

FCC RF Test Report

APPLICANT	Honeywell International Inc.
EQUIPMENT	Dolphin CT60
BRAND NAME	Honeywell
MODEL NAME	CT60L0N
FCC ID	HD5-CT60L0N
STANDARD	FCC Part 15 Subpart C §15.247
CLASSIFICATION	(DTS) Digital Transmission System

This is a variant report. We, Sporton International (Kunshan) Inc., would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this report apply exclusively to the tested model / sample. Without written approval of Sporton International (Kunshan) Inc., the test report shall not be reproduced except in full.

JasonJia

Reviewed by: Jason Jia / Supervisor

Journes Huang

Approved by: James Huang / Manager

Sporton International (Kunshan) Inc. No. 1098, Pengxi North Road, Kunshan Economic Development Zone Jiangsu Province 215300 People's Republic of China

TABLE OF CONTENTS

RE	VISION	N HISTORY	3
SUI	MMAR	Y OF TEST RESULT	ł
1	GENE	ERAL DESCRIPTION	5
	1.1	Applicant	5
	1.2	Manufacturer	5
	1.3	Product Feature of Equipment Under Test	5
	1.4	Product Specification of Equipment Under Test	7
	1.5	Modification of EUT	7
	1.6	Testing Location7	7
	1.7	Test Software	3
	1.8	Applicable Standards	3
	1.9	Re-use of Measured Data)
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST10)
	2.1	Carrier Frequency and Channel)
	2.2	Test Mode11	l
	2.3	Connection Diagram of Test System	2
	2.4	Support Unit used in test configuration and system13	3
	2.5	EUT Operation Test Setup	3
3	TEST	RESULT	ł
	3.1	AC Conducted Emission Measurement14	1
	3.2	Antenna Requirements	3
4	LIST	OF MEASURING EQUIPMENT17	7
5	UNCE	ERTAINTY OF EVALUATION18	3
API	PENDI	X A. AC CONDUCTED EMISSION TEST RESULT	
API	PENDI	X B. SETUP PHOTOGRAPHS	
API	PENDI	X C. REFERENCE REPORT	

REVISION HISTORY

REPORT NO.	VERSION	DESCRIPTION	ISSUED DATE
FR042406A	Rev. 01	Initial issue of report	Jun. 11, 2020

SUMMARY OF TEST RESULT

Report Section	FCC Rule	Description	Limit	Result	Remark
3.1	15.207	AC Conducted Emission	15.207(a)	Pass	Under limit 12.08 dB at 0.449 MHz
3.2	15.203 & 15.247(b)	Antenna Requirement	N/A	Pass	-

Declaration of Conformity:

The test results with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

1 General Description

1.1 Applicant

Honeywell International Inc.

9680 Old Bailes Road, Fort Mill, SC 29707 USA

1.2 Manufacturer

Honeywell International Inc. 9680 Old Bailes Road, Fort Mill, SC 29707 USA

1.3 Product Feature of Equipment Under Test

Product Feature				
Equipment	Dolphin CT60			
Brand Name	Honeywell			
Model Name	CT60L0N			
FCC ID	HD5-CT60L0N			
EUT supports Radios application	WLAN 2.4GHz 802.11b/g/n HT20/HT40 WLAN 2.4GHz 802.11ac VHT20/VHT40 WLAN 5GHz 802.11a/n HT20/HT40 WLAN 5GHz802.11ac VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE NFC			
HW Version	V1.0			
HW P/N	DVT			
SW Version	OS.03.003-HON.02.001			
SW P/N	88.00.00-DEBUG(0579)			
EUT Stage	Identical Prototype			

Remark:

- 1. The above EUT's information was declared by manufacturer. Please refer to the specifications or user's manual for more detailed description.
- This is a variant report for CT60L0N (Original FCC ID: HD5-CT60L0N, Model: CT60L0N), for change note, please refer to the change list as below.
- The CT60L0N share the same part with CT60L1N for BT/WIFI part, CT60L0N data re-use the test results from CT60L1N, the verify data could be referred to the Section 1.9 and the conduction test item was re-tested.

Original and Variant product are list in the following table:

Object	Original	Variant	Remark				
Carrier Board	Scanner N6703 imager	Scanner change to N6803 imager					
CT60L0N have the following new parts:							
RF Module	Under fill Modified						
RF Module	LPDDR4x Layout Optimization	1					
RF Module	Wi-Fi Layout Optimization						
RF Module	SOM PAD Mask Optimization						
RF Module	Change DC regulator and WL	AN amplifier DC power					
RF Module	BOM Change for Optimization	**					
RF Module	Add New power inductor in BC	DM					
RF Module	Remove un-used CLK trace W	/CN_CLK					
Carrier Board	Add 1F/2.7V supercap						
Carrier Board	Add MAX38888 DC/DC for su	percap charge/ change discharge circuit					
Carrier Board	Add low battery protection circ	uit					
Carrier Board	Change speaker and add a co	nnector for it					
Carrier Board	Change ADS1014 to ADS1015	to add supercap voltage detection					
Carrier Board	AUX antenna tuner circuit cha	nge placement location					
Carrier Board	Upgrade the SOM to SOM4						
Carrier Board	Add new model battery						
Carrier Board	Add WIFI-AUX layout, RF WIF	TAUX Matching					
Carrier Board	Modify two n-PTH to PTH to reduce RSE issue.						
Carrier Board	Upgrade to gen 8 scanner, adj	ust 2 spring contacts' location.					
Carrier Board	Add a high-G sensor.						
WIFI 11b	Power reduction from 18+/-1.5 dB to 17.5+/-1.5 dB						

1.4 Product Specification of Equipment Under Test

Standards-related Product Specification				
Tx/Rx Channel Frequency Range	2412 MHz ~ 2462 MHz			
Antenna Type / Gain	<ant.1>: PIFA Antenna type with gain 0.62 dBi <ant.2>: Monopole Antenna type with gain 2.20 dBi</ant.2></ant.1>			
Type of Modulation	802.11b : DSSS (DBPSK / DQPSK / CCK) 802.11g/n/ac : OFDM (BPSK / QPSK / 16QAM / 64QAM / 256QAM)			

1.5 Modification of EUT

No modifications are made to the EUT during all test items.

1.6 **Testing Location**

Sporton International (Kunshan) Inc. is accredited to ISO/IEC 17025:2017 by American Association for Laboratory Accreditation with Certificate Number 5145.02.

Test Firm	Sporton International (Kunshan) Inc.			
	No. 1098, Pengxi North Road, Kunshan Economic Development Zone			
Test Site Location	Jiangsu Province 215300 People's Republic of China			
Test Site Location	TEL : +86-512-57900158			
	FAX : +86-512-57900958			
	Sporton Site No. FCC Designation No. FCC Test Firm Registration			
Test Site No.	CO01-KS 03CH04-KS	CN1257	314309	

1.7 Test Software

ltem	Site	Manufacture	Name	Version
1.	03CH04-KS	AUDIX	E3	6.2009-8-24a
2.	CO01-KS	AUDIX	E3	6.2009-8-24

1.8 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- 47 CFR Part 15 Subpart C §15.247
- FCC KDB 558074 D01 15.247 Meas Guidance v05r02
- FCC KDB 662911 D01 Multiple Transmitter Output v02r01.
- ANSI C63.10-2013

Remark:

- 1. All test items were verified and recorded according to the standards and without any deviation during the test.
- 2. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B, recorded in a separate test report.

1.9 Re-use of Measured Data

1.9.1 Introduction Section

This application re-uses data collected on a similar device. The subject device of this application (Model: CT60L0N, FCC ID: HD5-CT60L0N) is electrically identical to the reference device (Model: CT60L1N, FCC ID: HD5-CT60L1N) for the portions of the circuitry corresponding to the data being re-used, as treated by KDB Publication 484596 D01.

1.9.2 Difference Section

For details concerning the similarity with respect to component placement, mechanical/electrical design etc., please refer to the Product Equality Declaration.

The re-used RF data includes the following bands provided in Appendix C (Sporton RF Report No. FR042407A for the reference device Model: CT60L1N, FCC ID: HD5-CT60L1N).

1.9.3 Reference detail Section:

Equipment Class	Reference FCC ID	Folder Test	Report Title/Section
DTS (WLAN)			All sections applicable
	HD5-CT60L1N	Part15C(FR042407A)	except for AC
			Conducted Emission

1.9.4 Spot Check Verification Data Section

In order to confirm hardware similarity of the subject device with the reference device, spot check measurements were performed on the subject device for the following test items, the test result were consistent with FCC ID: HD5-CT60L1N.

Assertions concerning the similarity of these devices are based on representations by the applicant. The applicant accepts full responsibility for the validity of the similarity claim, and for the determination that verification test data are sufficient to support it.

Test Item	Mode	HD5-CT60L1N Worst Result	HD5-CT60L0N Worst Result	Difference (dB)
Radiated Spurious Emission (Band Edge. Haromic) (dBuV/m)	11n-HT20 CH11	51.76	48.8	2.96

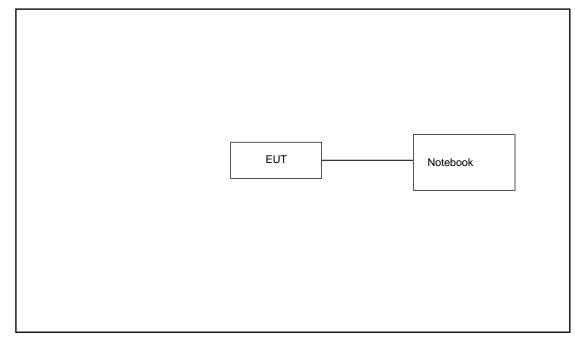
2 Test Configuration of Equipment Under Test

- a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: conduction emission (150 kHz to 30 MHz).
- b. AC power line Conducted Emission was tested under maximum output power.

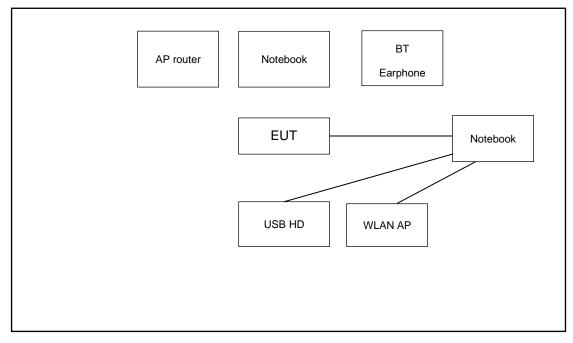
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	1	2412	7	2442
	2	2417	8	2447
2400 2482 E MH-	3	2422	9	2452
2400-2483.5 MHz	4	2427	10	2457
	5	2432	11	2462
	6	2437		

2.1 Carrier Frequency and Channel

2.2 Test Mode


Final test modes are considering the modulation and worse data rates as below table.

Test Cases					
AC	Mode 1 :Bluetooth Link + WLAN Link(2.4G) + USB Cable(Data Link with Notebook)				
Conducted	+ snap on Adapter				
Emission					



2.3 Connection Diagram of Test System

For Radiation

For Conducted Emission

2.4 Support Unit used in test configuration and system

ltem	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	D-link	DIR-655	KA21R655B1	N/A	Unshielded,1.8m
2.	Notebook	Lenovo	G480	QDS-BRCM1050I	N/A	AC I/P: Unshielded, 1.8 m DC O/P: Shielded, 1.8 m
3.	Bluetooth Earphone	Lenovo	LBH308	N/A	N/A	N/A
4.	SD Card	Kingston	8GB	N/A	N/A	N/A
5.	Hard Disk	Lenovo	F310	DoC	Shielded, 1.2m	N/A

2.5 EUT Operation Test Setup

For WLAN RF test items, an engineering test program was provided and enabled to make EUT continuous transmit/receive.

For AC power line conducted emissions, the EUT was set to connect with the WLAN AP under large package sizes transmission.

3 Test Result

3.1 AC Conducted Emission Measurement

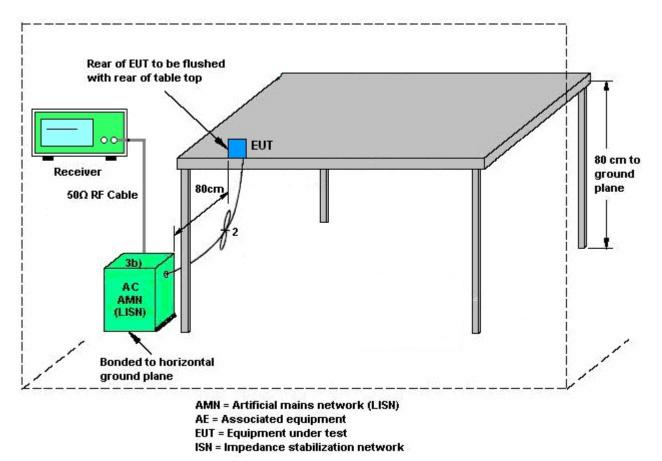
3.1.1 Limit of AC Conducted Emission

For equipment that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

Frequency of Emission	Conducted Limit (dBµV)			
(MHz)	Quasi-Peak	Average		
0.15-0.5	66 to 56*	56 to 46*		
0.5-5	56	46		
5-30	60	50		

*Decreases with the logarithm of the frequency.

3.1.2 Measuring Instruments


The measuring equipment is listed in the section 4 of this test report.

3.1.3 Test Procedures

- 1. The EUT was placed 0.4 meter from the conducting wall of the shielding room, and it was kept at least 80 centimeters from any other grounded conducting surface.
- 2. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- 3. All the support units are connecting to the other LISN.
- 4. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- 5. The FCC states that a 50 ohm, 50 microhenry LISN should be used.
- 6. Both sides of AC line were checked for maximum conducted interference.
- 7. The frequency range from 150 kHz to 30 MHz was searched.
- Set the test-receiver system to Peak Detect Function and specified bandwidth (IF bandwidth = 9kHz) with Maximum Hold Mode.

3.1.4 Test Setup

3.1.5 Test Result of AC Conducted Emission

Please refer to Appendix A.

3.2 Antenna Requirements

3.2.1 Standard Applicable

If directional gain of transmitting Antennas is greater than 6dBi, the power shall be reduced by the same level in dB comparing to gain minus 6dBi. The use of a permanently attached Antenna or of an Antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.2.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

3.2.3 Antenna Gain

The antenna peak gain of EUT is less than 6 dBi. Therefore, it is not necessary to reduce maximum peak output power limit.

FCC KDB 662911 D01 Multiple Transmitter Output v02r01

For CDD transmissions, directional gain is calculated as

Directional gain = G_{ANT} + Array Gain, where Array Gain is as follows.

For power spectral density (PSD) measurements on all devices,

Array Gain = $10 \log(N_{ANT}/N_{SS}=1) dB$.

For power measurements on IEEE 802.11 devices,

Array Gain = 0 dB (i.e., no array gain) for $N_{ANT} \le 4$.

Directional gain may be calculated by using the formulas applicable to equal gain antennas with GANT set equal to the gain of the antenna having the highest gain;

The EUT supports CDD mode.

For power, the directional gain G_{ANT} is set equal to the antenna having the highest gain, i.e., F)2)f)i).

For PSD, the directional gain calculation is following F)2)f)ii) of KDB 662911 D01 v02r01.

The power and PSD limit should be modified if the directional gain of EUT is over 6 dBi,

The directional gain "DG" is calculated as following table.

<cdd mod<="" th=""><th>les></th><th></th><th></th><th></th><th></th><th></th></cdd>	les>					
			DG	DG	Power	PSD
			for	for	Limit	Limit
	Ant. 1	Ant. 2	Power	PSD	Reduction	Reduction
	(dBi)	(dBi)	(dBi)	(dBi)	(dB)	(dB)
2.4 GHz	0.62	2.20	2.20	4.46	0.00	0.00

 $\begin{aligned} &Power \ Limit \ Reduction = DG(Power) - 6dBi, \ (\ min = 0 \) \\ &PSD \ Limit \ Reduction = DG(PSD) - 6dBi, \ (\ min = 0 \) \end{aligned}$

4 List of Measuring Equipment

Instrument	Manufacturer	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
EMI Test Receiver	Keysight	N9038A	MY572901 51	3Hz~8.5GHz;M ax 30dBm	Jul. 18, 2019	May 13, 2020	Jul. 17, 2020	Radiation (03CH04-KS)
EXA Spectrum Analyzer	Keysight	N9010A	MY551502 44	10Hz-44G,MAX 30dB	Apr. 15, 2020	May 13, 2020	Apr. 14, 2021	Radiation (03CH04-KS)
Loop Antenna	R&S	HFH2-Z2	100321	9kHz~30MHz	Nov. 10, 2019	May 13, 2020	Nov. 09, 2020	Radiation (03CH04-KS)
Bilog Antenna	TeseQ	CBL6111D	49922	30MHz-1GHz	May 30, 2019	May 13, 2020	May 29, 2020	Radiation (03CH04-KS)
Double Ridge Horn Antenna	ETS-Lindgren	3117	75957	1GHz~18GHz	Nov. 10, 2019	May 13, 2020	Nov. 09, 2020	Radiation (03CH04-KS)
SHF-EHF Horn	Com-power	AH-840	101115	18GHz~40GHz	Nov. 10, 2019	May 13, 2020	Nov. 09, 2020	Radiation (03CH04-KS)
Amplifier	Burgeon	BPA-530	102219	0.01MHz ~3000MHz	Nov. 02, 2019	May 13, 2020	Nov 01, 2020	Radiation (03CH04-KS)
Amplifier	MITEQ	EM18G40GG A	060728	18~40GHz	Jan. 08, 2020	May 13, 2020	Jan. 07, 2021	Radiation (03CH04-KS)
high gain Amplifier	MITEQ	AMF-7D-0010 1800-30-10P	2025788	1Ghz-18Ghz	Aug. 16, 2019	May 13, 2020	Aug. 15, 2020	Radiation (03CH04-KS)
Amplifier	Keysight	83017A	MY572801 06	500MHz~26.5G Hz	Oct. 15, 2019	May 13, 2020	Oct. 14, 2020	Radiation (03CH04-KS)
AC Power Source	Chroma	61601	F1040900 04	N/A	NCR	May 13, 2020	NCR	Radiation (03CH04-KS)
Turn Table	ChamPro	EM 1000-T	060762-T	0~360 degree	NCR	May 13, 2020	NCR	Radiation (03CH04-KS)
Antenna Mast	ChamPro	EM 1000-A	060762-A	1 m~4 m	NCR	May 13, 2020	NCR	Radiation (03CH04-KS)
EMI Receiver	R&S	ESCI7	100768	9kHz~7GHz;	Apr. 14, 2020	May 12, 2020	Apr. 13, 2021	Conduction (CO01-KS)
AC LISN (for auxiliary equipment)	MessTec	AN3016	060103	9kHz~30MHz	Oct. 18, 2019	May 12, 2020	Oct. 17, 2020	Conduction (CO01-KS)
AC LISN	MessTec	AN3016	060105	9kHz~30MHz	Oct. 28, 2019	May 12, 2020	Oct. 27, 2020	Conduction (CO01-KS)
AC Power Source	Chroma	61602	ABP00000 0811	AC 0V~300V, 45Hz~1000Hz	Oct. 18, 2019	May 12, 2020	Oct. 17, 2020	Conduction (CO01-KS)

NCR: No Calibration Required

5 Uncertainty of Evaluation

The measurement uncertainties shown below were calculated in accordance with the requirements of ANSI 63.10-2013. All the measurement uncertainty value were shown with a coverage K=2 to indicate 95% level of confidence. The measurement data show herein meets or exceeds the CISPR measurement uncertainty values specified in CISPR 16-4-2 and can be compared directly to specified limit to determine compliance.

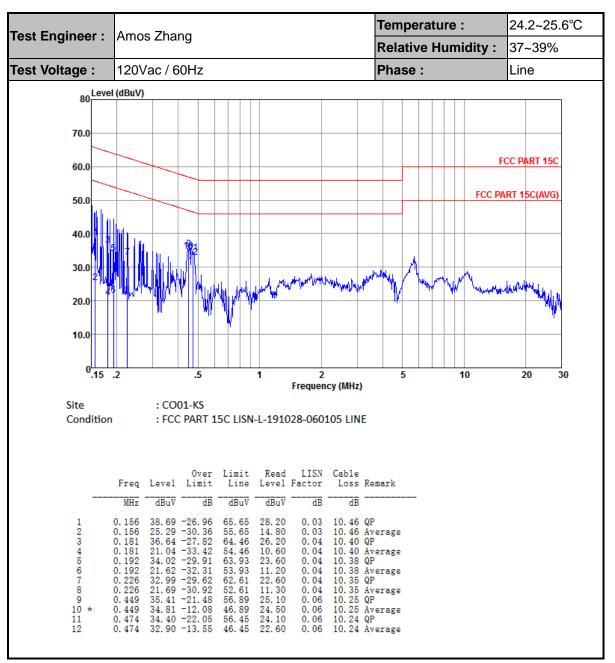
Uncertainty of Conducted Emission Measurement (150kHz ~ 30MHz)

Measuring Uncertainty for a Level of Confidence	2.9dB
of 95% (U = 2Uc(y))	2.908

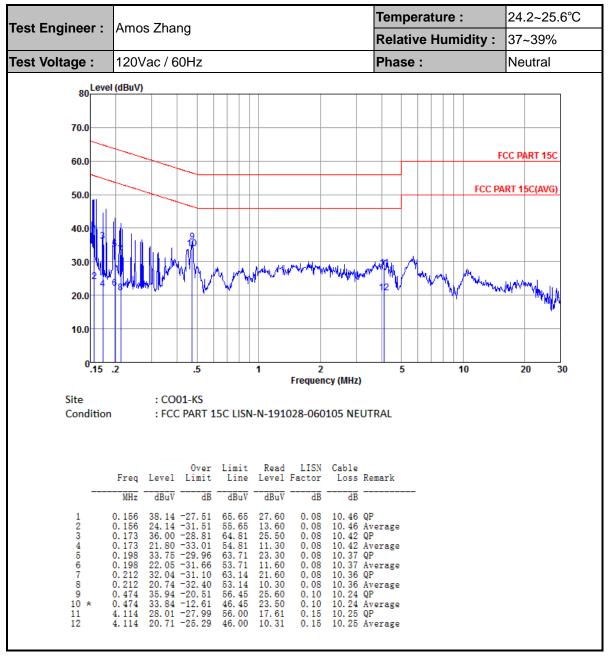
Uncertainty of Radiated Emission Measurement (30 MHz ~ 1000 MHz)

Measuring Uncertainty for a Level of Confidence	5.0dB
of 95% (U = 2Uc(y))	3.00B

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 18000 MHz)


Measuring Uncertainty for a Level of Confidence	5.1dB
of 95% (U = 2Uc(y))	5.106

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)


Measuring Uncertainty for a Level of Confidence	5.1dB
of 95% (U = 2Uc(y))	5.TUB

Appendix A. AC Conducted Emission Test Results

Note:

- 1. Level(dBµV) = Read Level(dBµV) + LISN Factor(dB) + Cable Loss(dB)
- 2. Over Limit(dB) = Level(dB μ V) Limit Line(dB μ V)

Appendix C. Reference Report

Please refer to Sporton report number FR042407A which is issued separately.