

FCC SAR TEST REPORT

FCC ID	: HD5-CT30PL1N
Equipment	: Mobile computer
Brand Name	: Honeywell
Model Name	: CT30PL1N
Applicant	: Honeywell International Inc. 9680 Old Bailes Road, Fort Mill, SC 29707 USA
Manufacturer	: Honeywell International Inc.
	9680 Old Bailes Road, Fort Mill, SC 29707 USA
Standard	: FCC 47 CFR Part 2 (2.1093)

The product was received on Oct. 26, 2022 and testing was started from Oct. 31, 2022 and completed on Nov. 10, 2022. We, SPORTON INTERNATIONAL INC., would like to declare that the tested sample provide by manufacturer and the test data has been evaluated in accordance with the test procedures given in 47 CFR Part 2.1093 and FCC KDB and has been pass the FCC requirement.

The test results in this report apply exclusively to the tested model / sample. Without written approval of SPORTON INTERNATIONAL INC. Laboratory, the test report shall not be reproduced except in full.

Cua Guang

Approved by: Cona Huang / Deputy Manager

Sporton International Inc. EMC & Wireless Communications Laboratory No.52, Huaya 1st Rd., Guishan Dist., Taoyuan City 333, Taiwan

Table of Contents

1. Statement of Compliance	
2. Guidance Applied	4
3. Equipment Under Test (EUT) Information	
3.1 General Information	5
3.2 General LTE SAR Test and Reporting Considerations	6
4. RF Exposure Limits	
4.1 Uncontrolled Environment	9
4.2 Controlled Environment	
5. Specific Absorption Rate (SAR)	10
5.1 Introduction	10
5.2 SAR Definition	10
6. System Description and Setup	11
6.1 Test Site Location	
6.2 E-Field Probe	12
6.3 Data Acquisition Electronics (DAE)	
6.4 Phantom	13
6.5 Device Holder	
7. Measurement Procedures	
7.1 Spatial Peak SAR Evaluation	
7.2 Power Reference Measurement	16
7.3 Area Scan	
7.4 Zoom Scan	
7.5 Volume Scan Procedures	
7.6 Power Drift Monitoring.	
8. Test Equipment List	
9. System Verification	
9.1 Tissue Verification	
9.2 System Performance Check Results.	10
10. RF Exposure Positions	
10.1 Ear and handset reference point	
10.2 Definition of the cheek position	20
10.2 Definition of the tilt position	
10.4 Body Worn Accessory	
10.4 Body Wolff Accessory	
11. UMTS/LTE Output Power (Unit: dBm)	23 24
12. WiFi/Bluetooth Output Power (Unit: dBm)	24
13. Antenna Location	20
14. SAR Test Results	
14.1 Head SAR	
14.1 Head SAR	
14.3 Body-Worn Accessory SAR	
14.4 Repeated SAR Measurement	
15. Simultaneous Transmission Analysis	
15.1 Head Exposure Conditions	
15.2 Hotspot Exposure Conditions.	
15.3 Body-Worn Accessory Exposure Conditions	
16. Uncertainty Assessment	
17. References	39
Appendix A. Plots of System Performance Check	
Appendix B. Plots of High SAR Measurement Appendix C. DASY Calibration Certificate	

Appendix D. Test Setup Photos

History of this test report

Report No.	Version	Description	Issued Date
FA1N0508-02	01	Initial issue of report	Dec. 05, 2022

1. Statement of Compliance

The maximum results of Specific Absorption Rate (SAR) found during testing for Honeywell International Inc., Mobile computer, CT30PL1N, are as follows.

				Highest SAR Summary					
Equipment Class			Head (Separation 0mm)	Body-worn (Separation 15mm)	Hotspot (Separation 10mm)	Highest Simultaneous Transmission 1g SAR (W/kg)			
				1g SAR (W/kg)		IS OAK (W/Kg)			
Licensed	WCDMA	WCDMA IV	0.39			1.42			
Licenseu	LTE	LTE Band 30			1.01	1.42			
DTS	WLAN	2.4GHz WLAN	0.61	0.12	0.25	1.42			
NII	VV LAIN	5GHz WLAN	1.19	0.79	0.95	1.38			
DSS	2.4GHz Band	Bluetooth	0.05	0.01	0.02	1.2			
	Date of Testing:		2022/10/31 ~ 2022/11/10						

Sporton Lab is accredited to ISO 17025 by Taiwan Accreditation Foundation and the FCC designation No. TW1190 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test. This device is in compliance with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6 W/kg) specified in FCC 47 CFR part 2 (2.1093) and ANSI/IEEE C95.1-1992, and had been tested in accordance with the measurement methods and procedures specified in IEEE 1528-2013 and FCC KDB publications.

Reviewed by: <u>Jason Wang</u> Report Producer: <u>Daisy Peng</u>

2. <u>Guidance Applied</u>

The Specific Absorption Rate (SAR) testing specification, method, and procedure for this device is in accordance with the following standards, the below KDB standard may not including in the TAF code without accreditation.

- FCC 47 CFR Part 2 (2.1093)
- ANSI/IEEE C95.1-1992
- IEEE 1528-2013
- FCC KDB 865664 D01 SAR Measurement 100 MHz to 6 GHz v01r04
- FCC KDB 865664 D02 SAR Reporting v01r02
- FCC KDB 447498 D01 General RF Exposure Guidance v06
- FCC KDB 648474 D04 SAR Evaluation Considerations for Wireless Handsets v01r03
- FCC KDB 248227 D01 802.11 Wi-Fi SAR v02r02
- FCC KDB 941225 D01 3G SAR Procedures v03r01
- FCC KDB 941225 D05 SAR for LTE Devices v02r05
- FCC KDB 941225 D05A Rel.10 LTE SAR Test Guidance v01r02
- FCC KDB 941225 D06 Hotspot Mode SAR v02r01
- FCC KDB 941225 D07 UMPC Mini Tablet v01r02

3. Equipment Under Test (EUT) Information

3.1 General Information

	Product Feature & Specification
Equipment Name	Mobile computer
Brand Name	Honeywell
Model Name	CT30PL1N
FCC ID	HD5-CT30PL1N
Wireless Technology and Frequency Range	GSM850: 824.2 MHz ~ 848.8 MHz GSM1900: 1850.2 MHz ~ 1909.8 MHz WCDMA Band II: 1850 MHz ~ 1910 MHz WCDMA Band IV: 1710 MHz ~ 1755 MHz WCDMA Band V: 824 MHz ~ 849 MHz LTE Band 2: 1850 MHz ~ 1910 MHz LTE Band 4: 1710 MHz ~ 1755 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 5: 824 MHz ~ 849 MHz LTE Band 7: 2500 MHz ~ 2570 MHz LTE Band 12: 699 MHz ~ 716 MHz LTE Band 14: 788 MHz ~ 798 MHz LTE Band 14: 784 MHz ~ 716 MHz
Mode HW Version SW Version	GSM/GPRS/EGPRS RMC/AMR 12.2Kbps HSDPA HSUPA DC-HSDPA LTE: QPSK, 16QAM, 64QAM WLAN: 802.11a/b/g/n/ac HT20/HT40/VHT20/VHT40/VHT80 Bluetooth BR/EDR/LE NFC: ASK v1.0
SW Version	OS.11.003-HON.11.003
GSM / (E)GPRS Transfer mode	Class B – EUT cannot support Packet Switched and Circuit Switched Network simultaneously but can automatically switch between Packet and Circuit Switched Network.
EUT Stage	Identical Prototype
Remark:	
1. Internal tracking board vers	sion is DVT2(NFC) and SW PN is 311.C0.00.1069-G-DEBUG NFC antenna and includes verification worst case found in original report, Sporton SAR Report, Report

 Variant report by changing NFC antenna and includes verification worst case found in original report, Sporton SAR Report, Report No. FA1N0508

3.2 General LTE SAR Test and Reporting Considerations

Summarize	d necessary ite	ms addres	sed in KDI	3 94122	5 D05 v02ı	·05		
FCC ID	HD5-CT30PL1	N						
Equipment Name	Mobile compute	Mobile computer						
Operating Frequency Range of each LTE transmission band	LTE Band 2: 18 LTE Band 4: 17 LTE Band 5: 82 LTE Band 7: 25 LTE Band 12: 6 LTE Band 13: 7 LTE Band 14: 7 LTE Band 25: 1 LTE Band 26: 8 LTE Band 30: 2 LTE Band 38: 2 LTE Band 41: 2 LTE Band 66: 1 LTE Band 66: 1 LTE Band 67: 6	210 MHz ~ 1 24 MHz ~ 84 500 MHz ~ 2 599 MHz ~ 7 777 MHz ~ 7 788 MHz ~ 7 704 MHz ~ 7 850 MHz ~ 8305 MHz ~ 8305 MHz ~ 2570 MHz ~ 2496 MHz ~ 710 MHz ~	755 MHz 9 MHz 570 MHz 16 MHz 87 MHz 98 MHz 16 MHz 1915 MHz 2315 MHz 2315 MHz 2620 MHz 2690 MHz 1780 MHz					
Channel Bandwidth	LTE Band 71: 663 MHz ~ 698 MHz LTE Band 2:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 4:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 5:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 7: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 12:1.4MHz, 3MHz, 5MHz, 10MHz LTE Band 13: 5MHz, 10MHz LTE Band 14: 5MHz, 10MHz LTE Band 17: 5MHz, 10MHz LTE Band 25:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 26:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 30: 5MHz, 10MHz LTE Band 38: 5MHz, 10MHz LTE Band 38: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 38: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 38: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 41: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 41: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 41: 5MHz, 10MHz, 15MHz, 20MHz LTE Band 66:1.4MHz, 3MHz, 5MHz, 10MHz, 15MHz, 20MHz LTE Band 71: 5MHz, 10MHz, 15MHz, 20MHz							
uplink modulations used	QPSK / 16QAN		, - ,	-				
LTE Voice / Data requirements	Voice and Data							
LTE MPR permanently built-in by design	Modulation QPSK 16 QAM 16 QAM 64 QAM	1.4 MHz ≥ 5 ≤ 5 > 5 ≤ 5	nnel bandw 3.0 MHz ≥ 4 ≤ 4 > 4 ≤ 4	idth / Tra 5 MHz > 8 ≤ 8 > 8 ≤ 8	10 MHz > 12 ≤ 12 > 12 > 12 ≤ 12 ≤ 12	bandwidth (15 MHz > 16 ≤ 16 > 16 ≤ 16	(N _{RB}) 20 MHz ≥ 18 ≤ 18 > 18 ≥ 18 ≤ 18	MPR (dB) ≤ 1 ≤ 2 ≤ 2
	64 QAM	> 5	> 4	> 8	> 12	> 16	> 18	≤ 3 < 5
	256 QAM				≥ 1			≤ 5
LTE A-MPR	In the base station simulator configuration, Network Setting value is set to NS_01 to disable A-MPR during SAR testing and the LTE SAR tests was transmitting on all TTI frames (Maximum TTI)							
Spectrum plots for RB configuration	A properly configured base station simulator was used for the SAR and power measurement; therefore, spectrum plots for each RB allocation and offset configuration are not included in the SAR report.							
LTE Carrier Aggregation Combinations	Inter-Band and Intra-Band possible combinations and the detail power measurement please refer to original report section 11. This device supports maximum of 2 carriers in the downlink and 2 carriers in the uplink.							
LTE Carrier Aggregation Additional Information	This device su Additional follo MIMO, eICI, SC-FDMA.	wing LTE F	Release fea	atures a	re not sup	ported: Re	elay, HetNe	et, Enhanced

Report No. : FA1N0508-02

			Transm	ission (H. I	M.L)cha	nnel numbe	s and freq	uenci	es in	each LTE b	band		
	Transmission (H, M, L) channel numbers and frequencies in each LTE band LTE Band 2												
	Bandwidth	n 1.4 MHz	Bandwid	th 3 MHz	Bandv	vidth 5 MHz	Bandwidt	h 10 l	MHz	Bandwidt	n 15 MHz	Bandwi	dth 20 MHz
	Ch. #	Freq.	Ch. #	Freq.	Ch. #	Freq.	Ch. #		eq.	Ch. #	Freq.	Ch. #	Freq.
1	18607	(MHz) 1850.7	18615	(MHz) 1851.5	18625	(MHz) 1852.5	18650	(MI 18	55	18675	(MHz) 1857.5	18700	(MHz) 1860
M	18900	1880	18900	1880	18900		18900		80	18900	1880	18900	1880
н	19193	1909.3	19185	1908.5	19175	1907.5	19150	19	05	19125	1902.5	19100	1900
			÷	·		LTE Ba	nd 4						·
	Bandwidth	ח 1.4 MHz	Bandwid	th 3 MHz	Bandv	vidth 5 MHz	Bandwidt	h 10 l	MHz	Bandwidtl		Bandwi	dth 20 MHz
	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)	Ch. #	Fre (Mi	eq. Hz)	Ch. #	Freq. (MHz)	Ch. #	Freq. (MHz)
L	19957	1710.7	19965	1711.5	19975		20000		15	20025	1717.5	20050	1720
Μ	20175	1732.5	20175	1732.5	20175		20175		32.5	20175	1732.5	20175	1732.5
Н	20393	1754.3	20385	1753.5	20375		20350	17	50	20325	1747.5	20300	1745
						LTE Ba							
		dwidth 1.4			ndwidth :			ndwid				dwidth 1	
	Ch. #		eq. (MHz)	Ch. #		Freq. (MHz)	Ch. #			eq. (MHz)	Ch. #		req. (MHz)
L M	20407		824.7 836.5	20415 20525		825.5 836.5	20425 20525	-		826.5 836.5	20450	-	829 836.5
H	20525		848.3	20525		847.5	20525	-		846.5	20523	-	844
	20040	,	040.0	20030	,	LTE Ba		,		040.0	20000	5	
	Bar	ndwidth 5	MHz	Bar	dwidth 1			ndwidt	h 15 l	MHz	Ban	dwidth 20) MHz
	Ch. #	Fr	eq. (MHz)	Ch. #		Freq. (MHz)	Ch. #		-	eq. (MHz)	Ch. #		req. (MHz)
L	20775		2502.5	20800		2505	20825			2507.5	20850		2510
М	21100)	2535	21100)	2535 21100 2535 21100		2535 211)	2535		
Н	21425	;	2567.5	21400)	2565	21375	5	2	2562.5	21350	C	2560
						LTE Bar	nd 12						
	Ban	dwidth 1.4	MHz	Bai	ndwidth (3 MHz	Bandwidth 5 MHz				Bandwidth 10 MHz		
	Ch. #		eq. (MHz)	Ch. #	1	Freq. (MHz)	Ch. #	1	Fre	eq. (MHz)	Ch. #	‡ F	req. (MHz)
L	23017		699.7	23025		700.5	23035			701.5	23060	C	704
Μ	23095		707.5	23095		707.5	23095			707.5	2309		707.5
Н	23173	,	715.3	23165		714.5	23155	5		713.5	23130	0	711
			Deve also da			LTE Bar	nd 13			Bandwidth			
		Channel		lth 5 MHz	Eroa (M	-)		Char	nol #	Bandwidtr		Freg.(MH	7)
1		Channel # Freq.(MHz) Channel # 23205 779.5								rieq.(ivii	2)		
M		23230			782			232	230			782	
н		23255			784.5								
						LTE Bar	nd 14						
			Bandwic	lth 5 MHz						Bandwidth	n 10 MHz		
		Channel #	£		Channe	#		Char	nnel #			Freq.(MH	z)
L		23305			790.5								
М		23330			793		23330				793		
Н		23355								_	_		
						LTE Bar	nd 17						
			Bandwid							Bandwidth			
		Channel #		F	Freq.(MH	Z)		Chan			F	Freq. (MF	z)
L		23755			706.5			237				709	
M		23790			710			237				710	
Н		23825		713.5			23800			711			

Report No. : FA1N0508-02

	LTE Band 25															
	Bandwidth	ח 1.4 MF	lz Ba	andwidt	th 3 MF	lz B	andwid	Ith 5 MHz	Bandwidth 10 MHz Bandwidth 1				th 15 M	15 MHz Bandwidth 20 MHz		
	Ch. #	Freq. (MHz		h. #	Frec (MH:		h. #	Freq. (MHz)	Ch. #		req. IHz)	Ch. #	Frec (MH)		Ch. #	Freq. (MHz)
L	26047	1850.	7 26	6055	1851	.5 26	6065	1852.5	26090	18	355	26115	1857	.5 2	26140	1860
М	26340	1880	26	6340	188	0 20	6340	1880	26340	18	380	26340	188	0 2	26340	1880
Н	26683	1914.	3 26	675	1913	.5 26	6665	1912.5	26640	19	910	26615	1907	.5 2	26590	1905
								LTE Bar	nd 26							
	Bandwi	dth 1.4 N		Ba		h 3 MHz			th 5 MHz		Band	lwidth 10 N		Ban		15 MHz
	Ch. #	Freq.	(MHz)	Ch		Freq. (N	,	Ch. #	Freq. (MH	z)	Ch. #		(MHz)	Ch.		req. (MHz)
L	26697	-	4.7	267		815.		26715	816.5		2674		19	2676		821.5
М	26865		31.5	268		831.		26865	831.5		2686		1.5	2686		831.5
Н	27033	84	8.3	270)25	847.		27015	846.5		2699	0 8	44	2696	55	841.5
			D,	on duuidi	46 E MI	1~		LTE Bar	10.30			Dooduidi	6 10 M			
		Channe		anuwid	th 5 M⊦		.(MHz			Cha	nnel #	Bandwidt			q.(MHz	
L		27685					.(IVITIZ) 07.5)		Gria	HHCI#			Tie	9.(1011-12	·/
M		27710					310			27	710				2310	
н		27735					12.5							-		
								LTE Bar	nd 38				1			
	Bar	ndwidth	5 MHz			Bandwid	th 10	MHz	Ban	dwid	th 15 I	ИНz		Bandwi	dth 20	MHz
	Ch. #		Freq. (N	ЛHz)	С	h. #	Fre	eq. (MHz)	Ch. #		Freq. (MHz)		C	Ch. #		eq. (MHz)
L	37775	;	2572	.5	37	7800		2575	37825	;	2	2577.5	3	37850		2580
М	38000)	259	5	38	3000		2595	38000)		2595 3800		3000		2595
Н	38225	5	2617	.5	38	3200		2615	38175	5	2	2612.5	12.5 38150		3150 2610	
								LTE Bar	nd 41							
		ndwidth				Bandwid	_				th 15 I			Bandwi		
	Ch. #		Freq. (N	-		h. #	Fre	eq. (MHz)	Ch. #			q. (MHz)		ch. #	Fr	eq. (MHz)
L	39675)	2498	.5	39	9700		2501	39725)	2	2503.5	39750			2506
L M	40148		2545	-	-	0160		2547	40173			2548.3		0185		2549.5
М	40620)	2593	3	40	0620		2593	40620)		2593	4	0620		2593
H M	41093		2640			1080		2639	41068			2637.8		1055		2636.5
Н	41565	5	2687	.5	41	1540		2685	41515	;	2	2682.5	4	1490		2680
	Development	4 4 8 4						LTE Bar	-	. 4.0-		Develop				
-	Bandwidth	Freq.		andwidt	h 3 MH Freq		andwid	th 5 MHz Freq.	Bandwidth		viHz eq.	Bandwidt	n 15 IVII Frec		andwid	th 20 MHz Freq.
	Ch. #	(MHz)		h. #	(MHz		h. #	(MHz)	Ch. #		еч. Hz)	Ch. #	(MHz		Ch. #	(MHz)
L	131979	1710.7	7 13	1987	1711	.5 13	1997	1712.5	132022	17	715	132047	1717	.5 13	32072	1720
М	132322	1745	13	2322	174	5 13	2322	1745	132322	17	745	132322	174	5 13	32322	1745
Н	132665	1779.3	3 13	2657	1778	.5 13	2647	1777.5	132622	17	75	132597	1772	.5 13	32572	1770
								LTE Bar								
		ndwidth !				Bandwic	-				th 15 N			Bandwi	1	
	Ch. #		Freq. (N			h. #	Fre	eq. (MHz)	Ch. #			q. (MHz)		h. #	Fr	eq. (MHz)
L	133147		665.			3172		668	133197		1	670.5		3222		673
М	133297		680.			3297		680.5	133297		-	680.5		3297		680.5
Н	133447	/	695.	5	13	3422		693	133397	1		690.5	13	3372		688

4. <u>RF Exposure Limits</u>

4.1 Uncontrolled Environment

Uncontrolled Environments are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

4.2 Controlled Environment

Controlled Environments are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. The exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.4	8.0	20.0

Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body	Partial-Body	Hands, Wrists, Feet and Ankles
0.08	1.6	4.0

1. Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

5. Specific Absorption Rate (SAR)

5.1 Introduction

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

5.2 SAR Definition

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$

SAR is expressed in units of Watts per kilogram (W/kg)

$$SAR = \frac{\sigma |E|^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

6. <u>System Description and Setup</u>

11/ LIGHT ROBOT REMOTE SIGNAL TEACH CURTA CONTROL PENDANT LAMP LIGHT BEAM ELECTRO OPTICAL DASY6 MEASURMENTSERVER CONVERTER CTRL [-E STOP DIG IN [DASSO ETHERNET DAE NGOUT L ROBOT DAF OPTICAL CABLE PROB PC PHANTOM ROBOT CONTROLLER MEDIUM DUT 0 DEVICE 1110 (USB HOLDER CS8C 14 11200

The DASY system used for performing compliance tests consists of the following items:

The DASY system in SAR Configuration is shown above

1109

A standard high precision 6-axis robot with controller, teach pendant and software. An arm extension for accommodating the data acquisition electronics (DAE).

MAIA

BASE STATION

SIMULATOR

RF

ETH/GPIB

An isotropic Field probe optimized and calibrated for the targeted measurement.

1602

- A data acquisition electronics (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- The Electro-optical converter (EOC) performs the conversion from optical to electrical signals for the digital communication to the DAE. To use optical surface detection, a special version of the EOC is required. The EOC signal is transmitted to the measurement server.
- The function of the measurement server is to perform the time critical tasks such as signal filtering, control of the robot operation and fast movement interrupts.
- The Light Beam used is for probe alignment. This improves the (absolute) accuracy of the probe positioning.
- A computer running windows software and the DASY software.
- Remote control and teach pendant as well as additional circuitry for robot safety such as warning lamps, etc.
- The phantom, the device holder and other accessories according to the targeted measurement.

6.1 Test Site Location

The SAR measurement facilities used to collect data are within both Sporton Lab list below test site location are accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 1190 and 3786) and the FCC designation No. TW1190 and TW3786 under the FCC 2.948(e) by Mutual Recognition Agreement (MRA) in FCC test.

Test Site	EMC & Wireless Comm	unications Laboratory	Wensan Laboratory					
	TW1 ²		TW3786					
Test Site Location	No.52, Huaya 1st R			No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd.,				
	Taoyuan City	333, Taiwan	Guishan Dist., Taoyuan City 333010, Taiwan					
	SAR01-HY	SAR03-HY	SAR08-HY	SAR09-HY	SAR15-HY			
Test Site No.	SAR04-HY	SAR05-HY	SAR11-HY	SAR12-HY	SAR16-HY			
	SAR06-HY	SAR10-HY	SAR13-HY	SAR14-HY	SAR17-HY			

6.2 <u>E-Field Probe</u>

The SAR measurement is conducted with the dosimetric probe (manufactured by SPEAG). The probe is specially designed and calibrated for use in liquid with high permittivity. The dosimetric probe has special calibration in liquid at different frequency. This probe has a built in optical surface detection system to prevent from collision with phantom.

<ES3DV3 Probe>

Construction	Symmetric design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz – 4 GHz; Linearity: ±0.2 dB (30 MHz – 4 GHz)	
Directivity	±0.2 dB in TSL (rotation around probe axis) ±0.3 dB in TSL (rotation normal to probe axis)	
Dynamic Range	5 μW/g – >100 mW/g; Linearity: ±0.2 dB	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 3.9 mm (body: 12 mm) Distance from probe tip to dipole centers: 3.0 mm	

<EX3DV4 Probe>

Construction	Symmetric design with triangular core Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)	
Frequency	10 MHz – >6 GHz Linearity: ±0.2 dB (30 MHz – 6 GHz)	
Directivity	±0.3 dB in TSL (rotation around probe axis) ±0.5 dB in TSL (rotation normal to probe axis)	States and the second
Dynamic Range	10 μW/g – >100 mW/g Linearity: ±0.2 dB (noise: typically <1 μW/g)	
Dimensions	Overall length: 337 mm (tip: 20 mm) Tip diameter: 2.5 mm (body: 12 mm) Typical distance from probe tip to dipole centers: 1 mm	

6.3 Data Acquisition Electronics (DAE)

The data acquisition electronics (DAE) consists of a highly sensitive electrometer-grade preamplifier with auto-zeroing, a channel and gain-switching multiplexer, a fast 16 bit AD-converter and a command decoder and control logic unit. Transmission to the measurement server is accomplished through an optical downlink for data and status information as well as an optical uplink for commands and the clock.

The input impedance of the DAE is 200 MOhm; the inputs are symmetrical and floating. Common mode rejection is above 80 dB.

Fig 5.1 Photo of DAE

6.4 <u>Phantom</u>

<SAM Twin Phantom>

Shell Thickness	2 ± 0.2 mm; Center ear point: 6 ± 0.2 mm	
Filling Volume	Approx. 25 liters	
Dimensions	Length: 1000 mm; Width: 500 mm; Height: adjustable feet	The second se
Measurement Areas	Left Hand, Right Hand, Flat Phantom	

The bottom plate contains three pair of bolts for locking the device holder. The device holder positions are adjusted to the standard measurement positions in the three sections. A white cover is provided to tap the phantom during off-periods to prevent water evaporation and changes in the liquid parameters. On the phantom top, three reference markers are provided to identify the phantom position with respect to the robot.

<ELI Phantom>

Shell Thickness	2 ± 0.2 mm (sagging: <1%)	
Filling Volume	Approx. 30 liters	
Dimensions	Major ellipse axis: 600 mm Minor axis: 400 mm	

The ELI phantom is intended for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI4 is fully compatible with standard and all known tissue simulating liquids.

6.5 <u>Device Holder</u>

<Mounting Device for Hand-Held Transmitter>

In combination with the Twin SAM V5.0/V5.0c or ELI phantoms, the Mounting Device for Hand-Held Transmitters enables rotation of the mounted transmitter device to specified spherical coordinates. At the heads, the rotation axis is at the ear opening. Transmitter devices can be easily and accurately positioned according to IEC 62209-1, IEEE 1528, FCC, or other specifications. The device holder can be locked for positioning at different phantom sections (left head, right head, flat). And upgrade kit to Mounting Device to enable easy mounting of wider devices like big smart-phones, e-books, small tablets, etc. It holds devices with width up to 140 mm.

Mounting Device for Hand-Held Transmitters

Mounting Device Adaptor for Wide-Phones

<Mounting Device for Laptops and other Body-Worn Transmitters>

The extension is lightweight and made of POM, acrylic glass and foam. It fits easily on the upper part of the mounting device in place of the phone positioned. The extension is fully compatible with the SAM Twin and ELI phantoms.

Mounting Device for Laptops

7. <u>Measurement Procedures</u>

The measurement procedures are as follows:

- (a) Use base station simulator to configure EUT WWAN transmission in radiated connection, and engineering software to configure EUT WLAN/BT continuously transmission, at maximum RF power, in the highest power channel.
- (b) Place the EUT in the positions as Appendix D demonstrates.
- (c) Set scan area, grid size and other setting on the DASY software.
- (d) Measure SAR results for the highest power channel on each testing position.
- (e) Find out the largest SAR result on these testing positions of each band
- (f) Measure SAR results for other channels in worst SAR testing position if the reported SAR of highest power channel is larger than 0.8 W/kg

According to the test standard, the recommended procedure for assessing the peak spatial-average SAR value consists of the following steps:

- (a) Power reference measurement
- (b) Area scan
- (c) Zoom scan
- (d) Power drift measurement

7.1 Spatial Peak SAR Evaluation

The procedure for spatial peak SAR evaluation has been implemented according to the test standard. It can be conducted for 1g and 10g, as well as for user-specific masses. The DASY software includes all numerical procedures necessary to evaluate the spatial peak SAR value.

The base for the evaluation is a "cube" measurement. The measured volume must include the 1g and 10g cubes with the highest averaged SAR values. For that purpose, the center of the measured volume is aligned to the interpolated peak SAR value of a previously performed area scan.

The entire evaluation of the spatial peak values is performed within the post-processing engine (SEMCAD). The system always gives the maximum values for the 1g and 10g cubes. The algorithm to find the cube with highest averaged SAR is divided into the following stages:

- (a) Extraction of the measured data (grid and values) from the Zoom Scan
- (b) Calculation of the SAR value at every measurement point based on all stored data (A/D values and measurement parameters)
- (c) Generation of a high-resolution mesh within the measured volume
- (d) Interpolation of all measured values form the measurement grid to the high-resolution grid
- (e) Extrapolation of the entire 3-D field distribution to the phantom surface over the distance from sensor to surface
- (f) Calculation of the averaged SAR within masses of 1g and 10g

7.2 Power Reference Measurement

The Power Reference Measurement and Power Drift Measurements are for monitoring the power drift of the device under test in the batch process. The minimum distance of probe sensors to surface determines the closest measurement point to phantom surface. This distance cannot be smaller than the distance of sensor calibration points to probe tip as defined in the probe properties.

7.3 <u>Area Scan</u>

The area scan is used as a fast scan in two dimensions to find the area of high field values, before doing a fine measurement around the hot spot. The sophisticated interpolation routines implemented in DASY software can find the maximum found in the scanned area, within a range of the global maximum. The range (in dB0 is specified in the standards for compliance testing. For example, a 2 dB range is required in IEEE standard 1528 and IEC 62209 standards, whereby 3 dB is a requirement when compliance is assessed in accordance with the ARIB standard (Japan), if only one zoom scan follows the area scan, then only the absolute maximum will be taken as reference. For cases where multiple maximums are detected, the number of zoom scans has to be increased accordingly.

Area scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

	\leq 3 GHz	> 3 GHz	
Maximum distance from closest measurement point (geometric center of probe sensors) to phantom surface	$5 \pm 1 \text{ mm}$	$\frac{1}{2} \cdot \delta \cdot \ln(2) \pm 0.5 \text{ mm}$	
Maximum probe angle from probe axis to phantom surface normal at the measurement location	$30^{\circ} \pm 1^{\circ}$	$20^{\circ} \pm 1^{\circ}$	
	\leq 2 GHz: \leq 15 mm 2 - 3 GHz: \leq 12 mm	3 – 4 GHz: ≤ 12 mm 4 – 6 GHz: ≤ 10 mm	
Maximum area scan spatial resolution: Δx_{Area} , Δy_{Area}	When the x or y dimension of the test device, in the measurement plane orientation, is smaller than the above, the measurement resolution must be \leq the corresponding x or y dimension of the test device with at least one measurement point on the test device.		

7.4 <u>Zoom Scan</u>

Zoom scans are used assess the peak spatial SAR values within a cubic averaging volume containing 1 gram and 10 gram of simulated tissue. The zoom scan measures points (refer to table below) within a cube shoes base faces are centered on the maxima found in a preceding area scan job within the same procedure. When the measurement is done, the zoom scan evaluates the averaged SAR for 1 gram and 10 gram and displays these values next to the job's label.

Zoom scan parameters extracted from FCC KDB 865664 D01v01r04 SAR measurement 100 MHz to 6 GHz.

			\leq 3 GHz	> 3 GHz		
Maximum zoom scan spatial resolution: Δx_{Zoom} , Δy_{Zoom}			$\leq 2 \text{ GHz}$: $\leq 8 \text{ mm}$ 2 – 3 GHz: $\leq 5 \text{ mm}^*$	$3 - 4 \text{ GHz:} \le 5 \text{ mm}^*$ $4 - 6 \text{ GHz:} \le 4 \text{ mm}^*$		
Maximum zoom scan spatial resolution, normal to phantom surface	uniform grid: $\Delta z_{Zoom}(n)$		\leq 5 mm	$3 - 4$ GHz: ≤ 4 mm $4 - 5$ GHz: ≤ 3 mm $5 - 6$ GHz: ≤ 2 mm		
	graded	$\Delta z_{Zoom}(1)$: between 1 st two points closest to phantom surface	\leq 4 mm	3 – 4 GHz: ≤ 3 mm 4 – 5 GHz: ≤ 2.5 mm 5 – 6 GHz: ≤ 2 mm		
	grid $\Delta z_{Zoom}(n>1)$: between subsequent points		≤1.5·∆z	Zoom(n-1)		
Minimum zoom scan volume	x, y, z	1	≥ 30 mm	$3 - 4 \text{ GHz}: \ge 28 \text{ mm}$ $4 - 5 \text{ GHz}: \ge 25 \text{ mm}$ $5 - 6 \text{ GHz}: \ge 22 \text{ mm}$		
				$5 - 6 \text{ GHz} \ge 22 \text{ mm}$		

Note: δ is the penetration depth of a plane-wave at normal incidence to the tissue medium; see draft standard IEEE P1528-2011 for details.

When zoom scan is required and the <u>reported</u> SAR from the area scan based 1-g SAR estimation procedures of KDB 447498 is \leq 1.4 W/kg, \leq 8 mm, \leq 7 mm and \leq 5 mm zoom scan resolution may be applied, respectively, for 2 GHz to 3 GHz, 3 GHz to 4 GHz and 4 GHz to 6 GHz.

7.5 Volume Scan Procedures

The volume scan is used for assess overlapping SAR distributions for antennas transmitting in different frequency bands. It is equivalent to an oversized zoom scan used in standalone measurements. The measurement volume will be used to enclose all the simultaneous transmitting antennas. For antennas transmitting simultaneously in different frequency bands, the volume scan is measured separately in each frequency band. In order to sum correctly to compute the 1g aggregate SAR, the EUT remain in the same test position for all measurements and all volume scan use the same spatial resolution and grid spacing. When all volume scan were completed, the software, SEMCAD postprocessor can combine and subsequently superpose these measurement data to calculating the multiband SAR.

7.6 Power Drift Monitoring

All SAR testing is under the EUT install full charged battery and transmit maximum output power. In DASY measurement software, the power reference measurement and power drift measurement procedures are used for monitoring the power drift of EUT during SAR test. Both these procedures measure the field at a specified reference position before and after the SAR testing. The software will calculate the field difference in dB. If the power drifts more than 5%, the SAR will be retested.

8. <u>Test Equipment List</u>

Manufacturer	facturer Name of Equipment	Tuno/Medal	Sorial Number	Calibration		
Manufacturer		Type/Model	Serial Number	Last Cal.	Due Date	
SPEAG	1750MHz System Validation Kit	D1750V2	1068	Nov. 25, 2021	Nov. 24, 2022	
SPEAG	2300MHz System Validation Kit ⁽²⁾	D2300V2	1088	Jul. 13, 2021	Jul. 11, 2023	
SPEAG	2450MHz System Validation Kit ⁽²⁾	D2450V2	736	Aug. 17, 2021	Aug. 15, 2023	
SPEAG	5GHz System Validation Kit ⁽²⁾	D5GHzV2	1006	Sep. 15, 2021	Sep. 13, 2023	
SPEAG	5GHz System Validation Kit ⁽²⁾	D5GHzV2	1171	Apr. 20, 2021	Apr. 18, 2023	
SPEAG	Data Acquisition Electronics	DAE4	778	May. 30, 2022	May. 29, 2023	
SPEAG	Data Acquisition Electronics	DAE4	1512	Mar. 29, 2022	Mar. 28, 2023	
SPEAG	Dosimetric E-Field Probe	EX3DV4	3925	Apr. 29, 2022	Apr. 28, 2023	
SPEAG	Dosimetric E-Field Probe	EX3DV4	7306	Jul. 28, 2022	Jul. 27, 2023	
RCPTWN	Thermometer	HTC-1	TM685-1	Jun. 27, 2022	Jun. 26, 2023	
RCPTWN	Thermometer	HTC-1	TM560-2	Mar. 15, 2022	Mar. 14, 2023	
Anritsu	Radio Communication Analyzer	MT8821C	6201074414	Aug. 19, 2022	Aug. 18, 2023	
Keysight	Wireless Communication Test Set	E5515C	MY50266977	May. 10, 2022	May. 09, 2023	
R&S	BT Base Station	CBT	100815	Feb. 24, 2022	Feb. 23, 2023	
SPEAG	Device Holder	N/A	N/A	N/A	N/A	
Anritsu	Signal Generator	MG3710A	6201502524	Oct. 12, 2022	Oct. 11, 2023	
Keysight	ENA Network Analyzer	E5071C	MY46104758	Sep. 22, 2022	Sep. 21, 2023	
SPEAG	Dielectric Probe Kit	DAK-3.5	1146	Jul. 25, 2022	Jul. 24, 2023	
LINE SEIKI	Digital Thermometer	DTM3000-spezial	3252	Jul. 25, 2022	Jul. 24, 2023	
Anritsu	Power Meter	ML2495A	1419002	Aug. 16, 2022	Aug. 15, 2023	
Anritsu	Power Sensor	MA2411B	1911176	Aug. 16, 2022	Aug. 15, 2023	
Anritsu	Power Meter	ML2495A	1804003	Oct. 17, 2022	Oct. 16, 2023	
Anritsu	Power Sensor	MA2411B	1726150	Oct. 17, 2022	Oct. 16, 2023	
Anritsu	Spectrum Analyzer	MS2830A	6201396378	Jul. 21, 2022	Jul. 20, 2023	
Agilent	Spectrum Analyzer	E4408B	MY44211028	Aug. 19, 2021	Aug. 17, 2023	
Mini-Circuits	Power Amplifier	ZVE-8G+	6418	Oct. 14, 2022	Oct. 13, 2023	
Mini-Circuits	Power Amplifier	ZVE-8G+	479102029	Sep. 15, 2022	Sep. 14, 2023	
ATM	Dual Directional Coupler	C122H-10	P610410z-02	No	te 1	
Warison	Directional Coupler	WCOU-10-50S-10	WR889BMC4B1	No	te 1	
Woken	Attenuator 1	WK0602-XX	N/A	No	te 1	
PE	Attenuator 2	PE7005-10	N/A	No	te 1	
PE	Attenuator 3	PE7005-3	N/A	No	te 1	

General Note:

1. Prior to system verification and validation, the path loss from the signal generator to the system check source and the power meter, which includes the amplifier, cable, attenuator and directional coupler, was measured by the network analyzer. The reading of the power meter was offset by the path loss difference between the path to the power meter and the path to the system check source to monitor the actual power level fed to the system check source.

The dipole calibration interval can be extended to 3 years with justification according to KDB 865664 D01. The dipoles are also not physically damaged, or repaired during the interval. The justification data in appendix C can be found which the return loss is < -20dB, within 20% of prior calibration, the impedance is within 5 ohm of prior calibration for each dipole.

9. System Verification

9.1 Tissue Verification

The tissue dielectric parameters of tissue-equivalent media used for SAR measurements must be characterized within a temperature range of 18° C to 25° C, measured with calibrated instruments and apparatuses, such as network analyzers and temperature probes. The temperature of the tissue-equivalent medium during SAR measurement must also be within 18° C to 25° C and within $\pm 2^{\circ}$ C of the temperature when the tissue parameters are characterized. The tissue dielectric measurement system must be calibrated before use. The dielectric parameters must be measured before the tissue-equivalent medium is used in a series of SAR measurements.

The liquid tissue depth was at least 15cm in the phantom for all SAR testing.

<Tissue Dielectric Parameter Check Results>

Frequency (MHz)	Liquid Temp. (℃)	Conductivity (σ)	Permittivity (ε _r)	Conductivity Target (σ)	Permittivity Target (ε _r)	Delta (σ) (%)	Delta (ε _r) (%)	Limit (%)	Date
1750	22.5	1.355	40.581	1.37	40.10	-1.09	1.20	±5	2022/10/31
2300	22.5	1.634	40.045	1.67	39.50	-2.16	1.38	±5	2022/10/31
2450	22.5	1.789	39.488	1.80	39.20	-0.61	0.73	±5	2022/10/31
5250	22.5	4.834	37.099	4.71	35.95	2.63	3.20	±5	2022/10/31
5600	22.5	5.199	36.672	5.07	35.50	2.54	3.30	±5	2022/10/31
5750	22.5	5.379	36.508	5.22	35.35	3.05	3.28	±5	2022/10/31
5750	22.8	5.169	35.482	5.22	35.35	-0.98	0.37	±5	2022/11/10

9.2 System Performance Check Results

Comparing to the original SAR value provided by SPEAG, the verification data should be within its specification of 10 %. Below table shows the target SAR and measured SAR after normalized to 1W input power. The table below indicates the system performance check can meet the variation criterion and the plots can be referred to Appendix A of this report.

Date	Frequency (MHz)2	Input Power (mW)	Dipole S/N	Probe S/N	DAE S/N	Measured 1g SAR (W/kg)	Targeted 1g SAR (W/kg)	Normalized 1g SAR (W/kg)	Deviation (%)	Test Site
2022/10/31	1750	50	D1750V2-1068	EX3DV4 - SN7306	DAE4 Sn1512	1.760	36.600	35.2	-3.83	SAR04
2022/10/31	2300	50	D2300V2-1088	EX3DV4 - SN7306	DAE4 Sn1512	2.390	49.700	47.8	-3.82	SAR04
2022/10/31	2450	250	D2450V2-736	EX3DV4 - SN7306	DAE4 Sn1512	13.700	54.200	54.8	1.11	SAR04
2022/10/31	5250	100	D5GHzV2-1006-5250	EX3DV4 - SN7306	DAE4 Sn1512	7.970	81.700	79.7	-2.45	SAR04
2022/10/31	5600	100	D5GHzV2-1006-5600	EX3DV4 - SN7306	DAE4 Sn1512	9.030	85.100	90.3	6.11	SAR04
2022/10/31	5750	100	D5GHzV2-1006-5750	EX3DV4 - SN7306	DAE4 Sn1512	7.910	81.400	79.1	-2.83	SAR04
2022/11/10	5750	50	D5GHzV2-1171-5750	EX3DV4 - SN3925	DAE4 Sn778	4.010	80.400	80.2	-0.25	SAR05

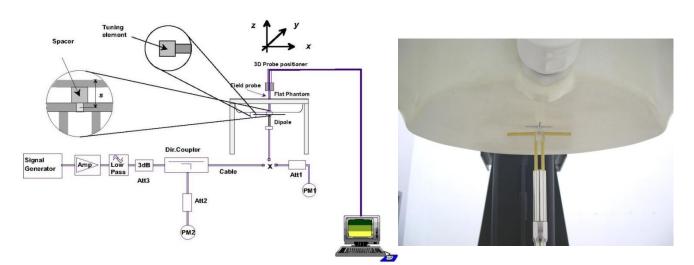


Fig 8.3.1 System Performance Check Setup

Fig 8.3.2 Setup Photo

10. <u>RF Exposure Positions</u>

10.1 Ear and handset reference point

Figure 9.1.1 shows the front, back, and side views of the SAM phantom. The center-of-mouth reference point is labeled "M," the left ear reference point (ERP) is marked "LE," and the right ERP is marked "RE." Each ERP is 15 mm along the B-M (back-mouth) line behind the entrance-to-ear-canal (EEC) point, as shown in Figure 9.1.2 The Reference Plane is defined as passing through the two ear reference points and point M. The line N-F (neck-front), also called the reference pivoting line, is normal to the Reference Plane and perpendicular to both a line passing through RE and LE and the B-M line (see Figure 9.1.3). Both N-F and B-M lines should be marked on the exterior of the phantom shell to facilitate handset positioning. Posterior to the N-F line the ear shape is a flat surface with 6 mm thickness at each ERP, and forward of the N-F line the ear is truncated, as illustrated in Figure 9.1.2. The ear truncation is introduced to preclude the ear lobe from interfering with handset tilt, which could lead to unstable positioning at the cheek.

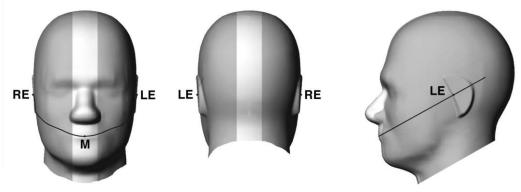


Fig 9.1.1 Front, back, and side views of SAM twin phantom

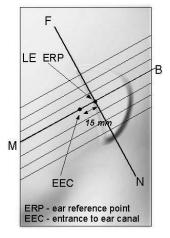


Fig 9.1.2 Close-up side view of phantom showing the ear region.

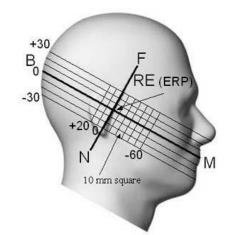
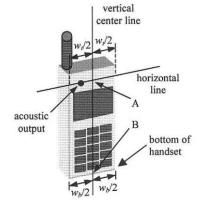



Fig 9.1.3 Side view of the phantom showing relevant markings and seven cross-sectional plane locations

10.2 Definition of the cheek position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. Define two imaginary lines on the handset—the vertical centerline and the horizontal line. The vertical centerline passes through two points on the front side of the handset—the midpoint of the width wt of the handset at the level of the acoustic output (point A in Figure 9.2.1 and Figure 9.2.2), and the midpoint of the width wb of the bottom of the handset (point B). The horizontal line is perpendicular to the vertical centerline and passes through the center of the acoustic output (see Figure 9.2.1). The two lines intersect at point A. Note that for many handsets, point A coincides with the center of the acoustic output; however, the acoustic output may be located elsewhere on the horizontal line. Also note that the vertical centerline is not necessarily parallel to the front face of the handset (see Figure 9.2.2), especially for clamshell handsets, handsets with flip covers, and other irregularly-shaped handsets.
- 3. Position the handset close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 9.2.3), such that the plane defined by the vertical centerline and the horizontal line of the handset is approximately parallel to the sagittal plane of the phantom.
- 4. Translate the handset towards the phantom along the line passing through RE and LE until handset point A touches the pinna at the ERP.
- 5. While maintaining the handset in this plane, rotate it around the LE-RE line until the vertical centerline is in the plane normal to the plane containing B-M and N-F lines, i.e., the Reference Plane.
- 6. Rotate the handset around the vertical centerline until the handset (horizontal line) is parallel to the N-F line.
- 7. While maintaining the vertical centerline in the Reference Plane, keeping point A on the line passing through RE and LE, and maintaining the handset contact with the pinna, rotate the handset about the N-F line until any point on the handset is in contact with a phantom point below the pinna on the cheek. See Figure 9.2.3. The actual rotation angles should be documented in the test report.

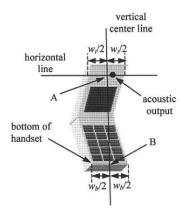
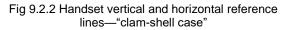
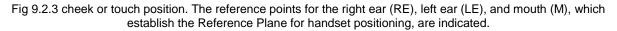




Fig 9.2.1 Handset vertical and horizontal reference lines—"fixed case

10.3 Definition of the tilt position

- 1. Ready the handset for talk operation, if necessary. For example, for handsets with a cover piece (flip cover), open the cover. If the handset can transmit with the cover closed, both configurations must be tested.
- 2. While maintaining the orientation of the handset, move the handset away from the pinna along the line passing through RE and LE far enough to allow a rotation of the handset away from the cheek by 15°.
- 3. Rotate the handset around the horizontal line by 15°.
- 4. While maintaining the orientation of the handset, move the handset towards the phantom on the line passing through RE and LE until any part of the handset touches the ear. The tilt position is obtained when the contact point is on the pinna. See Figure 9.3.1. If contact occurs at any location other than the pinna, e.g., the antenna at the back of the phantom head, the angle of the handset should be reduced. In this case, the tilt position is obtained if any point on the handset is in contact with the pinna and a second point

Fig 9.3.1 Tilt position. The reference points for the right ear (RE), left ear (LE), and mouth (M), which define the Reference Plane for handset positioning, are indicated.

10.4 Body Worn Accessory

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 9.4). Per KDB648474 D04v01r03, body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for body-worn accessory, measured without a headset connected to the handset is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a handset attached to the handset.

Accessories for body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components and those that do contain metallic components. When multiple accessories that do not contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are test with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-chip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body.

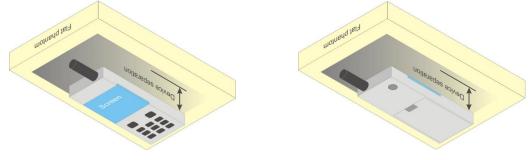


Fig 9.4 Body Worn Position

10.5 Product Specific Exposure

For smart phones with a display diagonal dimension > 15.0 cm or an overall diagonal dimension > 16.0 cm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, According to KDB648474 D04v01r03, the following phablet procedures should be applied to evaluate SAR compliance for each applicable wireless modes and frequency band. Devices marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance

1. The normally required head and body-worn accessory SAR test procedures for handsets, including hotspot mode, must be applied.

2. The UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna located at \leq 25 mm from that surface or edge, in direct contact with a flat phantom, for 10-g extremity SAR according to the body-equivalent tissue dielectric parameters in KDB 865664 to address interactive hand use exposure conditions.6 The UMPC mini-tablet 1-g SAR at 5 mm is not required. When hotspot mode applies, 10-g extremity SAR is required only for the surfaces and edges with hotspot mode 1-g reported SAR > 1.2 W/kg.

11. UMTS/LTE Output Power (Unit: dBm)

<u><WCDMA Conducted Power></u>

	Band				
ТХ	1312	1413	1513	Tune-up Limit	
Rx	Rx Channel			1738	(dBm)
Freque	Frequency (MHz)			1752.6	
3GPP Rel 99			24.21	24.11	25.00

<LTE Conducted Power>

BW [MHz]	Modulation	RB Size	RB Offset	Power Low Ch. / Freq.	Power Middle Ch. / Freq.	Power High Ch. / Freq.	Tune-up limit
	Cha	nnel			27710		(dBm)
	Frequen	cy (MHz)			2310		
10	QPSK	1	0		23.79		24
10	QPSK	25	0		22.57		23
10	QPSK	50	0		22.43		23

12. WiFi/Bluetooth Output Power (Unit: dBm)

<Default Power>

<2.4GHz WLAN>

	2.4GHz WLAN		Ant 1			
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		1	2412	18.30	18.50	
	802.11b 1Mbps	6	2437		18.50	99.10
		11	2462		18.50	
		1	2412		16.00	
	802.11g 6Mbps	6	2437		18.50	
		11	2462		16.00	
	802.11n-HT20 MCS0	1	2412		16.00	
2.4GHz WLAN		6	2437		18.50	
		11	2462		16.00	
		3	2422		15.50	
	802.11n-HT40 MCS0	6	2437	not required	15.50	not required
		9	2452		14.50	
		1	2412		16.00	
	802.11ac-VHT20 MCS0	6	2437		18.50	
		11	2462		16.00	
		3	2422		15.50	
	802.11ac-VHT40 MCS0	6	2437		15.50	
		9	2452		14.50	

Report No. : FA1N0508-02

5.2GHz WLAN Average power (dBm) Frequency (MHz) Tune-Up Mode Channel Duty Cycle % 5180 15.50 36 40 5200 18.50 802.11a 6Mbps 44 18.50 5220 48 18.50 5240 not required not required 36 5180 15.50 40 5200 18.50 802.11n-HT20 MCS0 44 18.50 5220 5.2GHz WLAN 48 18.50 5240 38 5190 11.00 802.11n-HT40 MCS0 96.30 18.50 46 5230 18.40 36 5180 15.50 40 5200 18.50 802.11ac-VHT20 MCS0 44 5220 18.50 48 5240 not required 18.50 not required 38 5190 11.00 802.11ac-VHT40 MCS0 46 5230 18.50 802.11ac-VHT80 MCS0 42 9.50 5210

	5.3GHz WLAN			Ant 1		
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		52	5260		18.50	
	802 11c CMbrc	56	5280		18.50	
	802.11a 6Mbps	60	5300]	18.50	
		64	5320	not required	16.00	not required
	802.11n-HT20 MCS0	52	5260	not required	18.50	not required
		56	5280	-	18.50	
		60	5300		18.50	
5.3GHz WLAN		64	5320		16.00	
	802.11n-HT40 MCS0	54	5270	18.00	18.50	06.20
		62	5310	12.70	13.00	96.30
		52	5260		18.50	
	802.11ac-VHT20 MCS0	56	5280		18.50	
	802.11ac-VH120 MCS0	60	5300		18.50	
		64	5320	not required	16.00	not required
	802 11cc \/HT40 MCS0	54	5270		18.50	-
	802.11ac-VHT40 MCS0	62	5310		13.00	
	802.11ac-VHT80 MCS0	58	5290		13.50	

Report No. : FA1N0508-02

	5.5GHz WLAN		Ant 1			
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		100	5500		17.00	
		116	5580] [18.50	
	802.11a 6Mbps	124	5620] [18.50	
		132	5660] [18.50	
		144	5720] [18.50	
		100	5500] [17.00	
		116	5580] [18.50	
	802.11n-HT20 MCS0	124	5620] [18.50	
		132	5660] [18.50	
		144	5720] [18.50	
		102	5510	1	14.00	
		110	5550] [18.50	
5.5GHz WLAN	802.11n-HT40 MCS0	126	5630	not required	18.50	not required
		134	5670] [18.50	
		142	5710] [18.50	
		100	5500] [17.00	
		116	5580] [18.50	
	802.11ac-VHT20 MCS0	124	5620] [18.50	
		132	5660] [18.50	
		144	5720	1	18.50	
		102	5510] [14.00	
		110	5550] [18.50	
	802.11ac-VHT40 MCS0	126	5630	1	18.50	
		134	5670		18.50	
		142	5710] [18.50	
		106	5530	10.50	11.50	
	802.11ac-VHT80 MCS0	122	5610		18.50	92.70
		138	5690	18.30	18.50	

	5.8GHz WLAN		Ant 1			
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		149	5745		18.50	
	802.11a 6Mbps	157	5785		18.50	
		165	5825		18.50	
		149	5745		18.50	
	802.11n-HT20 MCS0	157	5785		18.50	
5.8GHz WLAN		165	5825		18.50	
	802.11n-HT40 MCS0	151	5755	not required	18.50	not required
	802.11111140 MCS0	159	5795		18.50	
		149	5745		18.50	
	802.11ac-VHT20 MCS0	157	5785		18.50	
		165	5825		18.50	
	802.11ac-VHT40 MCS0	151	5755		18.50	
	002.11dc-VF1140 WC30	159	5795		18.50	
	802.11ac-VHT80 MCS0	155	5775	18.20	18.50	92.70

<Receiver On>

<2.4GHz WLAN>

	2.4GHz WLAN		Ant 1			
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		1	2412	18.30	18.50	
	802.11b 1Mbps	6	2437		18.50	99.10
		11	2462		18.50	
		1	2412		16.00	
	802.11g 6Mbps	6	2437		18.50	
		11	2462		16.00	
	802.11n-HT20 MCS0	1	2412		16.00	
2.4GHz WLAN		6	2437		18.50	
		11	2462		16.00	
		3	2422		15.50	
	802.11n-HT40 MCS0	6	2437	not required	15.50	not required
		9	2452		14.50	
		1	2412		16.00	
	802.11ac-VHT20 MCS0	6	2437		18.50	
		11	2462		16.00	
		3	2422		15.50	
	802.11ac-VHT40 MCS0	6	2437		15.50	
		9	2452		14.50	

Report No. : FA1N0508-02

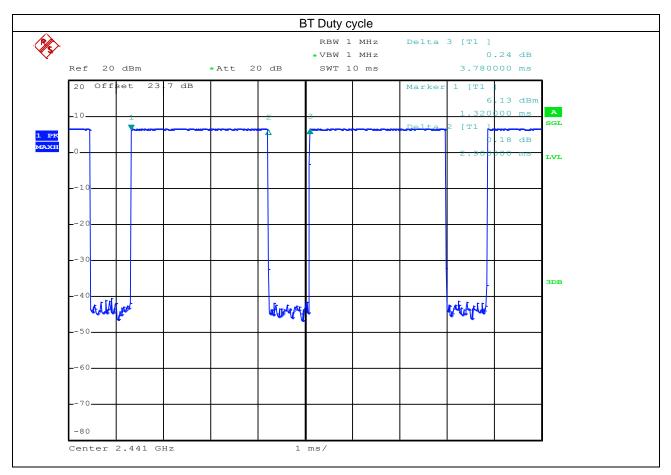
5.2GHz WLAN Average power (dBm) Frequency (MHz) Tune-Up Mode Channel Duty Cycle % 5180 15.50 36 40 5200 18.50 802.11a 6Mbps 44 18.50 5220 48 18.50 5240 not required not required 36 5180 15.50 40 5200 18.50 802.11n-HT20 MCS0 44 18.50 5220 5.2GHz WLAN 48 18.50 5240 38 5190 11.00 802.11n-HT40 MCS0 96.30 18.50 46 5230 18.40 36 5180 15.50 40 5200 18.50 802.11ac-VHT20 MCS0 44 5220 18.50 48 5240 not required 18.50 not required 38 5190 11.00 802.11ac-VHT40 MCS0 46 5230 18.50 802.11ac-VHT80 MCS0 42 9.50 5210

	5.3GHz WLAN				Ant 1		
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %	
		52	5260		18.50		
	802 11c CMbrc	56	5280		18.50		
	802.11a 6Mbps	60	5300]	18.50		
		64	5320	not required	16.00	not required	
		52	5260	not required	18.50	not required	
	802.11n-HT20 MCS0	56	5280		18.50		
	802.1111-H120 MCS0	60	5300		18.50		
5.3GHz WLAN		64	5320		16.00		
	802.11n-HT40 MCS0	54	5270	18.00	18.50	06.20	
	802.1111-H140 MCS0	62	5310	12.70	13.00	96.30	
		52	5260		18.50		
	802.11ac-VHT20 MCS0	56	5280		18.50		
	802.11ac-VH120 MCS0	60	5300		18.50		
		64	5320	not required	16.00	not required	
	802 11cc \/HT40 MCS0	54	5270		18.50		
	802.11ac-VHT40 MCS0	62	5310		13.00		
	802.11ac-VHT80 MCS0	58	5290		13.50		

Report No. : FA1N0508-02

	5.5GHz WLAN		Ant 1			
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %
		100	5500		17.00	
		116	5580] [17.00	
	802.11a 6Mbps	124	5620] [17.00	
		132	5660] [17.00	
		144	5720] [17.00	
		100	5500] [17.00	
		116	5580] [17.00	
	802.11n-HT20 MCS0	124	5620] [17.00	
		132	5660] [17.00	
		144	5720] [17.00	
		102	5510	1	14.00	
		110	5550] [17.00	
5.5GHz WLAN	802.11n-HT40 MCS0	126	5630	not required	17.00	not required
		134	5670] [17.00	
		142	5710] [17.00	
		100	5500] [17.00	
		116	5580] [17.00	
	802.11ac-VHT20 MCS0	124	5620] [17.00	
		132	5660] [17.00	
		144	5720] [17.00	
		102	5510] [14.00	
		110	5550] [17.00	
	802.11ac-VHT40 MCS0	126	5630		17.00	
		134	5670		17.00	
		142	5710] [17.00	
		106	5530	10.50	11.50	
	802.11ac-VHT80 MCS0	122	16.60	16.60	17.00	92.70
		138	16.60	16.60	17.00	

	5.8GHz WLAN		Ant 1				
	Mode	Channel	Frequency (MHz)	Average power (dBm)	Tune-Up Limit	Duty Cycle %	
		149	5745		17.50		
	802.11a 6Mbps	157	5785		17.50		
		165	5825	not required	17.50	not required	
		149	5745	not required	17.50	not required	
	802.11n-HT20 MCS0	157	5785		17.50		
5.8GHz WLAN		165	5825		17.50		
	802.11n-HT40 MCS0	151	5755	17.20	17.50	96.30	
	802.1111-FT140 MC30	159	5795	17.40	17.50	90.30	
		149	5745		17.50		
	802.11ac-VHT20 MCS0	157	5785		17.50		
		165	5825	not required	17.50	not required	
	802.11ac-VHT40 MCS0	151	5755		17.50		
	002.11ac-VH140 MCS0	159	5795		17.50		
	802.11ac-VHT80 MCS0	155	5775	17.20	17.50	92.70	



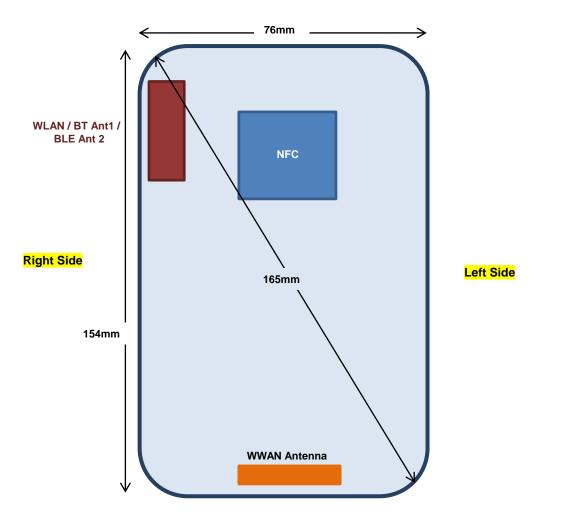
<2.4GHz Bluetooth>

Mode	Channel	Frequency	verage power (dBm	ו)	
Widde	Griannei	(MHz)	1Mbps	2Mbps	3Mbps
	CH 00	2402	6.40		
BR / EDR	CH 78	2480	6.50		
	Tune-up Limit	7.5			

General Note:

1. For 2.4GHz Bluetooth SAR testing was selected 1Mbps due to its highest average power and duty cycle is 76.72% considered in SAR testing, and the duty cycle would be scaled to theoretical 83.3% in reported SAR calculation.

Mode	Channel	Frequency	Average po	ower (dBm)
Widde		(MHz)	1Mbps	2Mbps
	CH 00	2402	5.60	
LE	CH 39	2480	5.80	
	Tune-up Limit		6	


General Note:

- 1. Transmit ant 2 only support BLE operation.
- 2. For 2.4GHz Bluetooth SAR testing was selected 1Mbps due to its highest average power and duty cycle is 62.72% considered in SAR testing, and the duty cycle would be scaled to theoretical 83.3% in reported SAR calculation.

-			BT Duty c	ycle			
1 Spectrum Scale/Div 10 dB	v		Ref Level 116.9			ΔMkr3	625.0 μs -0.23 dB
Log				ο αθήλου Γεγονομία Γεγονομία			-0.20 00
107							
97.0					<u></u>	3∆4 -	
77.0		- North Carlos and the second second second		al and a support of the support			
67.0	116 m 4 1			2	المراجع والمراجع		
57.0 What and A	n'i Milli		unding of a state of the		here and the states of the sta	4W	
47.0							
37.0							
27.0							
Center 4.880000000 Res BW 8 MHz	GHz		#Video BW 8	.0 MHz	Sv	veep 2.00 n	Span 0 Hz ns (2001 pts)
5 Marker Table	T						
Mode Trace	e Scale	Х	Y	Function	Function Width	Funct	ion Value
1 Δ2 1	t (Δ)	392.0 µs					
2 F 1	t (A)	1.001 ms					
4 F 1	t (Δ) t	625.0 µs 1.001 ms					

Top Side

Back View

Bottom Side

Distance of the Antenna to the EUT surface/edge												
Antennas Back Front Top Side Bottom Side Right Side Left Side												
WWAN Antenna	≤ 25mm	≤ 25mm	≤ 25mm									
WLAN/BT Antenna 1	≤ 25mm	≤ 25mm	≤ 25mm	>25mm	≤ 25mm	>25mm						
BLE Antenna 2	≤ 25mm	≤ 25mm	≤ 25mm	>25mm	≤ 25mm	>25mm						

14. <u>SAR Test Results</u>

General Note:

- 1. Per KDB 447498 D01v06, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. For SAR testing of WLAN signal with non-100% duty cycle, the measured SAR is scaled-up by the duty cycle scaling factor which is equal to "1/(duty cycle)"
 - c. For WWAN: Reported SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
 - d. For WLAN/Bluetooth: Reported SAR(W/kg)= Measured SAR(W/kg)* Duty Cycle scaling factor * Tune-up scaling factor
 - e. For TDD LTE SAR measurement, the duty cycle 1:1.59 (62.9 %) was used perform testing and considering the theoretical duty cycle of 63.3% for extended cyclic prefix in the uplink, and the theoretical duty cycle of 62.9% for normal cyclic prefix in uplink, a scaling factor of extended cyclic prefix 63.3%/62.9% = 1.006 is applied to scale-up the measured SAR result. The Reported TDD LTE SAR = measured SAR (W/kg)* Tune-up Scaling Factor* scaling factor for extended cyclic prefix.
- 2. Per KDB 447498 D01v06, for each exposure position, testing of other required channels within the operating mode of a frequency band is not required when the *reported* 1-g or 10-g SAR for the mid-band or highest output power channel is:
 - ≤ 0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≤ 100 MHz
 - ≤ 0.6 W/kg or 1.5 W/kg, for 1-g or 10-g respectively, when the transmission band is between 100 MHz and 200 MHz
 - ≤ 0.4 W/kg or 1.0 W/kg, for 1-g or 10-g respectively, when the transmission band is ≥ 200 MHz
- 3. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

14.1 <u>Head SAR</u>

<WCDMA SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)		Tune-up Scaling Factor			Reported 1g SAR (W/kg)
01	WCDMA IV	RMC 12.2Kbps	Left Cheek	0mm	Ant 1	1513	1752.6	24.11	25.00	1.227	-0.12	0.319	0.392

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Power Reduction	Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle		Drift	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
02	WLAN2.4GHz	802.11b 1Mbps	Left Cheek	0mm	Ant 1	1	2412	off	18.30	18.50	1.047	99.10	1.009	-0.1	0.579	0.612
03	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 1	54	5270	off	18.00	18.50	1.122	96.30	1.038	0.09	0.783	0.912
	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 1	62	5310	off	12.70	13.00	1.072	96.30	1.038	-0.14	0.211	0.235
	WLAN5GHz	802.11ac-VHT80 MCS0	Left Tilted	0mm	Ant 1	122	5610	on	16.60	17.00	1.096	92.70	1.079	0.12	0.754	0.892
	WLAN5GHz	802.11ac-VHT80 MCS0	Left Tilted	0mm	Ant 1	106	5530	on	10.50	11.50	1.259	92.70	1.079	0.19	0.486	0.660
04	WLAN5GHz	802.11ac-VHT80 MCS0	Left Tilted	0mm	Ant 1	138	5690	on	16.60	17.00	1.096	92.70	1.079	0.12	0.823	0.974
	WLAN5GHz	802.11ac-VHT80 MCS0	Left Tilted	0mm	Ant 1	155	5775	on	17.20	17.50	1.072	92.70	1.079	0.13	0.910	1.052
05	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 1	151	5755	on	17.20	17.50	1.072	96.30	1.038	0.14	1.070	1.190

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.		Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
06	Bluetooth	1Mbps	Left Cheek	0mm	Ant 1	78	2480	6.50	7.50	1.259	76.72	1.086	-0.02	0.038	0.052
	Bluetooth	1Mbps	Left Cheek	0mm	Ant 2	39	2480	5.80	6.00	1.047	62.72	1.328	0.13	0.001	0.001

14.2 Hotspot SAR

<FDD LTE SAR>

Plot No.	Band	BW (MHz)	Modulation	RB Size	RB offset	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Power		Tune-up Scaling Factor		Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
07	LTE Band 30	10M	QPSK	1	0	Back	10mm	Ant 2	27710	2310	23.79	24.00	1.050	-0.17	0.962	1.010
	LTE Band 30	10M	QPSK	25	0	Back	10mm	Ant 2	27710	2310	22.57	23.00	1.104	0.05	0.897	0.990
	LTE Band 30	10M	QPSK	50	0	Back	10mm	Ant 2	27710	2310	22.43	23.00	1.140	-0.11	0.853	0.973

<WLAN SAR>

Plo No.		Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
08	WLAN2.4GHz	802.11b 1Mbps	Back	10mm	Ant 1	1	2412	18.30	18.50	1.047	99.10	1.009	-0.06	0.234	0.247
09	WLAN5GHz	802.11n-HT40 MCS0	Back	10mm	Ant 1	46	5230	18.40	18.50	1.023	96.30	1.038	-0.05	0.449	0.477
10	WLAN5GHz	802.11ac-VHT80 MCS0	Back	10mm	Ant 1	155	5775	18.20	18.50	1.072	92.70	1.079	-0.05	0.821	0.949

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
11	Bluetooth	1Mbps	Back	10mm	Ant 1	0	2402	6.40	7.50	1.288	76.72	1.086	-0.13	0.015	0.021
	Bluetooth	1Mbps	Back	10mm	Ant 2	0	2402	5.60	6.00	1.096	62.72	1.328	0.19	0.002	0.003

14.3 Body-Worn Accessory SAR

<WLAN SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
12	WLAN2.4GHz	802.11b 1Mbps	Back	15mm	Ant 1	1	2412	18.30	18.50	1.047	99.10	1.009	-0.19	0.115	0.122
13	WLAN5GHz	802.11n-HT40 MCS0	Back	15mm	Ant 1	54	5270	18.00	18.50	1.122	96.30	1.038	-0.1	0.294	0.342
14	WLAN5GHz	802.11ac-VHT80 MCS0	Back	15mm	Ant 1	138	5690	18.30	18.50	1.047	92.70	1.079	-0.08	0.516	0.583
15	WLAN5GHz	802.11ac-VHT80 MCS0	Back	15mm	Ant 1	155	5775	18.20	18.50	1.072	92.70	1.079	0.1	0.687	0.794

<Bluetooth SAR>

Plot No.	Band	Mode	Test Position	Gap (mm)	Antenna	Ch.		Average Power (dBm)	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Duty Cycle %	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Reported 1g SAR (W/kg)
16	Bluetooth	1Mbps	Back	15mm	Ant 1	0	2402	6.40	7.50	1.288	76.72	1.086	-0.04	0.006	0.009
	Bluetooth	1Mbps	Back	15mm	Ant 2	0	2402	5.60	6.00	1.096	62.72	1.328	-0.18	0.001	0.001

Report No. : FA1N0508-02

14.4 Repeated SAR Measurement

No.	Band	Mode	Test Position	Gap (mm)	Antenna	(h	Freq. (MHz)	Power Reduction	Power	Tune-Up Limit (dBm)	Tune-up Scaling Factor	Cycle	Duty Cycle Scaling Factor	Power Drift (dB)	Measured 1g SAR (W/kg)	Ratio	Reported 1g SAR (W/kg)
1st	WLAN5GHz	802.11ac-VHT80 MCS0	Left Tilted	0mm	Ant 1	138	5690	on	16.60	17.00	1.096	92.70	1.079	0.12	0.823	-	0.974
2nd	WLAN5GHz	802.11ac-VHT80 MCS0	Left Tilted	0mm	Ant 1	138	5690	on	16.60	17.00	1.096	92.70	1.079	0.09	0.791	1.04	0.936
1st	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 1	151	5755	on	17.20	17.50	1.072	96.30	1.038	0.14	1.070	-	1.190
2nd	WLAN5GHz	802.11n-HT40 MCS0	Left Tilted	0mm	Ant 1	151	5755	on	17.20	17.50	1.072	96.30	1.038	-0.07	0.984	1.09	1.094
1st	LTE Band 30	10M_QPSK_1_0	Back	10mm	Ant 2	27710	2310		23.79	24.00	1.050	-	1.000	-0.17	0.962	-	1.010
2nd	LTE Band 30	10M_QPSK_1_0	Back	10mm	Ant 2	27710	2310		23.79	24.00	1.050	-	1.000	0.08	0.945	1.02	0.992

General Note:

1. Per KDB 865664 D01v01r04, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.

2. Per KDB 865664 D01v01r04, if the ratio among the repeated measurement is ≤ 1.2 and the measured SAR <1.45W/kg, only one repeated measurement is required.

3. The ratio is the difference in percentage between original and repeated measured SAR.

4. All measurement SAR result is scaled-up to account for tune-up tolerance and is compliant.

15. <u>Simultaneous Transmission Analysis</u>

NO.	Simultaneous Transmission Configurations		Dev	/ice	
NO.	Simulations Transmission Configurations	Head	Body-worn	Hotspot	Product Specific
1.	WWAN + WLAN2.4GHz Ant 1	Yes	Yes	Yes	Yes
2.	WWAN + WLAN5GHz Ant 1	Yes	Yes	Yes	Yes
3.	WWAN + Bluetooth Ant 1	Yes	Yes	Yes	Yes
4.	WWAN + Bluetooth Ant 2	Yes	Yes	Yes	Yes

General Note:

- 1. This device WLAN 2.4GHz / 5.2GHz / 5.8GHz supports Hotspot operation and Bluetooth support tethering applications.
- 2. The worst case WLAN reported SAR for each configuration was used for SAR summation. Therefore, the following summations represent the absolute worst cases for simultaneous transmission with WLAN.
- 3. The Scaled SAR summation is calculated based on the same configuration and test position.
- 4. Per KDB 447498 D01v06, simultaneous transmission SAR is compliant if,
 - i) Scalar SAR summation < 1.6W/kg.
 - SPLSR = (SAR1 + SAR2)^1.5 / (min. separation distance, mm), and the peak separation distance is determined from the square root of [(x1-x2)² + (y1-y2)² + (z1-z2)²], where (x1, y1, z1) and (x2, y2, z2) are the coordinates of the extrapolated peak SAR locations in the zoom scan.
 - iii) If SPLSR \leq 0.04, simultaneously transmission SAR measurement is not necessary.
 - iv) Simultaneously transmission SAR measurement, and the reported multi-band SAR < 1.6W/kg.

15.1 Head Exposure Conditions

		1	2	3	4	5	1+2	1+3	1+4	1+5
WWAN Band	Exposure Position	WWAN	WLAN2.4GHz Ant 1	WLAN5GHz Ant 1	Bluetooth Ant 1	Bluetooth Ant 2	Summed 1g SAR	Summed 1g SAR	Summed 1g SAR	Summed 1g SAR
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
	Right Cheek	0.260	0.272	0.568	0.013	0.001	0.532	0.828	0.273	0.261
WCDMA IV	Right Tilted	0.188	0.293	0.619	0.013	0.001	0.481	0.807	0.201	0.189
WCDIVIA IV	Left Cheek	0.487	0.747	0.748	0.057	0.001	1.234	1.235	0.544	0.488
	Left Tilted	0.187	0.425	1.190	0.024	0.001	0.612	1.377	0.211	0.188

15.2 Hotspot Exposure Conditions

		1	2	3	4	5	1+2	1+3	1+4	1+5		
WWAN Band	Exposure Position	WWAN	WLAN2.4GHz Ant 1	WLAN5GHz Ant 1	Bluetooth Ant 1	Bluetooth Ant 2	Summed 1g SAR	Summed 1g SAR	Summed 1g SAR	Summed 1g SAR	SPLSR	Case No
Dania	. conten	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)		
	Front	0.253	0.165	0.310	0.006	0.001	0.418	0.563	0.259	0.254		
	Back	1.176	0.247	0.949	0.021	0.003	1.423	2.125	1.197	1.179	1.00	0.020
LTE Band 30	Left side	0.154					0.154	0.154	0.154	0.154		
LIE Band 30	Right side	0.038	0.117	0.581	0.009	0.001	0.155	0.619	0.047	0.039		
	Top side		0.114	0.597	0.008	0.001	0.114	0.597	0.008	0.001		
	Bottom side	0.486					0.486	0.486	0.486	0.486		

15.3 Body-Worn Accessory Exposure Conditions

		1	2	3	4	5	1+2	1+3	1+4	1+5
WWAN Band	Exposure Position	WWAN	WLAN2.4GHz Ant 1	WLAN5GHz Ant 1	Bluetooth Ant 1	Bluetooth Ant 2	Summed 1g SAR	Summed 1g SAR	Summed 1g SAR	Summed 1g SAR
		1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	1g SAR (W/kg)	(W/kg)	(W/kg)	(W/kg)	(W/kg)
LTE Band 7	Front	0.229	0.084	0.173	0.003	0.001	0.313	0.402	0.232	0.230
LTE Band 7	Back	0.583	0.126	0.794	0.009	0.001	0.709	1.377	0.592	0.584

Test Engineer : Jocelyn Huang and Putzie Chen

16. Uncertainty Assessment

Per KDB 865664 D01 SAR measurement 100MHz to 6GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg and the measured 10-g SAR within a frequency band is < 3.75 W/kg. The expanded SAR measurement uncertainty must be \leq 30%, for a confidence interval of k = 2. If these conditions are met, extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. For this device, the highest measured 1-g SAR is less 1.5W/kg and highest measured 10-g SAR is less 3.75W/kg. Therefore, the measurement uncertainty table is not required in this report. Declaration of Conformity:

The test results with all measurement uncertainty excluded is presented in accordance with the regulation limits or requirements declared by manufacturers.

Comments and Explanations:

The declared of product specification for EUT presented in the report are provided by the manufacturer, and the manufacturer takes all the responsibilities for the accuracy of product specification.

17. <u>References</u>

- [1] FCC 47 CFR Part 2 "Frequency Allocations and Radio Treaty Matters; General Rules and Regulations"
- [2] ANSI/IEEE Std. C95.1-1992, "IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz", September 1992
- [3] IEEE Std. 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", Sep 2013
- [4] SPEAG DASY System Handbook
- [5] FCC KDB 248227 D01 v02r02, "SAR Guidance for IEEE 802.11 (WiFi) Transmitters", Oct 2015.
- [6] FCC KDB 447498 D01 v06, "Mobile and Portable Device RF Exposure Procedures and Equipment Authorization Policies", Oct 2015
- [7] FCC KDB 648474 D04 v01r03, "SAR Evaluation Considerations for Wireless Handsets", Oct 2015.
- [8] FCC KDB 941225 D01 v03r01, "3G SAR MEAUREMENT PROCEDURES", Oct 2015
- [9] FCC KDB 941225 D05 v02r05, "SAR Evaluation Considerations for LTE Devices", Dec 2015
- [10] FCC KDB 941225 D05A v01r02, "Rel. 10 LTE SAR Test Guidance and KDB Inquiries", Oct 2015
- [11] FCC KDB 941225 D06 v02r01, "SAR Evaluation Procedures for Portable Devices with Wireless Router Capabilities", Oct 2015.
- [12] FCC KDB 941225 D07 v01r02, " SAR Evaluation Procedures for UMPC Mini-Tablet Devices", Oct 2015.
- [13] FCC KDB 865664 D01 v01r04, "SAR Measurement Requirements for 100 MHz to 6 GHz", Aug 2015.
- [14] FCC KDB 865664 D02 v01r02, "RF Exposure Compliance Reporting and Documentation Considerations" Oct 2015.