

FCC RADIO TEST REPORT

FCC ID	:	HD5-CT30PL1N	
Equipment	:	Mobile computer	
Brand Name	:	Honeywell	
Model Name	:	CT30PL1N	
Applicant	:	Honeywell International Inc. 9680 Old Bailes Road, Fort Mill, SC 29707 USA	
Manufacturer	:	Honeywell International Inc. 9680 Old Bailes Road, Fort Mill, SC 29707 USA	
Standard	:	FCC Part 15 Subpart C §15.247	

The product was received on Dec. 14, 2023 and testing was performed from Feb. 16, 2024 to Feb. 19, 2024. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Lunis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL : 886-3-327-0868
FAX : 886-3-327-0855
Report Template No.: BU5-FR15CWLAC MA Version 2.4

Page Number: 1 of 16Issue Date: Feb. 29, 2024Report Version: 01

Table of Contents

Hi	story c	f this test report	3
Su	mmar	y of Test Result	4
1	Gene	al Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test (Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	7
	2.3	Connection Diagram of Test System	8
	2.4	Support Unit used in test configuration and system	8
	2.5	EUT Operation Test Setup	8
3	Test I	Result	9
	3.1	Output Power Measurement	9
	3.2	Radiated Band Edges and Spurious Emission Measurement	10
	3.3	Antenna Requirements	14
4	List o	f Measuring Equipment	15
5	Meas	urement Uncertainty	16
Ap	pendi	A. Conducted Test Results	
Ap	pendi	R B. Radiated Spurious Emission	
Ap	pendi	c C. Radiated Spurious Emission Plots	
Ap	pendi	x D. Duty Cycle Plots	

Appendix E. Setup Photographs

TEL: 886-3-327-0868	Page Number	: 2 of 16
FAX : 886-3-327-0855	Issue Date	: Feb. 29, 2024
Report Template No.: BU5-FR15CWL AC MA Version 2.4	Report Version	: 01

History of this test report

Report No.	Version	Description	Issue Date
FR1N0508-06	01	Initial issue of report	Feb. 29, 2024

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark				
-	15.247(a)(2)	6dB Bandwidth	Not Required	-				
-	2.1049	99% Occupied Bandwidth	Not Required	-				
3.1	15.247(b)	Power Output Measurement	Pass	-				
-	15.247(e)	Power Spectral Density	Not Required	-				
	- 15.247(d)			15 047(d)	15 047(4)	Conducted Band Edges	Not Required	-
-		Conducted Spurious Emission	Not Required	-				
3.2	15.247(d)	Radiated Band Edges and Radiated Spurious Emission	Pass	3.29 dB under the limit at 2483.62 MHz				
-	15.207	AC Conducted Emission	Not Required	-				
3.3	15.203	Antenna Requirement	Pass	-				

Note:

1. Not required means after assessing, test items are not necessary to carry out.

 This is a variant report for Vietnam migration change. All the test cases were performed on original report which can be referred to Sporton Report Number FR1N0508-02C. Based on the original report, only worst case was verified.

Conformity Assessment Condition:

 The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.

2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen

Report Producer: Mila Chen

1 General Description

1.1 Product Feature of Equipment Under Test

Product Feature			
General Specs	GSM/WCDMA/LTE, Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac, Wi-Fi 5GHz 802.11a/n/ac, NFC, and GNSS		
HW version	v1.0		
SW version	OS.11.003-HON.11.003		
Sample	Scanner S0703		
Sample Scanner S0703 WWAN <ant. 1="">: Loop Antenna <ant. 2="">: PIFA Antenna <ant. 3="">: Monopole Antenna WLAN: PIFA Antenna Bluetooth: PIFA Antenna Bluetooth: PIFA Antenna GPS / Glonass / BDS / Galileo: PIFA Antenna NFC: Loop Antenna NFC: Loop Antenna</ant.></ant.></ant.>			
Antenna information			

2.5

Remark:

1. The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.

Peak Gain (dBi)

2. Internal tracking board version is DVT2(NFC) and SW PN is 311.C0.00.1069-G-DEBUG

1.2 Modification of EUT

2400 MHz ~ 2483.5 MHz

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855		
Test Site No.	Sporton Site No.		
	03CH13-HY, TH05-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart C §15.247
- FCC KDB Publication No. 558074 D01 15.247 Meas Guidance v05r02
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

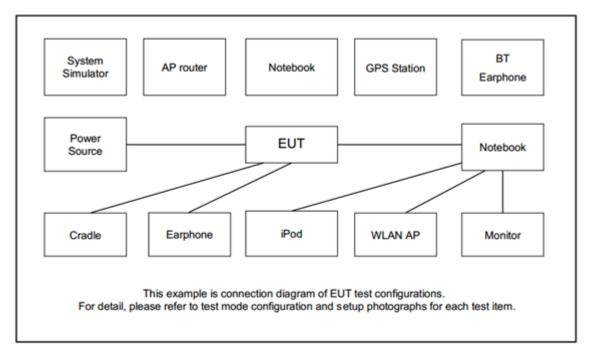
a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (1GHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

Freq. Freq. Frequency Band Channel Channel (MHz) (MHz) 2412 2442 1 7 2 2417 8 2447 3 2422 9 2452 2400-2483.5 MHz 2427 4 10 2457 5 2432 11 2462 6 2437

2.1 Carrier Frequency and Channel

2.2 Test Mode

The final test modes include the worst data rates for each modulation shown in the table below.


Modulation	Data Rate
802.11g	6 Mbps
802.11n HT20	MCS0
802.11n HT40	MCS0
802.11ac VHT20	MCS0
802.11ac VHT40	MCS0

Ch. #	2400-2483.5 MHz		
	802.11n HT20	802.11n HT40	
Low	-	-	
Middle	-	-	
High	11	09	

Remark: Only radiated measurements are used to show compliance with FCC limits for fundamental and spurious emissions.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

ltem	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Acer	N18Q13	PD9AX201NG	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

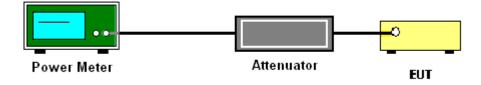
The RF test items, utility "QRCT Version4.0.00206.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Output Power Measurement

3.1.1 Limit of Output Power

For systems using digital modulation in the 2400-2483.5 MHz, the limit for output power is 30 dBm. If transmitting antenna with directional gain greater than 6 dBi is used, the peak output power from the intentional radiator shall be reduced below the above stated value by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

3.1.3 Test Procedures

- 1. For Average Power, the testing follows ANSI C63.10 Section 11.9.2.3.2 Method AVGPM-G
- 2. The RF output of EUT is connected to the power meter by RF cable and attenuator. The path loss is compensated to the results for each measurement.
- 3. Set the maximum power setting and enable the EUT to transmit continuously.
- 4. Measure the conducted output power and record the results in the test report.

3.1.4 Test Setup

3.1.5 Test Result of Average Output Power

Please refer to Appendix A.

3.2 Radiated Band Edges and Spurious Emission Measurement

3.2.1 Limit of Radiated band edge and Spurious Emission Measurement

In any 100 kHz bandwidth outside the intentional radiator frequency band, all harmonics/spurious must be at least 20 dB below the highest emission level within the authorized band. If the output power of this device is measured by spectrum analyzer, the attenuation under this paragraph shall be 30 dB instead of 20 dB. In addition, radiated emissions which fall in the restricted bands must also comply with the limits as below.

Frequency	Field Strength	Measurement Distance
(MHz)	(microvolts/meter)	(meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 – 1.705	24000/F(kHz)	30
1.705 – 30.0	30	30
30 – 88	100	3
88 – 216	150	3
216 - 960	200	3
Above 960	500	3

3.2.2 Measuring Instruments

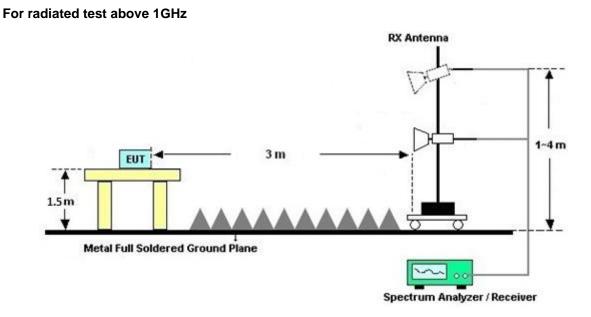
Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- 1. The testing follows the ANSI C63.10 Section 11.12.1 Radiated emission measurements.
- 2. The EUT is arranged to its worst case and then tune the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading. A pre-amp and a high pass filter are used for the test in order to get better signal level.
- 3. The EUT is placed on a turntable with 1.5 meter for frequency above 1 GHz respectively above ground.
- 4. The EUT is set 3 meters away from the receiving antenna, which is mounted on the top of a variable height antenna tower.
- 5. Corrected Reading: Antenna Factor + Cable Loss + Read Level Preamp Factor = Level
- 6. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".
- 7. Use the following spectrum analyzer settings:

For average measurement:

The procedure for method trace averaging is as follows:


- a) RBW = 1 MHz.
- b) VBW \geq [3 × RBW].
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- d) Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging.
- e) Sweep time = auto.

- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - If power averaging (rms) mode was used in the preceding step e), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
 - If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.

3.2.4 Test Setup

3.2.5 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.2.6 Duty Cycle

Please refer to Appendix D.

3.2.7 Test Result of Radiated Spurious Emission (30MHz ~ 10th Harmonic)

Please refer to Appendix B and C.

3.3 Antenna Requirements

3.3.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1326	1GHz~18GHz	Aug. 17, 2023	Feb. 16, 2024~ Feb. 17, 2024	Aug. 16, 2024	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303A	TP215159	N/A	Sep. 13, 2023	Feb. 16, 2024~ Feb. 17, 2024	Sep. 12, 2024	Radiation (03CH13-HY)
Preamplifier	EM Electronics	EM01G18G	060803	1GHz-18GHz	Jan. 09, 2024	Feb. 16, 2024~ Feb. 17, 2024	Jan. 08, 2025	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Jan. 18, 2024	Feb. 16, 2024~ Feb. 17, 2024	Jan. 17, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30MHz~18GHz	Feb. 07, 2024	Feb. 16, 2024~ Feb. 17, 2024	Feb. 06, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30MHz~18GHz	Feb. 07, 2024	Feb. 16, 2024~ Feb. 17, 2024	Feb. 06, 2025	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30MHz~18GHz	Feb. 07, 2024	Feb. 16, 2024~ Feb. 17, 2024	Feb. 06, 2025	Radiation (03CH13-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Feb. 16, 2024~ Feb. 17, 2024	N/A	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Feb. 16, 2024~ Feb. 17, 2024	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Feb. 16, 2024~ Feb. 17, 2024	N/A	Radiation (03CH13-HY)
Software	Audix	N/A	RK-001124	N/A	N/A	Feb. 16, 2024~ Feb. 17, 2024	N/A	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 07, 2023	Feb. 19, 2024	Nov. 06, 2024	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	17I00015SNO 35 (NO:109)	I 10MHz~6GHz I Jan. 15, 2024 I Feb. 19, 2024 I Jan. 14, 2025		Jan. 14, 2025	Conducted (TH05-HY)	
Signal Analyzer	Rohde & Schwarz	FSV40	101566	10Hz~40GHz	Aug. 23, 2023 Feb. 19, 2024 Aug. 22, 2024		Conducted (TH05-HY)	

5 Measurement Uncertainty

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.2 dB
of 95% (U = 2Uc(y))	4.2 UB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	
of 95% (U = 2Uc(y))	4.6 dB

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Wei Shun	Temperature:	21~25	°C
Test Date:	2024/2/19	Relative Humidity:	51~54	%

TEST RESULTS DATA Average Output Power

2.4GHz Band Single Antenna																		
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		Average onducte Power (dBm)		Po Lir	ucted wer nit Bm)	DG (dBi)				EIRP Power (dBm)		EIRP Power Limit (dBm)		Pass /Fail
					Ant1	Ant2	SUM	Ant1	Ant2	Ant1	Ant2	Ant1	Ant2	Ant1	Ant2			
11g	6Mbps	1	11	2462	14.80	-		30.00	-	2.50	-	17.30	-	36.00	-	Pass		
HT20	MCS0	1	11	2462	14.60	-		30.00	-	2.50	-	17.10	-	36.00	-	Pass		
HT40	MCS0	1	9	2452	13.00	-	-	30.00	-	2.50	-	15.50	-	36.00	-	Pass		
VHT20	MCS0	1	11	2462	14.70	-		30.00	-	2.50	-	17.20	-	36.00	-	Pass		
VHT40	MCS0	1	9	2452	13.10	-		30.00	-	2.50	-	15.60	-	36.00	-	Pass		

Note: Measured power (dBm) has offset with cable loss.

Appendix B. Radiated Spurious Emission

Test Engineer :	Rain Lee	Temperature :	20~26°C
rest Engineer .		Relative Humidity :	40~65%

2.4GHz 2400~2483.5MHz

WIFI 802.11n HT20 (Band Edge @ 3m)

WIFI	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
	*	2462	106.33	-	-	101.08	27.62	14.7	37.07	106	111	Р	Н
	*	2462	98.67	-	-	93.42	27.62	14.7	37.07	106	111	А	н
		2485.12	67.38	-6.62	74	61.93	27.8	14.72	37.07	106	111	Р	н
		2483.52	50.2	-3.8	54	44.75	27.8	14.72	37.07	106	111	А	Н
802.11n													н
HT20													н
CH 11	*	2462	104.29	-	-	99.04	27.62	14.7	37.07	291	59	Р	V
2462MHz	*	2462	96.62	-	-	91.37	27.62	14.7	37.07	291	59	А	V
		2483.84	67	-7	74	61.55	27.8	14.72	37.07	291	59	Р	V
		2483.52	48.31	-5.69	54	42.86	27.8	14.72	37.07	291	59	А	V
													V
													V
	1. No	o other spurious	s found.										
Remark	2. All	results are PA	SS against F	eak and	Average lim	it line.							

WIFI	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos (deg)	Avg. (P/A)	(H/V)
		2329.74	49.19	-24.81	74	44.52	27.2	14.56	37.09	290	56	Ρ	Н
		2385.74	40.05	-13.95	54	35.05	27.46	14.62	37.08	290	56	А	Н
	*	2452	100.97	-	-	95.84	27.52	14.69	37.08	290	56	Р	Н
	*	2452	93.31	-	-	88.18	27.52	14.69	37.08	290	56	А	Н
802.11n		2483.5	68.01	-5.99	74	62.56	27.8	14.72	37.07	290	56	Р	Н
HT40		2484.32	49.3	-4.7	54	43.85	27.8	14.72	37.07	290	56	А	Н
CH 09		2313.64	48.71	-25.29	74	44.05	27.2	14.55	37.09	100	111	Р	V
2452MHz		2376.08	39.7	-14.3	54	34.81	27.36	14.61	37.08	100	111	А	V
	*	2452	102.96	-	-	97.83	27.52	14.69	37.08	100	111	Р	V
	*	2452	94.49	-	-	89.36	27.52	14.69	37.08	100	111	А	V
		2483.62	69.7	-4.3	74	64.25	27.8	14.72	37.07	100	111	Р	V
		2483.62	50.71	-3.29	54	45.26	27.8	14.72	37.07	100	111	А	V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

2.4GHz 2400~2483.5MHz WIFI 802.11n HT40 (Band Edge @ 3m)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11b		2390	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 01													
2412MHz		2390	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	н

1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)

2. Level(dBµV/m) =

Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)

3. Margin (dB) = Level(dB μ V/m) – Limit Line(dB μ V/m)

For Peak Limit @ 2390MHz:

1. Level(dBµV/m)

```
= Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) - Preamp Factor(dB)
```

- $= 32.22(dB/m) + 4.58(dB) + 54.51(dB\mu V) 35.86 (dB)$
- = 55.45 (dBµV/m)
- 2. Margin (dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 2390MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)

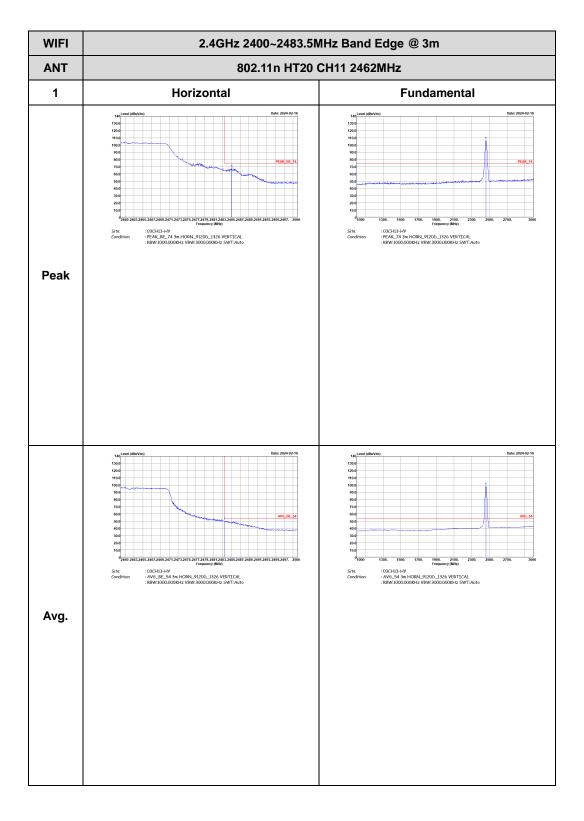
```
= 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) - 35.86 (dB)
```

- = 43.54 (dBµV/m)
- 2. Margin (dB)
- = Level(dB μ V/m) Limit Line(dB μ V/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

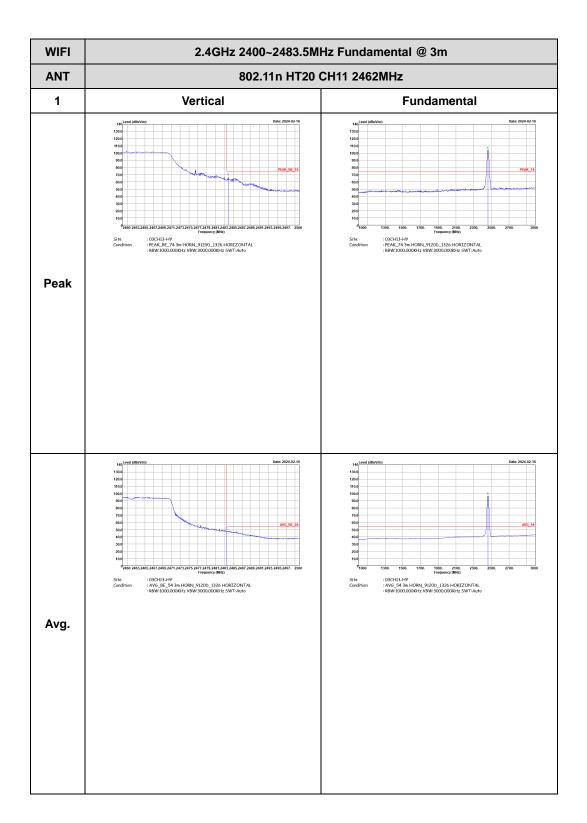
Both peak and average measured complies with the limit line, so test result is "PASS".

Appendix C. Radiated Spurious Emission Plots

Test Engineer :	Rain Lee	Temperature :	20~26°C
rest Engineer .		Relative Humidity :	40~65%

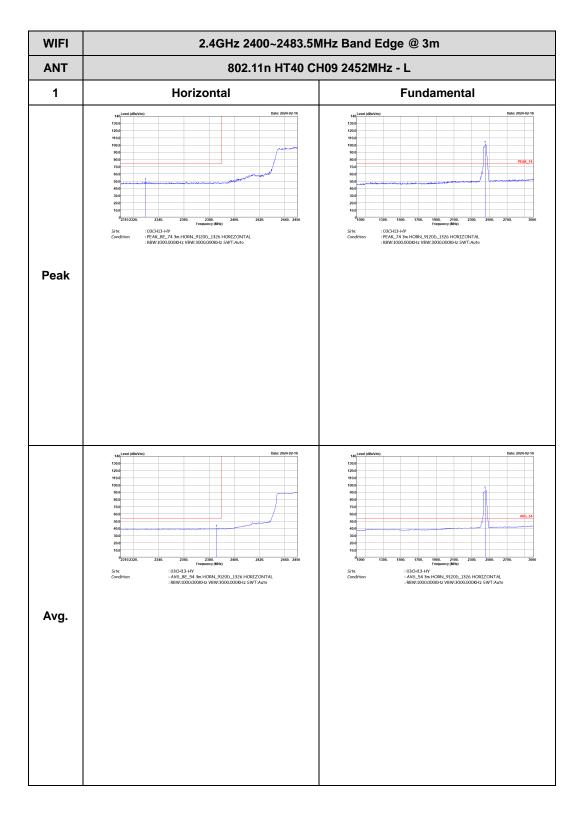

Note symbol

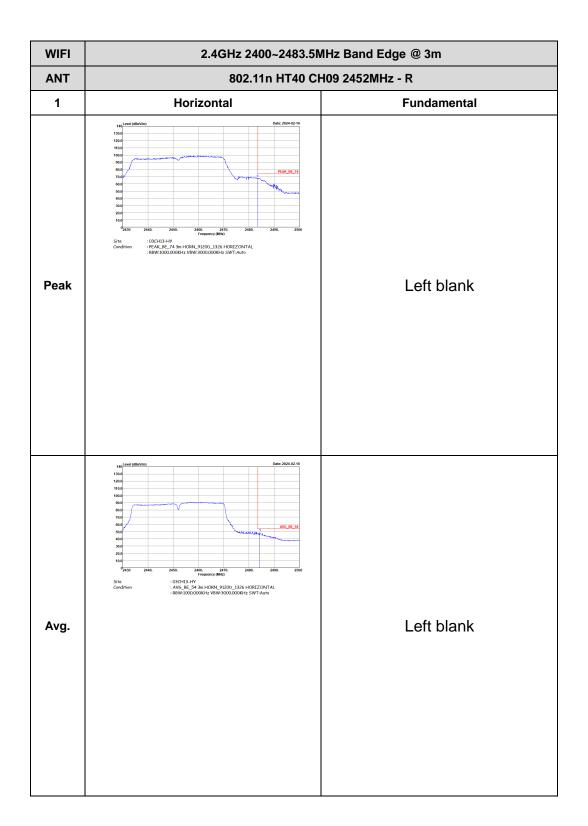
-L	Low channel location
-R	High channel location



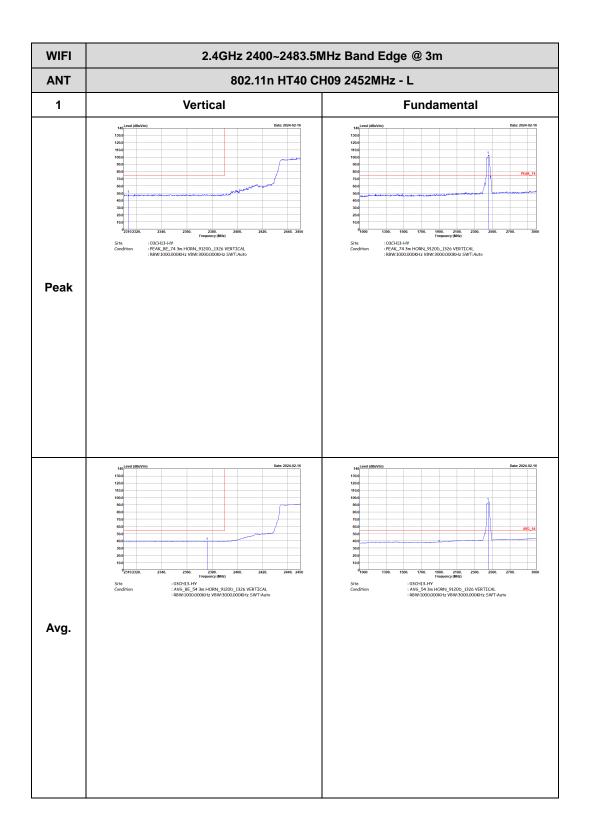
2.4GHz 2400~2483.5MHz

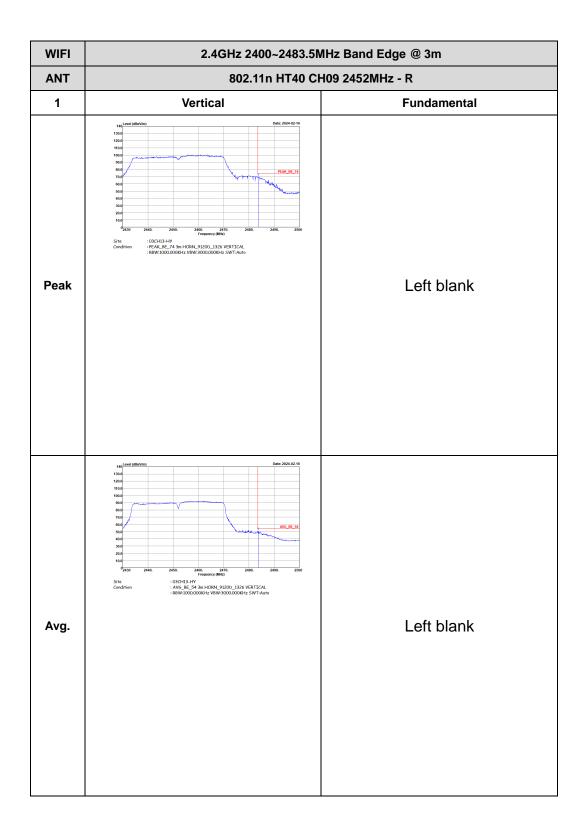
WIFI 802.11n HT20 (Band Edge @ 3m)

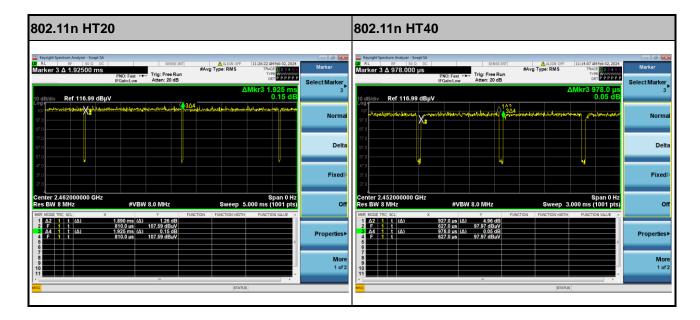




2.4GHz 2400~2483.5MHz


WIFI 802.11n HT40 (Band Edge @ 3m)





Appendix D. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	Duty Factor(dB)
1	2.4GHz 802.11n HT20	98.18	-	0.08 dB
1	2.4GHz 802.11n HT40	94.79	927	0.23 dB

