

VARIANT RADIO TEST REPORT

(FCC Part 15 Subpart C / IC RSS-247)

Applicant:	Honeywell International Inc
Applicant.	Honeywell Safety and Productivity Solutions
Address:	9680 Old Bailes Road, Fort Mill, SC 29707 United States

Manufacturer:	Honeywell International Inc Honeywell Safety and Productivity Solutions		
Address:	9680 Old Bailes Road, Fort Mill, SC 29707 United States		
Product:	Mobile Computer		
Brand Name:	Honeywell		
Model Name:	CT45-L0N		
FCC ID:	HD5-CT45L0N		
Date of tests:	2021-10-25 to 2022-01-18		
The tests have	The tests have been carried out according to the requirements of the following standard:		
🛛 Part 15 Subpa	rt C §15. 247 / IC RSS-247 issue 2		

CONCLUSION: The submitted sample was found to <u>COMPLY</u> with the test requirement

Prepared by Simon Wang Engineer / Mobile Department

Date: Jan. 18, 2022

Approved by Luke Lu

Manager / Mobile Department

mon

the lu

Date: Jan. 18, 2022

This report is governed by, and incorporates by reference, CPS Conditions of Service as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set orth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. You have 60 days from date of issuance of othis report to raise of autiental error or omission caused by our nedigence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute you unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

Report Revise Record

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
RFBGDJ-W7L-P21060011-3	Original release	Jul. 14, 2021
W7L-211129W004RF08	Based on the original report RFBGDJ-W7L-P21060011-3 changing components.	Jan. 18, 2022

TABLE OF CONTENTS

1	GENI	ERAL DESCRIPTION	5
	1.1	APPLICANT	5
	1.2	MANUFACTURER	
	1.3	GENERAL DESCRIPTION OF EUT	5
	1.4	MODIFICATION OF EUT	6
	1.5	APPLICABLE STANDARDS	6
2	TEST	CONFIGURATION OF EQUIPMENT UNDER TEST	7
	2.1	DESCRIPTIONS OF TEST MODE	7
	2.2	TEST MODE	
	2.3	SUPPORT EQUIPMENT	
	2.4	TEST SETUP	9
	2.5	MEASUREMENT RESULTS EXPLANATION EXAMPLE	13
	2.6	MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	14
	2.7	RADIATED BAND EDGES AND SPURIOUS EMISSION MEASUREMENT	15
3	UNCI	ERTAINTY OF EVALUATION	21
	APPI	ENDIX A: MAXIMUM CONDUCTED OUTPUT POWER & E.I.R.P.	22

Summary Of Test Result

FCC Rule	IC Rule	Description	Limit	Result	Remark
15.247(a)(2)	RSS-247 5.2(a)	6dB Bandwidth	≥ 0.5MHz	(See Note	
	5.2(a)			2)	
-	RSS-Gen	99% Bandwidth	-	(See Note	-
	6.7			2)	
				Compliance	
15.247(b)(3)	RSS-247 A5.4(d)	Output Power	≤ 30dBm	(See Note	-
				1)	
15.247(e)	RSS-247	Power Spectral Density	≤ 8dBm/3kHz	(See Note	
13.247(e)	5.2(b)			2)	-
15.247(d)	RSS-247	Conducted Band Edges and	≤ 30dBc	(See Note	
15.247(d)	5.5	Spurious Emission	≤ 300BC	2)	-
15 047(d)	RSS-247	Radiated Band Edges and	15.209(a) &	(See Note	
15.247(d)	5.5	Spurious Emission	15.247(d)	1)	-
				(See Note	Under limit
15.207	RSS-GEN 8.8	AC Conducted Emission	15.207(a)	· ·	17.16 dB at
				2)	0.497 MHz
			15.203 & 15.247(b)	(See Note	
15.203 & 15.247(b)	RSS-GEN 6.8	Antenna Requirement	RSS-GEN 6.8	2)	-
			NOO-GEN 0.0	2)	

Note:

- 1. Per the change notice provide by manufactory, the difference is changing components, all the change no effect any RF parameter. Therefore only verify the power and radiated emission worse case. The report only show the verify test data. More test details please refer to the original report.
- 2. Please refer to original report RFBGDJ-W7L-P21060011-3

Tel: +86 755 8869 6566

Fax: +86 755 8869 6577

1 General Description

1.1 Applicant

Honeywell International Inc Honeywell Safety and Productivity Solutions 9680 Old Bailes Road, Fort Mill, SC 29707 United States

1.2 Manufacturer

Honeywell International Inc Honeywell Safety and Productivity Solutions 9680 Old Bailes Road, Fort Mill, SC 29707 United States

1.3 General Description Of EUT

Product	Mobile Computer
Model No.	CT45-L0N
Additional No.	N/A
Difference Description	N/A
Power Supply	3.85Vdc for EUT
Modulation Technology	CCK, DQPSK, DBPSK for DSSS 64QAM, 16QAM, QPSK, BPSK for OFDM
Medulation Type	802.11b : DSSS
Modulation Type	802.11g/n : OFDM
Operating Frequency	2412-2462MHz
Number Of Channel	11
Max. Output Power	802.11b : 14.89 dBm (0.0308 W) 802.11g : 14.22 dBm (0.0264 W) 802.11n HT20 : 14.18 dBm (0.0262 W) 802.11n HT40 : 15.44 dBm (0.0350 W)
Max. e.i.r.p.	16.84 dBm (0.0483W)
Antenna Type	LDS type Antenna with 1.4dBi gain
HW Version	V1.0
SW Version	OS.11.001
I/O Ports	Refer to user's manual

NOTE:

- 1. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 2. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.

1.4 Modification of EUT

No modifications are made to the EUT during all test items.

1.5 Applicable Standards

According to the specifications of the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- ANSI C63.10-2013
- IC RSS-247 Issue 2
- IC RSS-Gen Issue 5
- KDB 558074 D01 15.247 Meas Guidance v05r02

Remark:

1. This EUT has also been tested and complied with the requirements of FCC Part 15, Subpart B&ICES-003, recorded in a separate test report.

2 Test Configuration of Equipment Under Test

2.1 Descriptions of Test Mode

11 channels are provided for 802.11b, 802.11g and 802.11n(HT20):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
1	2412 MHz	7	2442 MHz
2	2417 MHz	8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz	10	2457 MHz
5	2432 MHz	11	2462 MHz
6	2437 MHz		

7 channels are provided for 802.11n(HT40):

CHANNEL	FREQUENCY	CHANNEL	FREQUENCY
		7	2442 MHz
		8	2447 MHz
3	2422 MHz	9	2452 MHz
4	2427 MHz		
5	2432 MHz		
6	2437 MHz		

The transmitter has a maximum conducted output power as follows:

Frequency Range(MHz)	Mode	Rate	Output Power(dBm)
2412~2462	802.11b	1Mbps	14.89
2412~2462	802.11g	6Mbps	14.22
2412~2462	802.11n HT20	MCS0	14.18
2422~2452	802.11n HT40	MCS0	15.44

a. Radiated emission and power line conducted emission were performed with the EUT set to transmit at the channel with highest output power as worst-case scenario.

2.2 Test Mode

2.2.1 Antenna Port Conducted Measurement

	Summary table of Test Cases				
Toot Itom	Modulation				
Test Item	802.11 b	802.11 g	802.11n HT20	802.11n HT40	
Conducted	Mode 1: CH01	Mode 1: CH01	Mode 1: CH01	Mode 1: CH03	

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

Test Cases	Mode 2: CH06	Mode 2: CH06	Mode 2: CH06	Mode 2: CH06
	Mode 3: CH011	Mode 3: CH011	Mode 3: CH011	Mode 3: CH09

2.2.2 Radiated Emission Test (Below 1GHz)

Radiated	802.11 N20
Test Cases	Mode 1: CH01

Note : 1. Pre-Scan has been conducted to determine the worst-case mode from all possible

combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type. Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

2. Following channel(s) was (were) selected for the final test as listed above

2.2.3 Radiated Emission Test (Above 1GHz)

Test Item		Modu	lation	
Test item	802.11 b	802.11 g	802.11n HT20	802.11n HT40
Dedicted	Mode 1: CH01	Mode 1: CH01	Mode 1: CH01	Mode 1: CH03
Radiated	Mode 2: CH06	Mode 2: CH06	Mode 2: CH06	Mode 2: CH06
Test Cases	Mode 3: CH11	Mode 3: CH11	Mode 3: CH11	Mode 3: CH09

Note : 1. The fundamental of the EUT was investigated in three orthogonal orientations X, Y and Z it was determined that Z orientation was worst-case orientation; therefore, all final radiated testing was performed with the EUT in Z orientation.

2. Following channel(s) was (were) selected for the final test as listed above

3. For frequency above 18GHz, the measured value is much lower than the limit, therefore, it is not reflected in the report.

2.2.4 Power Line Conducted Emission Test:

AC	
Conducted	Mode 1 : WLAN Linking + Earphone + Adapter
Emission	

2.3 Support Equipment

Item	Equipment	Trade Name	Model Name	FCC ID	Data Cable	Power Cord
1.	WLAN AP	NETGEAR	R7800	PY315100319	N/A	shielded, 1.8 m
2.	Notebook	Lenovo	E470C	FCC sDoC	N/A	shielded cable DC O/P 1.8 m unshielded AC

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

						I/P cable1.2 m
3.	Earphone	Honeywell	PTE-300N	FCC sDoC	N/A	N/A
4	Adapter	Honoyavall	ADS-12B-06	FCC sDoC	N/A	N1/A
4.	Adapter	Honeywell	05010E		IN/A	N/A

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
3m Semi-anechoic Chamber	ETS-LINDGREN	9m*6m*6m	Euroshieldpn- CT0001143-1216	May. 19,20	May. 18,23
Bilog Antenna	ETS-LINDGREN	3143B	00161965	Mar. 05,21	Mar. 04,22
Horn Antenna	ETS-LINDGREN	3117	00168728	Apr. 02,21	Apr. 01,22
Horn Antenna (18GHz-40GHz)	N/A	QWH-SL-18-40- K-SG/QMS-003 61	15433	Aug. 25, 21	Aug. 24, 22
Test Software	E3	V 9.160323	N/A	N/A	N/A
Test Software	ADT	ADT_Radiated_ V7.6.15.9.2	N/A	N/A	N/A
10dB Attenuator	JFW/USA	50HF-010-SMA	1505	Jun. 03,21	Jun. 02,22
MXE EMI Receiver	KEYSIGHT	N9038A-544	MY54450026	Apr. 22,21	Apr. 21,22
Signal Pre-Amplifier	EMSI	EMC 9135	980249	Jun. 02,21	Jun. 01,22
Signal Pre-Amplifier	EMSI	EMC 012645B	980257	Jun. 03,21	Jun. 02,22
Signal Pre-Amplifier	EMSI	EMC 184045B	980259	Apr. 22,21	Apr. 21,22
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-051	Sep. 05,21	Sep. 04,22

NOTE: 1. The calibration interval of the above test instruments is 12 months or 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

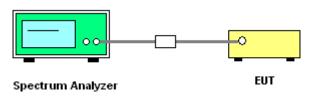
2. The test was performed in 3m Chamber.

3. The FCC Site Registration No. is 525120; The Designation No. is CN1171.

4. The IC test Site Registration No. is 21771-1; The CAB Identifier No. is CN0007.

2.4 Test Setup

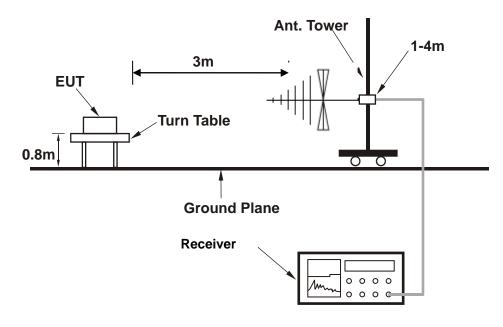
The EUT is continuously communicating to the WIFI tester during the tests.


EUT was set in the Hidden menu mode to enable WIFI communications.

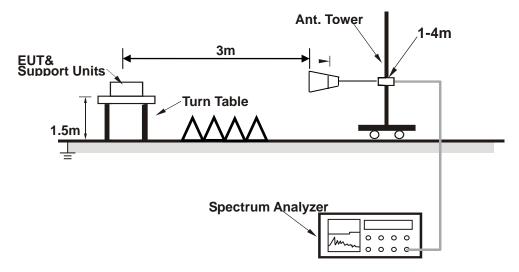
The following picture is a screenshot of the test software

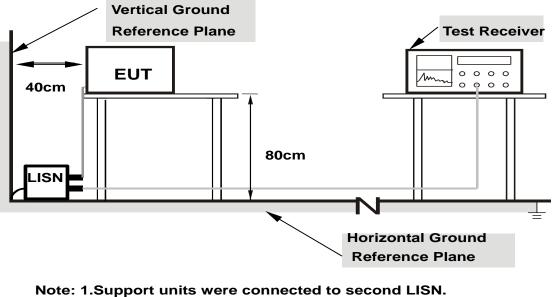
W Qualcomm Radio Control Tool File View	Settings Help							
Target: MSM_MDM - Library Mode: (2PST -	COM: COM 3	-	Disconnect	Runtime Mode:	H (9 Ø	0
	Commands							
O E Un-named	TX ×							
Category WLAN -	IX Power(apm)	4		DAC G	ain			
Chipset ALL_CHIPSETS -	HT Mode	HT20	~	PACFG				
 Commands, Logs and Custom APIs 	Data Rate	RATE_MCS_0_20	~	PDADC				
-	Tx Pattern	REPEATING_10	~	PDADC				
	Short Guard	OFF	~					
✓ AUTO DETECT CHIP	Aggregate	1			SET TX OFF	-2		
↔ NV ↔ RX	Duty Cycle(0-100%)	10						
• TX	# of packets(0 for Cont.	0						
> COMMON	ANI Algorithm	ON	-					
LEGACY CHIP	Scrambler	ON	-					
> LEGACY CHIP - WCN36XX	AIFSN	1						
	Packet Size	1500						
 Platform Configuration 	Antenna	Antenna0	~					
사 B B 우 오 문 장	TX Chain	CHAIN_1	~ 1					
	Broadcast/Unicast	Unicast	~					
	LDPC							
	STBC							
	DPDMode							
	HeavyClip	D						
	Gain Index	11						
	DAC Gain	-8						
	PACFG	0						
	SET	TX ON	1					
COM 3: Connected MPSS.HA.1.0-00580-I	KAMORTA_GEN_PACK-1	Connection N	lethod: C	OPST Pol	ling Status: Enabl	ed	Mode:	FTM


Setup diagram for Conducted Test



Setup diagram for Radiation(9KHz~30MHz) Test


Setup diagram for Radiation(Below 1G) Test


BV 7Layers Communications Technology (Shenzhen) Co. Ltd

Setup diagram for Radiation(Above1G) Test

Setup diagram for AC Conducted Emission Test

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

2.5 Measurement Results Explanation Example

For all conducted test items:

The offset level is set in the spectrum analyzer to compensate the RF cable loss and attenuator factor between EUT conducted output port and spectrum analyzer. With the offset compensation, the spectrum analyzer reading level is exactly the EUT RF output level.

Example:

The spectrum analyzer offset is derived from RF cable loss and attenuator factor.

Offset = RF cable loss + attenuator factor.

Following shows an offset computation example with cable loss 5 dB and 10dB attenuator.

Offset(dB) = RF cable loss(dB) + attenuator factor(dB).

= 5 + 10 = 15 (dB)

For all radiated test items:

Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level Over Limit (dB μ V/m) = Level(dB μ V/m) - Limit Level (dB μ V/m)

2.6 Maximum Conducted Output Power Measurement

2.6.1 Limit of Output Power

FCC §15.247 (b)(3)

For systems using digital modulation in the 2400-2483.5 MHz bands: 30dBm. IC RSS-247 A5.4(d) For DTSs employing digital modulation techniques operating in the bands 902-928MHz and 2400-2483.5MHz, the maximum conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e)

2.6.2 Test Procedures

- 1. The testing follows the Measurement Procedure of ANSI C63.10-2013 section 11.9.2.2.4 Measurement using a spectrum analyzer.
- 2. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 3. Turn on the EUT and connect it to spectrum analyzer.
- 4. Set to the maximum power setting and enaBle Transmitting the EUT transmit continuously
- 5. Measure the duty cycle, x, of the transmitter output signal as described in below:
 - a. Set the center frequency of the instrument to the center frequency of the transmission.
 - b. Set RBW to the largest available Transmitting value.
 - c. Set detector = peak
- Set span to at least 1.5*OBW.Set RBW=510KHz,VBW=2MHz, Number of points in sweep ≥ 2/3* span, Sweep time = auto. Detector = RMS
- 7. Allow the sweep to "free run". Trace average 100 traces in RMS mode
- 8. Compute power by integrating the spectrum across the OBW of the signal using the instrument's Channel power measurement function with band limits set equal to the OBW band edges.
- 9. Add 10 log (1/x), where x is the duty cycle. The duty cycle factor has been compensated to the 'offset " of the spectrum analyser.

2.6.3 Test Result of Output Power

Refer to Appendix A of this test report.

2.7 Radiated Band Edges and Spurious Emission Measurement

2.7.1 Limit of Radiated Band Edges and Spurious Emission

FCC §15.247 (d)

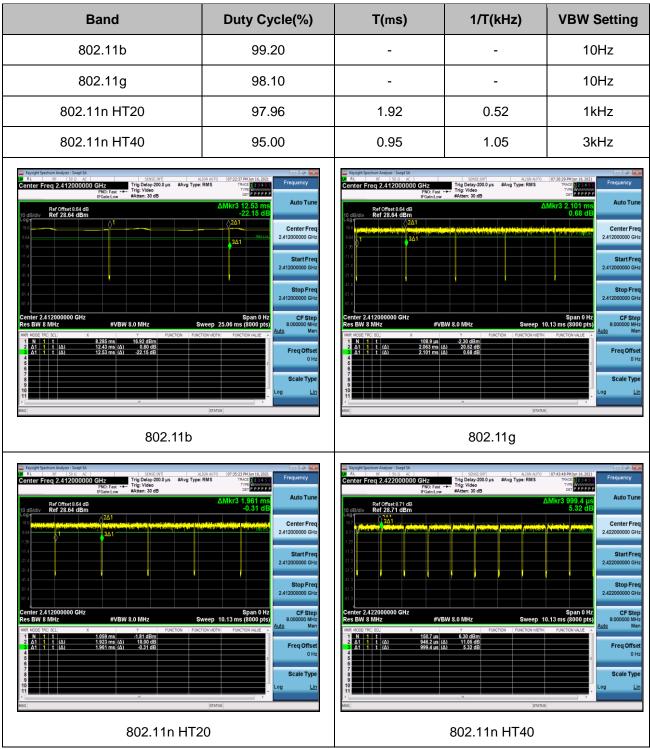
IC RSS-247 5.5

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 30 dB below the highest emission level within the authorized band. In addition, radiated emissions which fall in the restricted bands must also comply with the FCC section 15.209 limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

2.7.2 Test Procedures

- 10. The EUT was placed on a turntable with 0.8 meter for frequency below 1GHz and 1.5 meter for frequency above 1GHz respectively above ground.
- 11. The measurement distance is 3 meter.
- 12. For each suspected emission, the EUT was arranged to its worst case and then tune the Antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level to comply with the guidelines.
- 13. Set to the maximum power setting and enable the EUT transmit continuously.
- 14. Use the following spectrum analyzer settings:
 - (1) Span shall wide enough to fully capture the emission being measured;
 - Set RBW=100 kHz for f < 1 GHz, RBW=1MHz for f>1GHz ; VBW RBW; Sweep = auto;
 Detector function = peak; Trace = max hold for peak
 - (3) For average measurement:


VBW = 10 Hz, when duty cycle is no less than 98 percent.

VBW \geq 1/T, when duty cycle is less than 98 percent where T is the minimum transmission duration over which the transmitter is on and is transmitting at its maximum power control

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

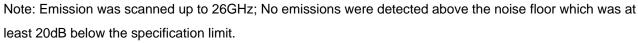
level for the tested mode of operation.

15. Corrected Reading: Antenna Factor + Cable Loss + Read Level - Preamp Factor = Level

2.7.3 Test Results of Radiated Spurious Emissions (9 kHz ~ 30 MHz)

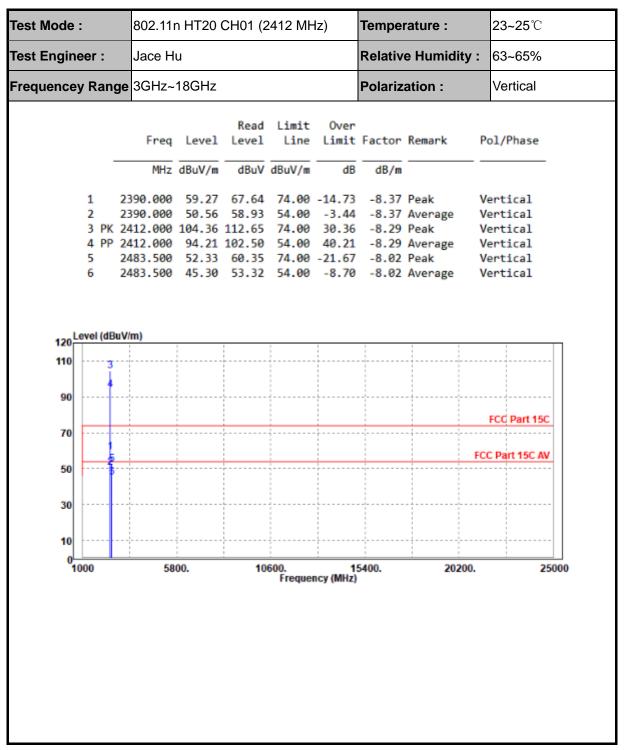
The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was

20dB lower than the limit line per 15.31(o) was not reported.


BV 7Layers Communications Technology (Shenzhen) Co. Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

Freq Level Limit Over Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m Pol/Phase 1 2390.000 59.88 68.64 74.00 -14.12 -8.76 Peak Horizontal 2 2390.000 49.56 58.32 54.00 -4.44 -8.76 Average Horizontal 3 PK 2412.000 93.98 102.64 74.00 19.98 -8.66 Peak Horizontal 4 PP 2412.000 83.98 90.64 54.00 27.98 -8.66 Peak Horizontal 5 2483.500 53.31 61.64 74.00 -9.41 -8.33 Average Horizontal 6 2483.500 44.59 52.92 54.00 -9.41 -8.33 Average Horizontal 10 3					2412 MI	Hz)	Tempe	rature :		23~25 ℃
Read Limit Over Freq Level Line Limit Factor Remark Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m dB/m 1 2390.000 59.88 68.64 74.00 -14.12 -8.76 Peak Horizontal 2 2390.000 49.56 58.32 54.00 -4.44 -8.76 Average Horizontal 3 PK 2412.000 93.98 102.64 74.00 19.98 -8.66 Peak Horizontal 4 PP 2412.000 81.98 90.64 54.00 27.98 -8.66 Average Horizontal 5 2483.500 53.31 61.64 74.00 -20.69 -8.33 Peak Horizontal 6 2483.500 44.59 52.92 54.00 -9.41 -8.33 Average Horizontal 10		Jace H				Relativ	ve Humid	ity :	63~65%	
Freq Level Line Limit Factor Remark Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m dB/m 1 2390.000 59.88 68.64 74.00 -14.12 -8.76 Peak Horizontal 2 2390.000 49.56 58.32 54.00 -4.44 -8.76 Average Horizontal 3 PK 2412.000 93.98 102.64 74.00 19.98 -8.66 Average Horizontal 4 PP 2412.000 81.98 90.64 54.00 27.98 -8.66 Average Horizontal 6 2483.500 53.31 61.64 74.00 -9.41 -8.33 Average Horizontal 90	encey Rang	je 3GHz-				Polarization :			Horizontal	
Freq Level Line Limit Factor Remark Pol/Phase MHz dBuV/m dBuV dBuV/m dB dB/m dB/m 1 2390.000 59.88 68.64 74.00 -14.12 -8.76 Peak Horizontal 2 2390.000 49.56 58.32 54.00 -4.44 -8.76 Average Horizontal 3 PK 2412.000 93.98 102.64 74.00 19.98 -8.66 Average Horizontal 4 PP 2412.000 81.98 90.64 54.00 27.98 -8.66 Average Horizontal 6 2483.500 53.31 61.64 74.00 -9.41 -8.33 Average Horizontal 90				Read	Limit	0ver				
1 2390.000 59.88 68.64 74.00 -14.12 -8.76 Peak 2 2390.000 49.56 58.32 54.00 -4.44 -8.76 Average 3 PK 2412.000 93.98 102.64 74.00 19.98 -8.66 Peak 4 PP 2412.000 81.98 90.64 54.00 27.98 -8.66 Average 5 2483.500 53.31 61.64 74.00 -20.69 -8.33 Peak 6 2483.500 44.59 52.92 54.00 -9.41 -8.33 Average Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal Horizontal FCC Part 15C AV FCC Part 15C AV 50 30 40 500, 10600, 15400, 2020, 250		Freq	Level				Factor	Remark	Po1	/Phase
2 2390.000 49.56 58.32 54.00 -4.44 -8.76 Average 3 PK 2412.000 93.98 102.64 74.00 19.98 -8.66 Peak 4 PP 2412.000 81.98 90.64 54.00 27.98 -8.66 Average 5 2483.500 53.31 61.64 74.00 -20.69 -8.33 Peak Horizontal 6 2483.500 44.59 52.92 54.00 -9.41 -8.33 Average Horizontal 120 Level (dBuV/m) 110 3 90 5 5 5 5 5 5 5 5 5 5 5 5 5	_	MHz	dBuV/m	dBuV	dBuV/m	dB	dB/m			
3 PK 2412.000 93.98 102.64 74.00 19.98 -8.66 Peak 4 PP 2412.000 81.98 90.64 54.00 27.98 -8.66 Average 5 2483.500 53.31 61.64 74.00 -20.69 -8.33 Peak 6 2483.500 44.59 52.92 54.00 -9.41 -8.33 Average Horizontal 120 Level (dBuV/m) 110 3 90 5 10 5										
4 PP 2412.000 81.98 90.64 54.00 27.98 -8.66 Average 5 2483.500 53.31 61.64 74.00 -20.69 -8.33 Peak 6 2483.500 44.59 52.92 54.00 -9.41 -8.33 Average Horizontal										
5 2483.500 53.31 61.64 74.00 -20.69 -8.33 Peak 6 2483.500 44.59 52.92 54.00 -9.41 -8.33 Average Horizontal 120 100 100 5 0 100 5 0 100 5 0 10600. 15400. 20200. 250										
120 100 10 10 10 10 10 10 10 10										
110 90 70 50 30 10 10 10 1000 5800. 10600. 15400. 20200. 250	6 2	2483.500	44.59	52.92	54.00	-9.41	-8.33	Average	Hor	izontal
FCC Part 15C FCC Part 15C FCC Part 15C AV 50 FCC Part 15C AV 30 FCC Part 15C AV 10 FCC Part 15C AV										
50 50 30 10 1000 5800. 10600. 15400. 20200. 250									FC	C Part 15C
30 10 0 1000 5800. 10600. 15400. 20200. 250	70								FCC P	art 15C AV
10 0 1000 5800. 10600. 15400. 20200. 250	50									
0 1000 5800. 10600. 15400. 20200. 250	30									
1000 5800. 10600. 15400. 20200. 250	10									
		58)0.	106			400.	202	00.	250
Frequency (MHz)					Frequen	cy (MHz)				


2.7.1 Test Result of Radiated Spurious Emission (1GHz ~ 10th Harmonic)

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

Note: Emission was scanned up to 26GHz; No emissions were detected above the noise floor which was at least 20dB below the specification limit.

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

Mode :	002.111	ПI20 С	CH01 (2		Z)	Temper	ature .	23~2	5 C
Engineer :	Jace Hu	I				Relative Humidity: 63~65%		63~65%	
quencey Range	30MHz~	-1GHz				Polariza	ation :	Horiz	contal
	Freq	Level		Limit Line	Over Limit	Factor	Remark	Pol/Ph	ase
_	MHz	dBuV/m	dBuV	dBuV/m	dB	dB/m		_	
1 2 PP 3	39.640 158.648 230.640	39.66	64.08	43.50	-3.84		Peak	Horizo Horizo Horizo	ntal
4 5 6	282.640 375.320 491.500	37.45 35.64	58.31 53.80	46.00 46.00	-8.55 -10.36	-20.86 -18.16	Peak Peak	Horizo Horizo Horizo Horizo	ntal
l evel (dBuV	/m)								
80 Level (dBuV	/m)								
70	/m)								
70 60	/m)							FCC Par	rt 15C
70	/m)	-4		6				FCC Par	rt 15C
70 60 50	/m)	4	5	6				FCC Pa	rt 15C
70 60 50 40 1	/m)		5	6				FCC Pa	rt 15C
70 60 50 40 30	/m)	4	5	6				FCC Par	rt 15C

2.7.2 Test Result of Radiated Spurious Emission (30MHz ~ 1GHz)

BV 7Layers Communications Technology (Shenzhen) Co. Ltd

No.B102, Dazu Chuangxin Mansion, North of Beihuan Avenue, North Area, Hi-Tech Industrial Park, Nanshan District, Shenzhen, Guangdong, China

3 Uncertainty of Evaluation

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	FREQUENCY	UNCERTAINTY
Conducted emissions	9kHz~30MHz	2.42dB
	9KHz-30M Hz	2.68dB
Radiated emission	30MHz ~ 1GMHz	2.50dB
Radiated emission	1GHz ~ 18GHz	3.51dB
	18GHz ~ 40GHz	3.96dB

MEASUREMENT	UNCERTAINTY
Occupied Channel Bandwidth	±196.4Hz
RF output power, conducted	±2.31dB
Power density, conducted	±2.31dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Appendix A: Maximum conducted output power & E.I.R.P.

Test Result

TeetMede	TestMode Antenna		Result	Limit[dDm]	Antenna	EIRP	EIRP Limit	Vordict
Testiviode	Antenna	Channel	[dBm]	Limit[dBm]	Gain(dBi)	[dBm]	[dBm]	Verdict
		2412	12.69	<=30	1.4	14.09	36.02	PASS
11B	Ant1	2437	13.47	<=30	1.4	14.87	36.02	PASS
		2462	14.89	<=30	1.4	16.29	36.02	PASS
	2412	14.31	<=30	1.4	15.71	36.02	PASS	
11G	Ant1	2437	13.96	<=30	1.4	15.36	36.02	PASS
		2462	14.22	<=30	1.4	15.62	36.02	PASS
		2412	14.18	<=30	1.4	15.58	36.02	PASS
11N20SISO Ant1	Ant1	2437	13.61	<=30	1.4	15.01	36.02	PASS
		2462	13.84	<=30	1.4	15.24	36.02	PASS
		2422	15.44	<=30	1.4	16.84	36.02	PASS
11N40SISO	Ant1	2437	15.25	<=30	1.4	16.65	36.02	PASS
		2452	14.98	<=30	1.4	16.38	36.02	PASS

BV 7Layers Communications Technology (Shenzhen) Co. Ltd