Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client Sporton Certificate No: CLA13-1020_Jun22 # **CALIBRATION CERTIFICATE** Object CLA13 - SN: 1020 Calibration procedure(s) **QA CAL-15.v9** Calibration Procedure for SAR Validation Sources below 700 MHz Calibration date: June 03, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |--------------------|--|------------------------| | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | SN: CC2552 (20x) | 04-Apr-22 (No. 217-03527) | Apr-23 | | SN: 310982 / 06327 | 04-Apr-22 (No. 217-03528) | Apr-23 | | SN: 3877 | 31-Dec-21 (No. EX3-3877_Dec21) | Dec-22 | | SN: 654 | 26-Jan-22 (No. DAE4-654_Jan22) | Jan-23 | | | | | | ID# | Check Date (in house) | Scheduled Check | | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | | Name | Function | Signature | | Aidonia Georgiadou | Laboratory Technician | Mzg | | Sven Kühn | Technical Manager | 5,4 | | | SN: 104778 SN: 103244 SN: 103245 SN: CC2552 (20x) SN: 310982 / 06327 SN: 3877 SN: 654 ID # SN: GB41293874 SN: MY41498087 SN: 000110210 SN: US3642U01700 SN: US41080477 Name Aidonia Georgiadou | SN: 104778 | Issued: June 9, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: CLA13-1020_Jun22 Page 1 of 6 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured #### **Calibration is Performed According to the Following Standards:** - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** c) DASY System Handbook #### **Methods Applied and Interpretation of Parameters:** - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom. - Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: CLA13-1020_Jun22 Page 2 of 6 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY52 | V52.10.4 | |----------------------|--------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | ELI4 Flat Phantom | Shell thickness: 2 ± 0.2 mm | | EUT Positioning | Touch Position | | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 13 MHz ± 1 MHz | | **Head TSL parameters**The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 55.0 | 0.75 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 54.7 ± 6 % | 0.74 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|------------------|---------------------------| | SAR measured | 1 W input power | 0.563 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 0.568 W/kg ± 18.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|------------------|---------------------------| | SAR measured | 1 W input power | 0.350 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 0.353 W/kg ± 18.0 % (k=2) | Certificate No: CLA13-1020_Jun22 Page 3 of 6 # Appendix (Additional assessments outside the scope of SCS 0108) # **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 47.9 Ω - 4.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 25.9 dB | | ### **Additional EUT Data** | SPEAG | |-------| | | Certificate No: CLA13-1020_Jun22 ### **DASY5 Validation Report for Head TSL** Date: 03.06.2022 Test Laboratory: SPEAG, Zurich, Switzerland DUT: CLA13; Type: CLA13; Serial: CLA13 - SN: 1020 Communication System: UID 0, CW (0); Frequency: 13 MHz Medium parameters used: f = 13 MHz; $\sigma = 0.74$ S/m; $\epsilon_r = 54.7$; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007) #### **DASY Configuration:** Probe: EX3DV4 - SN3877; ConvF(15.33, 15.33, 15.33) @ 13 MHz; Calibrated: 31.12.2021 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn654; Calibrated: 26.01.2022 Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003 • DASY52 52.10.4(1535); SEMCAD X 14.6.14(7501) # CLA Calibration for HSL-LF Tissue/CLA-13, touch configuration, Pin=1W/Zoom Scan, dist=1.4mm (8x10x8)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 31.01 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 1.14 W/kg # SAR(1 g) = 0.563 W/kg; SAR(10 g) = 0.350 W/kg Smallest distance from peaks to all points 3 dB below = 18.9 mm Ratio of SAR at M2 to SAR at M1 = 78.5% Maximum value of SAR (measured) = 0.834 W/kg 0 dB = 0.834 W/kg = -0.788 dBW/kg ### Impedance Measurement Plot for Head TSL Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Client: Sporton Certificate No: Z22-60243 ### **CALIBRATION CERTIFICATE** Object DAE4 - SN: 1386 Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: June 30, 2022 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22 ± 3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|--|-----------------------| | Process Calibrator 753 | 1971018 | 14-Jun-22 (CTTL, No.J22X04180) | Jun-23 | | | | | | | | Name | Function | Signature | |----------------|-------------|--------------------|-----------| | Calibrated by: | Yu Zongying | SAR Test Engineer | 2 mg | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | Sea | Issued: June 30, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z22-60243 Page 1 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 Http://www.chinattl.cn Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. # **Methods Applied and Interpretation of Parameters:** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z22-60243 Page 2 of 3 Add: No.52 HuaYuanBei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn # **DC Voltage Measurement** A/D - Converter Resolution nominal High Range: 1LSB = $1LSB = 6.1 \mu V,$ full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec | Calibration Factors | Х | Υ | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.561 ± 0.15% (k=2) | 404.650 ± 0.15% (k=2) | 404.167 ± 0.15% (k=2) | | Low Range | 4.01939 ± 0.7% (k=2) | 4.01263 ± 0.7% (k=2) | 4.01150 ± 0.7% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 152° ± 1 ° | |---|------------| |---|------------| Certificate No: Z22-60243 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates A PERSONAL DESIGNATION OF THE PROPERTY C S Client Sporton Certificate No: EX3-7641_Apr22 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7641 Calibration procedure(s) QA CAL-01.v9, QA CAL-12.v9, QA CAL-14.v6, QA CAL-23.v5, QA CAL-25.v7 Calibration procedure for dosimetric E-field probes Calibration date: April 11, 2022 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|------------------|-----------------------------------|------------------------| | Power meter NRP | SN: 104778 | 04-Apr-22 (No. 217-03525/03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-22 (No. 217-03524) | Apr-23 | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-22 (No. 217-03525) | Apr-23 | | Reference 20 dB Attenuator | SN: CC2552 (20x) | 04-Apr-22 (No. 217-03527) | Apr-23 | | DAE4 | SN: 660 | 13-Oct-21 (No. DAE4-660_Oct21) | Oct-22 | | Reference Probe ES3DV2 | SN: 3013 | 27-Dec-21 (No. ES3-3013_Dec21) | Dec-22 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | Power meter E4419B | SN: GB41293874 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: MY41498087 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | Power sensor E4412A | SN: 000110210 | 06-Apr-16 (in house check Jun-20) | In house check: Jun-22 | | RF generator HP 8648C | SN: US3642U01700 | 04-Aug-99 (in house check Jun-20) | In house check: Jun-22 | | Network Analyzer E8358A | SN: US41080477 | 31-Mar-14 (in house check Oct-20) | In house check: Oct-22 | Calibrated by: Name Function Signature Laboratory Technician Approved by: Sven Kühn Deputy Manager Issued: April 11, 2022 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage S Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid NORMx,y,z ConvF sensitivity in free space sensitivity in TSL / NORMx,y,z DCP diode compression point CF A, B, C, D crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEC/IEEE 62209-1528, "Measurement Procedure For The Assessment Of Specific Absorption Rate Of Human Exposure To Radio Frequency Fields From Hand-Held And Body-Worn Wireless Communication Devices -Part 1528: Human Models, Instrumentation And Procedures (Frequency Range of 4 MHz to 10 GHz)", October 2020. - b) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-7641 Apr22 Page 2 of 23 EX3DV4 - SN:7641 # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7641 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (µV/(V/m) ²) ^A | 0.66 | 0.71 | 0.72 | ± 10.1 % | | DCP (mV)B | 110.3 | 109.5 | 108.7 | | Calibration Results for Modulation Response | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Max
dev. | Max
Unc ^E
(k=2) | |--------------------|--|---|---------|------------|-------|---------|----------|-------------|----------------------------------| | 0 | CW | X | 0.00 | 0.00 | 1.00 | 0.00 | 156.2 | ± 3.0 % | ± 4.7 % | | | | Y | 0.00 | 0.00 | 1.00 | | 154.0 | | | | | - | Z | 0.00 | 0.00 | 1.00 | | 157.9 | | = | | 10352- | Pulse Waveform (200Hz, 10%) | X | 1.57 | 60.75 | 6.45 | 10.00 | 60.0 | ± 3.5 % | ± 9.6 % | | AAA | | Y | 1.57 | 60.98 | 6.86 | | 60.0 | | | | | | Z | 1.61 | 60.95 | 6.57 | | 60.0 | | | | 10353- | Pulse Waveform (200Hz, 20%) | X | 0.84 | 60.00 | 5.01 | 6.99 | 80.0 | ± 2.6 % | ± 9.6 % | | AAA | Car Service Control of the o | Y | 0.86 | 60.00 | 5.34 | | 80.0 | | | | | | Z | 0.84 | 60.00 | 5.02 | | 80.0 | | | | 10354- | Pulse Waveform (200Hz, 40%) | X | 0.46 | 60.00 | 3.86 | 3.98 | 95.0 | ± 1.9 % | ± 9.6 % | | AAA | Service Service (Service Service Servi | Y | 26.00 | 76.00 | 9.00 | | 95.0 | | | | | | Z | 0.46 | 60.00 | 3.89 | | 95.0 | | | | 10355- | Pulse Waveform (200Hz, 60%) | X | 10.80 | 157.41 | 6.33 | 2.22 | 120.0 | ± 1.9 % | ± 9.6 % | | AAA | The Art | Y | 13.27 | 147.24 | 4.44 | | 120.0 | | | | | | Z | 12.90 | 152.74 | 6.59 | | 120.0 | | | | 10387- QPSK Way | QPSK Waveform, 1 MHz | X | 0.53 | 63.28 | 12.08 | 1.00 | 150.0 | ± 4.2 % | ± 9.6 % | | AAA | Constant the at ANA control of the United States | Y | 0.72 | 62.77 | 11.11 | | 150.0 | | | | | | Z | 0.58 | 62.57 | 11.26 | | 150.0 | | | | 10388- | QPSK Waveform, 10 MHz | X | 1.31 | 65.70 | 13.67 | 0.00 | 150.0 | ± 1.5 % | ± 9.6 % | | AAA | | Y | 1.37 | 64.01 | 12.94 | | 150.0 | | | | | | Z | 1.32 | 64.73 | 13.16 | | 150.0 | | | | 10396- 64-QAM Wave | 64-QAM Waveform, 100 kHz | X | 1.80 | 65,47 | 16.26 | 3.01 | 150.0 | ± 0.9 % | ± 9.6 % | | | Control Control of the th | Y | 1.84 | 65.27 | 16.03 | | 150.0 | | | | | | Z | 1.77 | 64.95 | 15.89 | | 150.0 | | | | 10399- | 64-QAM Waveform, 40 MHz | X | 2.80 | 66.32 | 14.98 | 0.00 | 150.0 | ± 2.3 % | ± 9.6 % | | AAA | Contents | Y | 2.85 | 65.41 | 14.41 | | 150.0 | | .=.2.19 | | | | Z | 2.82 | 65.90 | 14.69 | 1 | 150.0 | 1 | | | 10414- | WLAN CCDF, 64-QAM, 40MHz | X | 3.75 | 65.95 | 15.11 | 0.00 | 150.0 | ± 4.4 % | ± 9.6 % | | AAA | CONTRACTOR OF STREET, TO FOR STREET, S | Y | 3.97 | 65.15 | 14.76 | | 150.0 | | | | | | Z | 3.84 | 65.66 | 14.96 | | 150.0 | | | Note: For details on UID parameters see Appendix The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of Norm X,Y,Z do not affect the E2-field uncertainty inside TSL (see Page 5). ^B Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7641 #### Sensor Model Parameters | | C1
fF | C2
fF | α
V ⁻¹ | T1
ms.V ⁻² | T2
ms.V ⁻¹ | T3
ms | T4
V ⁻² | T5
V ⁻¹ | Т6 | |---|----------|----------|----------------------|--------------------------|--------------------------|----------|-----------------------|-----------------------|------| | X | 9.3 | 65.30 | 31.63 | 4.12 | 0.00 | 4.90 | 0.61 | 0.00 | 1.00 | | Y | 14.7 | 103.96 | 32.10 | 5.25 | 0.00 | 4.94 | 0.77 | 0.00 | 1.01 | | Z | 10.8 | 76.19 | 31.84 | 4.04 | 0.00 | 4.90 | 0.57 | 0.00 | 1.00 | #### Other Probe Parameters | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -110.2 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | Note: Measurement distance from surface can be increased to 3-4 mm for an Area Scan job. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:7641 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unc
(k=2) | |----------------------|---------------------------------------|-------------------------|---------|---------|---------|--------------------|----------------------------|--------------| | 13 | 55.0 | 0.75 | 19.14 | 19.14 | 19.14 | 0.00 | 1.00 | ± 13.3 % | | 750 | 41.9 | 0.89 | 11.10 | 11.10 | 11.10 | 0.56 | 0.89 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.81 | 10.81 | 10.81 | 0.50 | 0.88 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 9.47 | 9.47 | 9.47 | 0.27 | 0.86 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 9.09 | 9.09 | 9.09 | 0.31 | 0.86 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.87 | 8.87 | 8.87 | 0.25 | 0.86 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.60 | 8.60 | 8.60 | 0.29 | 0.90 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 8.24 | 8.24 | 8.24 | 0.30 | 0.90 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.93 | 7.93 | 7.93 | 0.30 | 0.90 | ± 12.0 % | | 3300 | 38.2 | 2.71 | 7.48 | 7.48 | 7.48 | 0.35 | 1.30 | ± 13.1 % | | 3500 | 37.9 | 2.91 | 7.33 | 7.33 | 7.33 | 0.35 | 1.30 | ± 13.1 % | | 3700 | 37.7 | 3.12 | 7.13 | 7.13 | 7.13 | 0.35 | 1.30 | ± 13.1 % | | 5250 | 35.9 | 4.71 | 5.71 | 5.71 | 5.71 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 5.08 | 5.08 | 5.08 | 0.40 | 1.80 | ± 13.1 % | | 5750 | 35.4 | 5.22 | 5.25 | 5.25 | 5.25 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Validity of ConvF assessed at 6 MHz is 4-9 MHz, and ConvF assessed at 13 MHz is 9-19 MHz. Above 5 GHz frequency validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ f=600 MHz,TEM f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2)