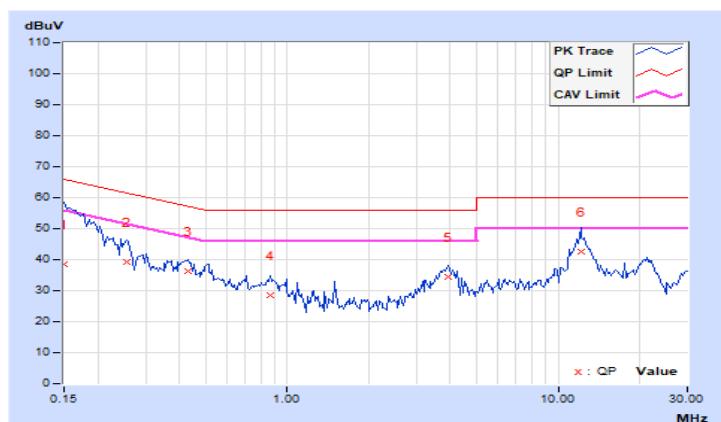
4.2.5 Test Setup

Note: 1. Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Same as 4.1.6.

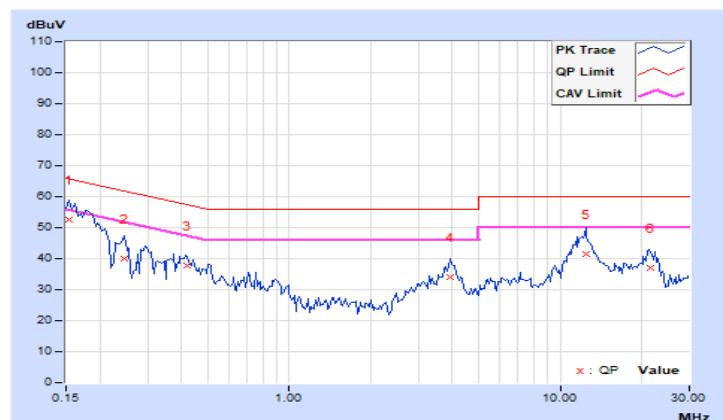

4.2.7 Test Results (Mode 1)

RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

Phase Of Power : Line (L)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15000	10.05	28.51	16.48	38.56	26.53	66.00	56.00	-27.44	-29.47
2	0.25547	10.06	29.16	16.82	39.22	26.88	61.58	51.58	-22.36	-24.70
3	0.43125	10.07	26.36	16.86	36.43	26.93	57.23	47.23	-20.80	-20.30
4	0.86875	10.10	18.48	6.65	28.58	16.75	56.00	46.00	-27.42	-29.25
5	3.94531	10.26	24.03	15.19	34.29	25.45	56.00	46.00	-21.71	-20.55
6	12.17188	10.74	31.86	25.91	42.60	36.65	60.00	50.00	-17.40	-13.35

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

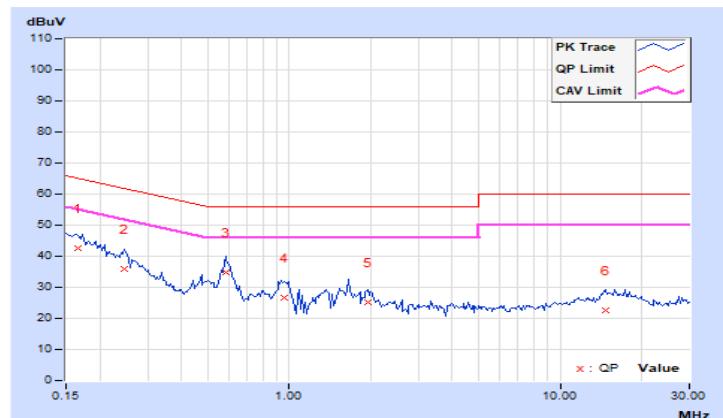


RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

Phase Of Power : Neutral (N)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	10.02	42.47	26.29	52.49	36.31	65.79	55.79	-13.30	-19.48
2	0.24766	10.03	29.89	19.42	39.92	29.45	61.84	51.84	-21.92	-22.39
3	0.41953	10.04	27.58	20.46	37.62	30.50	57.46	47.46	-19.84	-16.96
4	3.91797	10.21	23.90	15.29	34.11	25.50	56.00	46.00	-21.89	-20.50
5	12.49219	10.61	31.01	24.53	41.62	35.14	60.00	50.00	-18.38	-14.86
6	21.66016	10.96	26.07	20.65	37.03	31.61	60.00	50.00	-22.97	-18.39

Remarks:

1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

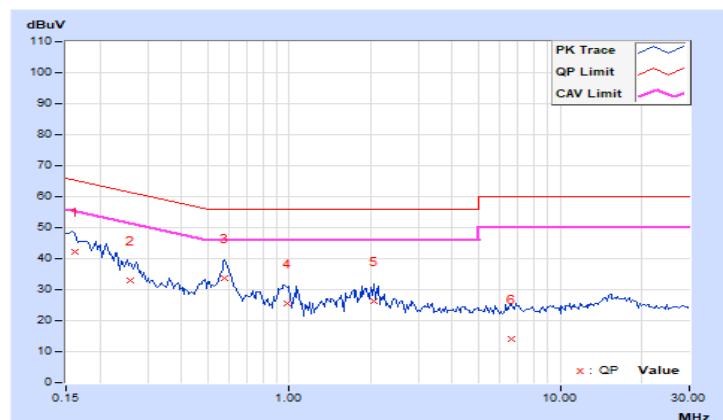

4.2.8 Test Results (Mode 2)

RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

Phase Of Power : Line (L)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16562	10.07	32.62	20.89	42.69	30.96	65.18	55.18	-22.49	-24.22
2	0.24766	10.09	25.88	14.82	35.97	24.91	61.84	51.84	-25.87	-26.93
3	0.58359	10.12	24.86	15.44	34.98	25.56	56.00	46.00	-21.02	-20.44
4	0.96250	10.15	16.63	7.57	26.78	17.72	56.00	46.00	-29.22	-28.28
5	1.95313	10.21	15.09	4.88	25.30	15.09	56.00	46.00	-30.70	-30.91
6	14.71094	11.16	11.50	4.70	22.66	15.86	60.00	50.00	-37.34	-34.14

Remarks:

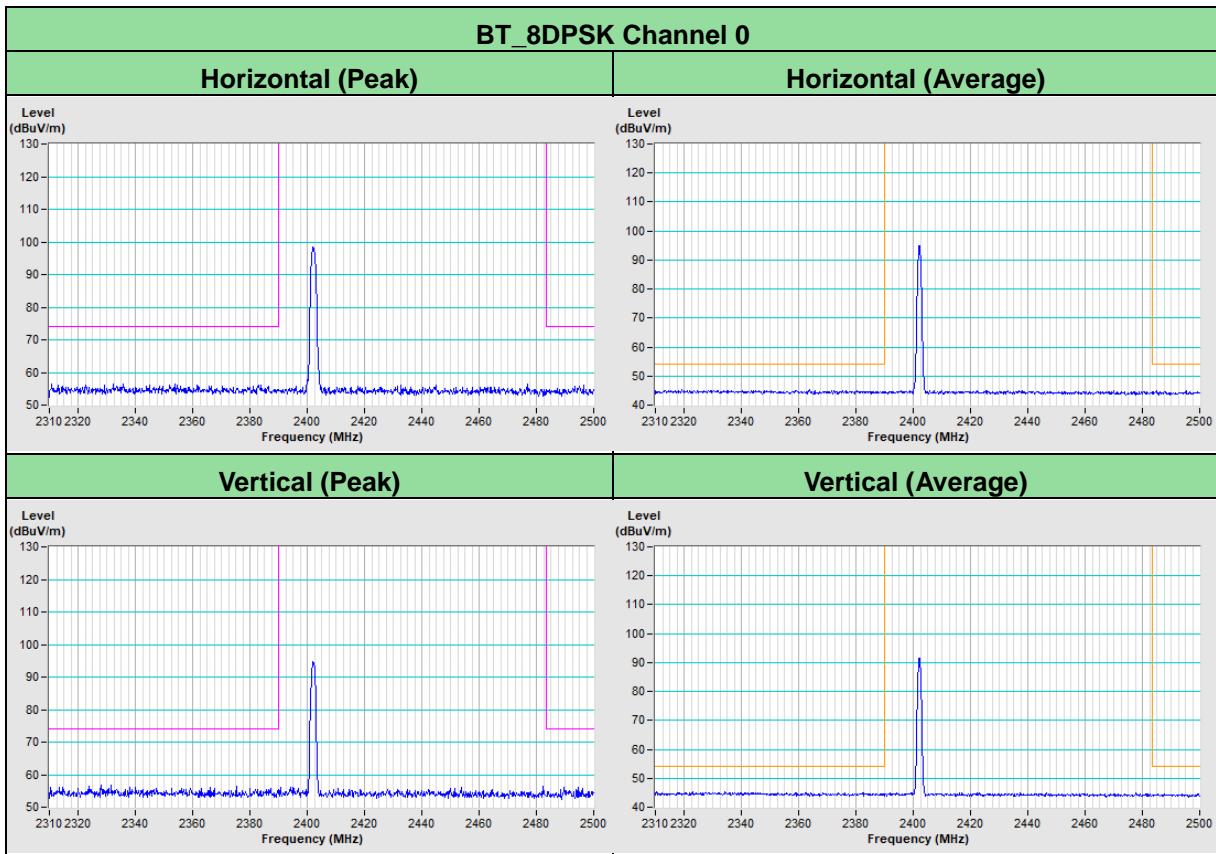
1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value



RF Mode	TX BT_GFSK	Channel	CH 0 : 2402 MHz
Frequency Range	150kHz ~ 30MHz	Detector Function & Resolution Bandwidth	Quasi-Peak (QP) / Average (AV), 9kHz

Phase Of Power : Neutral (N)										
No	Frequency (MHz)	Correction Factor (dB)	Reading Value (dBuV)		Emission Level (dBuV)		Limit (dBuV)		Margin (dB)	
			Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16172	10.06	32.31	15.89	42.37	25.95	65.38	55.38	-23.01	-29.43
2	0.25938	10.09	22.74	10.61	32.83	20.70	61.45	51.45	-28.62	-30.75
3	0.57969	10.11	23.74	16.77	33.85	26.88	56.00	46.00	-22.15	-19.12
4	0.98203	10.14	15.42	6.14	25.56	16.28	56.00	46.00	-30.44	-29.72
5	2.05859	10.22	16.21	7.77	26.43	17.99	56.00	46.00	-29.57	-28.01
6	6.63281	10.48	3.68	-3.08	14.16	7.40	60.00	50.00	-45.84	-42.60

Remarks:


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
2. The emission levels of other frequencies were very low against the limit.
3. Margin value = Emission level – Limit value
4. Correction factor = Insertion loss + Cable loss
5. Emission Level = Correction Factor + Reading Value

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Annex A - Band-Edge Measurement

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180

Fax: 886-2-26051924

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565

Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232

Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com

Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---