

FCC RADIO TEST REPORT

FCC ID	:	HD5-CT30PL0N
Equipment	:	Mobile computer
Brand Name	:	Honeywell
Model Name	:	CT30PL0N
Applicant	:	Honeywell International Inc. 9680 Old Bailes Road, Fort Mill, SC 29707 USA
Manufacturer	:	Honeywell International Inc. 9680 Old Bailes Road, Fort Mill, SC 29707 USA
Standard	:	FCC Part 15 Subpart E §15.407

The product was received on May 08, 2023 and testing was performed from May 20, 2023 to Jul. 04, 2023. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

Page Number	: 1 of 16
Issue Date	: Jul. 06, 2023
Report Version	: 01

Table of Contents

His	story o	of this test report	3
Su	mmar	y of Test Result	4
1	Gene	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	5
	1.3	Testing Location	6
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	7
	2.3	Connection Diagram of Test System	8
	2.4	Support Unit used in test configuration and system	8
	2.5	EUT Operation Test Setup	8
3	Test	Result	9
	3.1	Maximum Conducted Output Power Measurement	9
	3.2	Unwanted Emissions Measurement	10
	3.3	Antenna Requirements	14
4	List o	of Measuring Equipment	15
5	Unce	ertainty of Evaluation	16
Ар	pendi	x A. Conducted Test Results	
Ар	pendi	x B. Radiated Spurious Emission	
Ар	pendi	x C. Radiated Spurious Emission Plots	
Ар	pendi	x D. Duty Cycle Plots	
Ар	pendi	x E. Setup Photographs	

History of this test report

Report No.	Version	Description	Issue Date
FR1N0506-07B	01	Initial issue of report	Jul. 06, 2023

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.403(i)	6dB & 26dB Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.407(a)	Maximum Conducted Output Power	Pass	-
-	15.407(a)	Power Spectral Density	Not Required	-
3.2	15.407(b)	Unwanted Emissions	Pass	11.77 dB under the limit at 11490.00 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.3	15.203	Antenna Requirement	Pass	-

Note:

- 1. Not required means after assessing, test items are not necessary to carry out.
- This is a variant report by reducing power for WLAN (5GHz) CH140 band via software. All the test cases were performed on original report which can be referred to Sporton Report Number FR1N0506-05D. Based on the original report, only worst case was verified.

Conformity Assessment Condition:

- The test results (PASS/FAIL) with all measurement uncertainty excluded are presented against the regulation limits or in accordance with the requirements stipulated by the applicant/manufacturer who shall bear all the risks of non-compliance that may potentially occur if measurement uncertainty is taken into account.
- 2. The measurement uncertainty please refer to each test result in the section "Measurement Uncertainty".

Disclaimer:

The product specifications of the EUT presented in the test report that may affect the test assessments are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen

Report Producer: Lucy Wu

General Description 1

1.1 Product Feature of Equipment Under Test

Product Feature		
General Specs		
Bluetooth, Wi-Fi 2.4GHz 802	.11b/g/n/ac, Wi-Fi 5GHz 802.11a/n/ac and NFC.	
Antenna Type		
WLAN5GHz		
<ant. 1="">: PIFA Antenna</ant.>		
WLAN2.4GHz		
<ant. 2="">: PIFA Antenna</ant.>		
Bluetooth: PIFA Antenna		
NFC: Loop Antenna		
Sample 1	with Scanner (S0703)	
Sample 2	Non Scanner	
HW Version	v1.0	
SW Version	OS.11.001	
Antenna information		

5725 MHz ~ 5850 MHz	Peak Gain (dBi)	3.4
Remark:		

- The EUT's information above is declared by manufacturer. Please refer to Disclaimer in report 1. summary.
- Internal tracking board version is DVT2(NFC) and SW PN is 311.C0.00.1069-G-DEBUG. 2.

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory	
Test Site Location	No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855	
Test Site No.	Sporton Site No. TH05-HY, 03CH13-HY	

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (1 GHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
5725-5850 MHz Band 4 (U-NII-3)	149	5745	157	5785
	151*	5755	159*	5795
	153	5765	161	5805
	155 [#]	5775	165	5825

2.1 Carrier Frequency and Channel

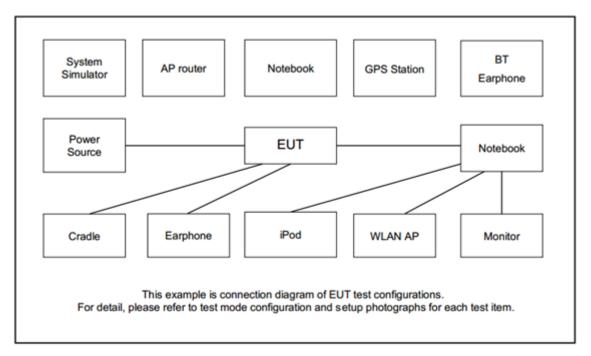
Note:

1. The above Frequency and Channel with "*" are 802.11n HT40 and 802.11ac VHT40.

2. The above Frequency and Channel with "#" are 802.11ac VHT80.

2.2 Test Mode

The final test modes include the worst data rates for each modulation shown in the table below.


Modulation	Data Rate
802.11a	6 Mbps

Ch. #		Band IV:5725-5850 MHz	
	Cn. #	802.11a	
L	Low	149	
М	Middle	-	
н	High	-	

Remark: For Radiated Test Cases, the tests were performed with Sample 1.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Acer	N18Q13	PD9AX201NG	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Version 4.0.211.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Maximum Conducted Output Power Measurement

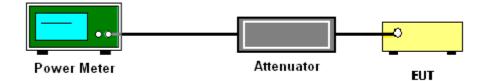
3.1.1 Limit of Maximum Conducted Output Power

For the band 5.725–5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.1.3 Test Procedures

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using a gated RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter.
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.1.4 Test Setup

3.1.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

3.2 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.2.1 Limit of Unwanted Emissions

(1) For transmitters operating in the 5.725-5.85 GHz band:

15.407(b)(4)(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(2) Unwanted spurious emissions falls in restricted bands shall comply with the general field strength limits as below table,

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

Note: The following formula is used to convert the EIRP to field strength.

$$E = \frac{1000000\sqrt{30P}}{3} \mu V$$

μV/m, where P is the eirp (Watts)

EIRP (dBm)	Field Strength at 3m (dBµV/m)				
- 27	68.3				

(3) KDB789033 D02 v02r01 G)2)c)

(i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.

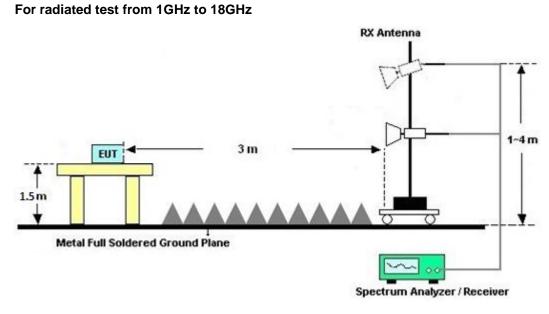
(ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.2.2 Measuring Instruments

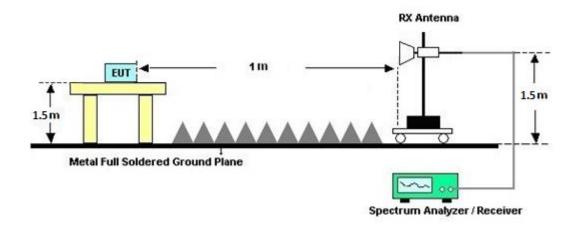
Please refer to the measuring equipment list in this test report.

3.2.3 Test Procedures

- The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section G) Unwanted emissions measurement.
 - (1) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz
 - RBW = 1 MHz
 - VBW ≥ 3 MHz
 - Detector = Peak
 - Sweep time = auto
 - Trace mode = max hold
 - (2) Procedures for Average Unwanted Emissions Measurements Above 1000 MHz
 - a) RBW = 1 MHz
 - b) $VBW \ge [3 \times RBW].$
 - c) Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
 - Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
 - e) Sweep time = auto.
 - f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)


FCC RADIO TEST REPORT

- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - i. If power averaging (rms) mode was used in the preceding step <u>e</u>), then the correction factor is [10 log (1 / D)], where D is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
 - If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.
- 2. The EUT is placed on a turntable with 1.5 meter for frequency above 1 GHz respectively above ground.
- 3. The EUT is set 3 meters away from the receiving antenna which is mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT is arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies.


When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

3.2.4 Test Setup

For radiated test above 18GHz

3.2.5 Duty Cycle

Please refer to Appendix D.

3.2.6 Test Result of Unwanted Radiated Emission

Please refer to Appendix B and C.

3.3 Antenna Requirements

3.3.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	ument Brand Name Model No. Serial No. Characteristics		Calibration Date	Test Date	Due Date	Remark		
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 07, 2022	May 24, 2023~ May 25, 2023	· · · · · · · · · · · · · · · · · · ·	
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	00993	18GHz-40GHz	Nov. 24, 2022	May 24, 2023~ May 25, 2023	Nov. 23, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	803953/2	30MHz~40GHz	Dec. 20, 2022	May 24, 2023~ May 25, 2023	Dec. 19, 2023	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1326	1GHz~18GHz	Aug. 24, 2022	May 24, 2023~ May 25, 2023	Aug. 23, 2023	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 16, 2023	May 24, 2023~ May 25, 2023	May 15, 2024	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY53270147	1GHz~26.5GHz	Oct. 25, 2022	May 24, 2023~ May 25, 2023	Oct. 24, 2023	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Mar. 23, 2023	May 24, 2023~ May 25, 2023	Mar. 22, 2024	Radiation (03CH13-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000- 40ST	SN5	6.75GHz High Pass Filter	Mar. 09, 2023	May 24, 2023~ May 25, 2023	Mar. 08, 2024	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30MHz~18GHz	Feb. 08, 2023	May 24, 2023~ May 25, 2023	Feb. 07, 2024	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30MHz~18GHz	Feb. 08, 2023	May 24, 2023~ May 25, 2023	Feb. 07, 2024	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30MHz~18GHz	Feb. 08, 2023	May 24, 2023~ May 25, 2023	Feb. 07, 2024	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Nov. 07, 2022	May 24, 2023~ May 25, 2023	Nov. 06, 2023	Radiation (03CH13-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	May 24, 2023~ May 25, 2023	N/A	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	May 24, 2023~ May 25, 2023	N/A	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	May 24, 2023~ May 25, 2023	N/A	Radiation (03CH13-HY)
Software	Audix	N/A	RK-001124	N/A	N/A	May 24, 2023~ May 25, 2023	N/A	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Nov. 17, 2022	May 20, 2023~ Jul. 04, 2023	Nov. 16, 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	16I00054SNO 12 (NO:113)	10MHz~6GHz	Dec. 13, 2022	May 20, 2023~ Jul. 04, 2023	Dec. 12, 2023	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz(amp)	Aug. 03, 2022	May 20, 2023~ Jul. 04, 2023	Aug. 02, 2023	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.4 dB			
of 95% (U = 2Uc(y))	4.4 dB			

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.8 dB
of 95% (U = 2Uc(y))	

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3 dB		
of 95% (U = 2Uc(y))	5.5 UB		

Appendix A. Test Result of Conducted Test Items

Test Engineer:	James Li	Temperature:	21~25	°C
Test Date:	2023/5/20~2023/7/4	Relative Humidity:	51~54	%

Report Number : FR1N0506-07B

<u>TEST RESULTS DATA</u> <u>Average Power Table</u>

	Band IV single antenna											
Mod.	Data Rate	Ntx	CH.	Freq. (MHz)	Average Conducted Power (dBm)		FCC Conducted Power Limit (dBm)		DG (dBi)		Pass/Fail	
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
11a	6Mbps	1	149	5745	18.30	-	-	30.00	-	3.40	-	Pass

Appendix B. Radiated Spurious Emission

Test Engineer : Ja	Jacky Hung, Mancy Chou, Michael Liu and Rain Lee	Temperature :	20~26°C
		Relative Humidity :	40~65%

Band 4 5725~5850MHz

WIFI	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		11490	46.73	-27.27	74	52.72	38.92	11.06	55.97	-	-	Р	Н
		17235	47.5	-20.7	68.2	51.58	38.37	13.83	56.28	-	-	Ρ	н
													н
													Н
													Н
													Н
													н
													н
													н
802.11a													н
CH 149 5745MHz		11490	52.19	-21.81	74	58.18	38.92	11.06	55.97	172	2	Р	V
5745IVITIZ		11490	42.23	-11.77	54	48.22	38.92	11.06	55.97	172	2	А	V
		17235	47.2	-21	68.2	51.28	38.37	13.83	56.28	-	-	Р	V
													V
													V
													V
													V
													V
													V
													V
	1. N	o other spuriou	s found.	1	1	1	1		1	1	1		1
Denser	2. A	ll results are PA	.SS against F	Peak and	Average lim	it line.							
Remark	3. Т	ne emission pos	sition marked	las"-"m	eans no sus	pected em	ission found	d with suf	ficient mar	gin agai	inst limit	line or	noise
	flo	oor only.											

WIFI 802.11a (Harmonic @ 3m)

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11a		5780	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	Н
CH 149													
5745MHz		5780	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- 3. Margin(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

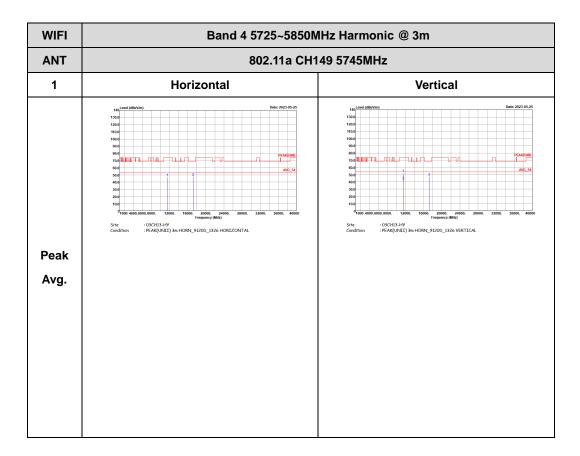
For Peak Limit @ 5780MHz:

- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 5780MHz:

- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 42.6(dBµV) 35.86 (dB)
- = 43.54 (dBµV/m)
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

Both peak and average measured complies with the limit line, so test result is "PASS".



Appendix C. Radiated Spurious Emission Plots

Test Engineer :	Jacky Hung, Mancy Chou, Michael Liu and Rain Lee	Temperature :	20~26°C
lest Engineer .		Relative Humidity :	40~65%

Band 4 - 5725~5850MHz

WIFI 802.11a (Harmonic @ 3m)

Appendix D. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
1	802.11a	98.10	-	-	10Hz

<Ant. 1>

02.1	l1a							
	ectrum Analyzer - S							
RL	RF 50			SENS		ALIGN OFF	02:01:54 AM May 25, 2023	Marker
larker 3	Δ 2.10400) ms	0110 5	Trig: Free F	#A'	vg Type: RMS	TRACE 2 3 4 5 6 TYPE WWWWWW DET PPPPP	mainter
			PNO: Fast * IFGain:Low	Atten: 20 d			DET PPPPP	Select Marker
							∆Mkr3 2.104 ms	Select Marker
0 dB/div .og √	Ref 116.9	9 dBµV					0.70 dB	3
107				<u>3</u> Δ				
								Norma
97.0 нале ни	Conductor Conductor	X	and the second s	and a start of the second		warder Aller and a start and	******	
87.0								
77.0								
67.0								Delt
57.0								
47.0								
37.0								Fixed
27.0								Tixeu
27.0								
enter 5	745000000	CH7					Span 0 Hz	
tes BW 8		GHZ	#VB	W 8.0 MHz		Sweep 8	8.000 ms (1001 pts)	0
NKR MODE TR		х		Y	FUNCTION	FUNCTION WIDTH	FUNCTION VALUE	
	t (Δ)		2.064 ms (A 1.706 ms) 0.83 d 96.67 dBµ		_		
3 A4 1	t (Δ)		2.104 ms (A) 0.70 d	3			Description
4 F 4	t		1.706 ms	96.67 dBµ	/			Properties
5							=	
7								
8								Mor
0								1 of
11							-	
							•	
-						STATU	10	