

FCC RADIO TEST REPORT

FCC ID	:	HD5-CT30PL0N
Equipment	:	Mobile computer
Brand Name	:	Honeywell
Model Name	:	CT30PL0N
Applicant	:	Honeywell International Inc. 9680 Old Bailes Road, Fort Mill, SC 29707 USA
Manufacturer	:	Honeywell International Inc. 9680 Old Bailes Road, Fort Mill, SC 29707 USA
Standard	:	FCC Part 15 Subpart E §15.407

The product was received on Oct. 26, 2022 and testing was performed from Oct. 26, 2022 to Nov. 17, 2022. We, Sporton International Inc. Wensan Laboratory, would like to declare that the tested sample has been evaluated in accordance with the test procedures and has been in compliance with the applicable technical standards.

The test results in this variant report apply exclusively to the tested model / sample. Without written approval from Sporton International Inc. Wensan Laboratory, the test report shall not be reproduced except in full.

Louis Wu

Approved by: Louis Wu

Sporton International Inc. Wensan Laboratory

No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.)

TEL: 886-3-327-0868	
FAX: 886-3-327-0855	
Report Template No.: BU5-FR15EWL AC MA Version 2.4	ł

Page Number: 1 of 18Issue Date: Dec. 13, 2022Report Version: 02

Table of Contents

His	story	of this test report	3
Su	mmar	ry of Test Result	4
1	Gen	eral Description	5
	1.1	Product Feature of Equipment Under Test	5
	1.2	Modification of EUT	
	1.3	Testing Location	
	1.4	Applicable Standards	6
2	Test	Configuration of Equipment Under Test	7
	2.1	Carrier Frequency and Channel	7
	2.2	Test Mode	8
	2.3	Connection Diagram of Test System	9
	2.4	Support Unit used in test configuration and system	
	2.5	EUT Operation Test Setup	9
3	Test	Result	10
	3.1	Maximum Conducted Output Power Measurement	10
	3.2	Unwanted Emissions Measurement	12
	3.3	Antenna Requirements	16
4	List	of Measuring Equipment	17
5	Unce	ertainty of Evaluation	
Ар	pendi	ix A. Conducted Test Results	
Ар	pendi	ix B. Radiated Spurious Emission	
Ар	pendi	ix C. Radiated Spurious Emission Plots	
Ар	pendi	ix D. Duty Cycle Plots	

Appendix E. Setup Photographs

History of this test report

Report No.	Version	Description	Issue Date
FR1N0506-05C	01	Initial issue of report	Dec. 02, 2022
FR1N0506-05C	02	 Adding description for Radiated Spurious Emission test. Removing data for frequency 5725 MHz to 5850 MHz Revising description for Unwanted Emissions Measurement Test Procedures 	Dec. 13, 2022

Summary of Test Result

Report Clause	Ref Std. Clause	Test Items	Result (PASS/FAIL)	Remark
-	15.403	Emission Bandwidth	Not Required	-
-	2.1049	99% Occupied Bandwidth	Not Required	-
3.1	15.407(a)	Maximum Conducted Output Power	Pass	-
-	15.407(a)	Power Spectral Density	Not Required	-
3.2	15.407(b)	Unwanted Emissions	Pass	2.73 dB under the limit at 5495.440 MHz
-	15.207	AC Conducted Emission	Not Required	-
3.3	15.203	Antenna Requirement	Pass	-

Note:

- 1. Not required means after assessing, test items are not necessary to carry out.
- This is a variant report by changing NFC antenna and down power scenario for WLAN (5GHz) band. All the test cases were performed on original report which can be referred to Sporton Report Number FR1N0506E. Based on the original report, only worst case was verified.

Declaration of Conformity: The test results (PASS/FAIL) with all measurement uncertainty excluded are presented in accordance with the regulation limits or requirements declared by manufacturers. It's means measurement values may risk exceeding the limit of regulation standards, if measurement uncertainty is include in test results. The measurement uncertainty please refer to report "Uncertainty of Evaluation". Comments and Explanations:

The product specifications of the EUT presented in the report are declared by the manufacturer who shall take full responsibility for the authenticity.

Reviewed by: Wei Chen

Report Producer: Lucy Wu

1 General Description

1.1 Product Feature of Equipment Under Test

Bluetooth, Wi-Fi 2.4GHz 802.11b/g/n/ac, Wi-Fi 5GHz 802.11a/n/ac and NFC.

Product Feature				
Sample 1	Sample 1 with Scanner (S0703)			
Sample 2	Non Scanner			
HW Version	v1.0			
SW Version	OS.11.001			
	WLAN5GHz			
	<ant. 1="">: PIFA Antenna</ant.>			
Antonno Turno	WLAN2.4GHz			
Antenna Type	<ant. 2="">: PIFA Antenna</ant.>			
	Bluetooth: PIFA Antenna			
	NFC: Loop Antenna			
Antenna information				

Antenna information				
5150 MHz ~ 5250 MHz	Peak Gain (dBi)	3.3		
5250 MHz ~ 5350 MHz	Peak Gain (dBi)	2.8		
5470 MHz ~ 5725 MHz	Peak Gain (dBi)	2.8		

Remark:

- 1. The EUT's information above is declared by manufacturer. Please refer to Comments and Explanations in report summary.
- 2. Internal tracking board version is DVT2(NFC) and SW PN is 311.C0.00.1069-G-DEBUG

1.2 Modification of EUT

No modifications made to the EUT during the testing.

1.3 Testing Location

Test Site	Sporton International Inc. Wensan Laboratory		
Test Site Location No.58, Aly. 75, Ln. 564, Wenhua 3rd, Rd., Guishan Dist., Taoyuan City 333010, Taiwan (R.O.C.) TEL: +886-3-327-0868 FAX: +886-3-327-0855			
Test Site No.	Sporton Site No.		
	TH05-HY, 03CH13-HY		

Note: The test site complies with ANSI C63.4 2014 requirement.

FCC designation No.: TW3786

1.4 Applicable Standards

According to the specifications declared by the manufacturer, the EUT must comply with the requirements of the following standards:

- FCC Part 15 Subpart E
- FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.
- ANSI C63.10-2013

Remark:

- 1. All the test items were validated and recorded in accordance with the standards without any modification during the testing.
- 2. The TAF code is not including all the FCC KDB listed without accreditation.

2 Test Configuration of Equipment Under Test

a. The EUT has been associated with peripherals and configuration operated in a manner tended to maximize its emission characteristics in a typical application. Frequency range investigated: radiation emission (1 GHz to the 10th harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower). For radiated measurement, the measured emission level of the EUT was maximized by rotating the EUT on a turntable, adjusting the orientation of the EUT and EUT antenna in three orthogonal axis (X: flat, Y: portrait, Z: landscape), and adjusting the measurement antenna orientation, following C63.10 exploratory test procedures and only the worst case emissions were reported in this report.

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	36	5180	44	5220
5150-5250 MHz Band 1	38*	5190	46*	5230
(U-NII-1)	40	5200	48	5240
(0 (11))	42#	5210		
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	52	5260	60	5300
5250-5350 MHz Band 2	54*	5270	62*	5310
(U-NII-2A)	56	5280	64	5320
	58 [#]	5290		
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	100	5500	112	5560
	102*	5510	116	5580
5470-5725 MHz Band 3 (U-NII-2C)	104	5520	132	5660
	106 [#]	5530	134*	5670
(0 111 20)	108	5540	136	5680
	110*	5550	140	5700

2.1 Carrier Frequency and Channel

Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
	118*	5590	124	5620
TDWR Channel	120	5600	126*	5630
	122 [#]	5610	128	5640
Frequency Band	Channel	Freq. (MHz)	Channel	Freq. (MHz)
Straddle Channel	138#	5690	144	5720
	142*	5710		

Note:

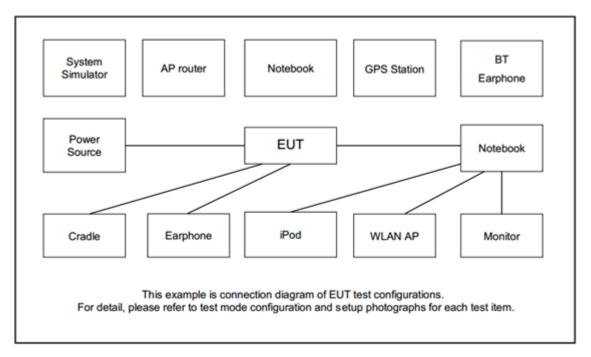
- 1. The above Frequency and Channel with "*" are 802.11n HT40 and 802.11ac VHT40.
- 2. The above Frequency and Channel with "#" are 802.11ac VHT80.

2.2 Test Mode

The final test modes include the worst data rates for each modulation shown in the table below.

MIMO Mode

Modulation	Data Rate	
802.11ac VHT80	MCS0	


Ch. #		Band I:5150-5250 MHz	Band II:5250-5350 MHz	Band III:5470-5725MHz
		802.11ac VHT80	802.11ac VHT80	802.11ac VHT80
L	Low	-	-	106
М	Middle	42	58	-
н	High	-	-	-

Remark:

- 1. For Radiated Test Cases, the tests were performed with Sample 1.
- 2. Only radiated measurements are used to show compliance with FCC limits for fundamental and spurious emissions.

2.3 Connection Diagram of Test System

2.4 Support Unit used in test configuration and system

Item	Equipment	Brand Name	Model Name	FCC ID	Data Cable	Power Cord
1.	Notebook	Acer	N18Q13	PD9AX201NG	N/A	AC I/P: Unshielded, 1.2 m DC O/P: Shielded, 1.8 m

2.5 EUT Operation Test Setup

The RF test items, utility "QRCT Version 4.0.00158.0" was installed in Notebook which was programmed in order to make the EUT get into the engineering modes to provide channel selection, power level, data rate and the application type and for continuous transmitting signals.

3 Test Result

3.1 Maximum Conducted Output Power Measurement

3.1.1 Limit of Maximum Conducted Output Power

<FCC 14-30 CFR 15.407>

For the 5.15–5.25 GHz bands:

■ For mobile and portable client devices in the 5.15–5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW. For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W.

For the 5.25–5.725 GHz bands:

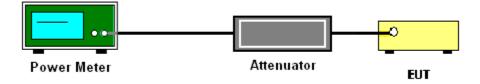
The maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm 10 log B, where B is the 26 dB emission bandwidth in megahertz.

If transmitting antennas of directional gain greater than 6 dBi are used, the peak output power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Note that U-NII-2 band, devices with a maximum e.i.r.p. greater than 500 mW shall implement TPC in order to have the capability to operate at least 6 dB below the maximum permitted e.i.r.p. of 1 W.

3.1.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.


3.1.3 Test Procedures

The testing follows Method PM-G of FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01.

Method PM-G (Measurement using a gated RF average power meter):

- 1. Measurement is performed using a wideband RF power meter.
- 2. The EUT is configured to transmit at its maximum power control level.
- 3. Measure the average power of the transmitter.
- 4. Since the measurement is made only during the ON time of the transmitter, no duty cycle correction factor is required.

3.1.4 Test Setup

3.1.5 Test Result of Maximum Conducted Output Power

Please refer to Appendix A.

3.2 Unwanted Emissions Measurement

This section is to measure unwanted emissions through radiated measurement for band edge spurious emissions and out of band emissions measurement.

3.2.1 Limit of Unwanted Emissions

 For transmitters operating in the 5150-5250 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of –27dBm/MHz.

For transmitters operating in the 5250-5350 MHz band: all emissions outside of the 5150-5350 MHz band shall not exceed an EIRP of -27 dBm/MHz. Devices operating in the 5250-5350 MHz band that generate emissions in the 5150-5250 MHz band must meet all applicable technical requirements for operation in the 5150-5250 MHz band (including indoor use) or alternatively meet an out-of-band emission EIRP limit of -27 dBm/MHz in the 5150-5250 MHz band.

For transmitters operating in the 5470-5600 MHz and 5650-5725MHz band: all emissions outside of the 5470-5600 MHz and 5650-5725MHz band shall not exceed an EIRP of -27 dBm/MHz.

(2) Unwanted spurious emissions falls in restricted bands shall comply with the general field strength limits as below table:

Frequency	Field Strength	Measurement Distance		
(MHz)	(microvolts/meter)	(meters)		
0.009 - 0.490	2400/F(kHz)	300		
0.490 – 1.705	24000/F(kHz)	30		
1.705 – 30.0	30	30		
30 – 88	100	3		
88 – 216	150	3		
216 - 960	200	3		
Above 960	500	3		

Note: The following formula is used to convert the EIRP to field strength.

 $E = \frac{1000000\sqrt{30P}}{3} \quad \mu V/m, \text{ where P is the eirp (Watts)}$

EIRP (dBm)	Field Strength at 3m (dBµV/m)
- 27	68.3

(3) KDB789033 D02 v02r01 G)2)c)

(i) Sections 15.407(b)(1-3) specifies the unwanted emissions limit for the U-NII-1 and U-NII-2 bands. As specified, emissions above 1000 MHz that are outside of the restricted bands are subject to a peak emission limit of -27 dBm/MHz.

(ii) Section 15.407(b)(4) specifies the unwanted emissions limit for the U-NII-3 band. A band emissions mask is specified in Section 15.407(b)(4)(i). The emission limits are based on the use of a peak detector.

3.2.2 Measuring Instruments

Please refer to the measuring equipment list in this test report.

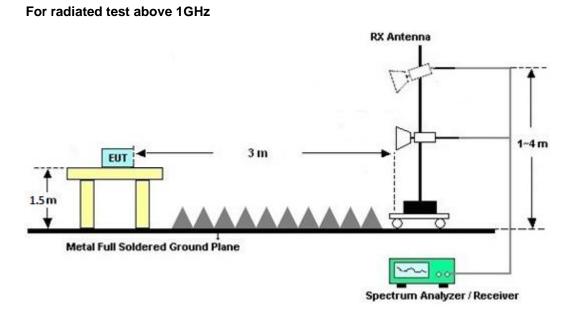
3.2.3 Test Procedures

 The testing follows FCC KDB 789033 D02 General UNII Test Procedures New Rules v02r01. Section G) Unwanted emissions measurement.

(1) Procedure for Peak Unwanted Emissions Measurements Above 1000 MHz

- RBW = 1 MHz
- VBW ≥ 3 MHz
- Detector = Peak
- Sweep time = auto
- Trace mode = max hold

(2) Procedures for Average Unwanted Emissions Measurements Above 1000 MHz


- a) RBW = 1 MHz
- b) VBW \geq [3 × RBW].
- c) Detector = RMS (power averaging), if [span / (# of points in sweep)] ≤ RBW / 2. Satisfying this condition can require increasing the number of points in the sweep or reducing the span. If the condition is not satisfied, then the detector mode shall be set to peak.
- Averaging type = power (i.e., rms) (As an alternative, the detector and averaging type may be set for linear voltage averaging. Some instruments require linear display mode to use linear voltage averaging. Log or dB averaging shall not be used.)
- e) Sweep time = auto.

SPORTION LAB. FCC RADIO TEST REPORT

- f) Perform a trace average of at least 100 traces if the transmission is continuous. If the transmission is not continuous, then the number of traces shall be increased by a factor of 1 / D, where D is the duty cycle. For example, with 50% duty cycle, at least 200 traces shall be averaged. (If a specific emission is demonstrated to be continuous—i.e., 100% duty cycle—then rather than turning ON and OFF with the transmit cycle, at least 100 traces shall be averaged.)
- g) If tests are performed with the EUT transmitting at a duty cycle less than 98%, then a correction factor shall be added to the measurement results prior to comparing with the emission limit, to compute the emission level that would have been measured had the test been performed at 100% duty cycle. The correction factor is computed as follows:
 - i. If power averaging (rms) mode was used in the preceding step <u>e), then the</u> correction factor is [10 log (1 / *D*)], where *D* is the duty cycle. For example, if the transmit duty cycle was 50%, then 3 dB shall be added to the measured emission levels.
 - If a specific emission is demonstrated to be continuous (100% duty cycle) rather than turning ON and OFF with the transmit cycle, then no duty cycle correction is required for that emission.
- 2. The EUT is placed on a turntable with 1.5 meter for frequency above 1 GHz respectively above ground.
- 3. The EUT is set 3 meters away from the receiving antenna which is mounted on the top of a variable height antenna tower.
- 4. The antenna is a broadband antenna and its height is adjusted between one meter and four meters above ground to find the maximum value of the field strength for both horizontal polarization and vertical polarization of the antenna.
- 5. For each suspected emission, the EUT is arranged to its worst case and then adjust the antenna tower (from 1 m to 4 m) and turntable (from 0 degree to 360 degrees) to find the maximum reading.
- 6. Radiated testing above 1 GHz is performed by adjusting the antenna tower from 1 m to 4 m and by rotating the turn table from 0 degree to 360 degrees to find the peak maximum hold reading for scanning all frequencies. When there is no suspected emission found and the harmonic emission level is with at least 6 dB margin against average limit line, the position is marked as "-".

3.2.4 Test Setup

3.2.5 Test Result of Radiated Spurious at Band Edges

Please refer to Appendix B and C.

3.2.6 Duty Cycle

Please refer to Appendix D.

3.2.7 Test Result of Radiated Spurious Emissions

Please refer to Appendix B and C.

3.3 Antenna Requirements

3.3.1 Standard Applicable

The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the rule.

3.3.2 Antenna Anti-Replacement Construction

An embedded-in antenna design is used.

4 List of Measuring Equipment

Instrument	Brand Name	Model No.	Serial No.	Characteristics	Calibration Date	Test Date	Due Date	Remark
Preamplifier	EMEC	EM18G40G	060715	18GHz~40GHz	Dec. 24, 2021	Nov. 08, 2022~ Nov. 09, 2022	Dec. 23, 2022	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 102	505134/2	30MHz~40GHz	Feb. 21, 2022	Nov. 08, 2022~ Nov. 09, 2022	Feb. 20, 2023	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303B	TP140325	N/A	Aug. 15, 2022	Nov. 08, 2022~ Nov. 09, 2022	Aug. 14, 2023	Radiation (03CH13-HY)
Horn Antenna	SCHWARZBE CK	BBHA 9120 D	9120D-1241	1GHz~18GHz	Jul. 25, 2022	Nov. 08, 2022~ Nov. 09, 2022	Jul. 24, 2023	Radiation (03CH13-HY)
Preamplifier	MITEQ	AMF-7D-0010 1800-30-10P	1590074	1GHz~18GHz	May 17, 2022	Nov. 08, 2022~ Nov. 09, 2022	May 16, 2023	Radiation (03CH13-HY)
Preamplifier	Keysight	83017A	MY53270147	1GHz~26.5GHz	Oct. 25, 2022	Nov. 08, 2022~ Nov. 09, 2022	Oct. 24, 2023	Radiation (03CH13-HY)
Spectrum Analyzer	Keysight	N9010A	MY55370526	10Hz~44GHz	Mar. 18, 2022	Nov. 08, 2022~ Nov. 09, 2022	Mar. 17, 2023	Radiation (03CH13-HY)
Filter	Wainwright	WLK4-1000-15 30-8000-40SS	SN12	1.53GHz Low Pass Filter	Sep. 13, 2022	Nov. 08, 2022~ Nov. 09, 2022	Sep. 12, 2023	Radiation (03CH13-HY)
Filter	Wainwright	WHKX12-2700 -3000-18000-6 0SS	SN2	3GHz High Pass Filter	Jul. 11, 2022	Nov. 08, 2022~ Nov. 09, 2022	Jul. 10, 2023	Radiation (03CH13-HY)
Filter	Wainwright	WHKX8-5872. 5-6750-18000- 40ST	SN5	6.75GHz High Pass Filter	Mar. 10, 2022	Nov. 08, 2022~ Nov. 09, 2022	Mar. 09, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 126E	0030/126E	30MHz~18GHz	Feb. 09, 2022	Nov. 08, 2022~ Nov. 09, 2022	Feb. 08, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	804793/4	30MHz~18GHz	Feb. 09, 2022	Nov. 08, 2022~ Nov. 09, 2022	Feb. 08, 2023	Radiation (03CH13-HY)
RF Cable	HUBER + SUHNER	SUCOFLEX 104	MY24961/4	30MHz~18GHz	Feb. 09, 2022	Nov. 08, 2022~ Nov. 09, 2022	Feb. 08, 2023	Radiation (03CH13-HY)
Controller	EMEC	EM1000	N/A	Control Turn table & Ant Mast	N/A	Nov. 08, 2022~ Nov. 09, 2022	N/A	Radiation (03CH13-HY)
Antenna Mast	EMEC	AM-BS-4500-B	N/A	1m~4m	N/A	Nov. 08, 2022~ Nov. 09, 2022	N/A	Radiation (03CH13-HY)
SHF-EHF Horn Antenna	SCHWARZBE CK	BBHA9170	1223	18GHz-40GHz	Jul. 05, 2022	Nov. 08, 2022~ Nov. 09, 2022	Jul. 04, 2023	Radiation (03CH13-HY)
Turn Table	EMEC	TT2000	N/A	0~360 Degree	N/A	Nov. 08, 2022~ Nov. 09, 2022	N/A	Radiation (03CH13-HY)
Hygrometer	TECPEL	DTM-303A	TP201996	N/A	Mar. 22, 2022	Oct. 26, 2022~ Nov. 17, 2022	Mar. 21, 2023	Conducted (TH05-HY)
Power Sensor	DARE	RPR3006W	15I00041SNO 10 (NO:248)	10MHz~6GHz	Dec. 29, 2021	Oct. 26, 2022~ Nov. 17, 2022	Dec. 28, 2022	Conducted (TH05-HY)
Signal Analyzer	Rohde & Schwarz	FSV40	101905	10Hz - 40GHz(amp)	Aug. 03, 2022	Oct. 26, 2022~ Nov. 17, 2022	Aug. 02, 2023	Conducted (TH05-HY)

5 Uncertainty of Evaluation

Uncertainty of Radiated Emission Measurement (1000 MHz ~ 6000 MHz)

Measuring Uncertainty for a Level of Confidence	4.4 dB
of 95% (U = 2Uc(y))	4.4 UB

Uncertainty of Radiated Emission Measurement (6000 MHz ~ 18000 MHz)

Measuring Uncertainty for a Level of Confidence	4.8 dB
of 95% (U = 2Uc(y))	4.0 UB

Uncertainty of Radiated Emission Measurement (18000 MHz ~ 40000 MHz)

Measuring Uncertainty for a Level of Confidence	5.3 dB
of 95% (U = 2Uc(y))	5.5 UB

Appendix A. Test Result of Conducted Test Items

Test Engineer:	Willy Chang	Temperature:	21~25	°C
Test Date:	2022/10/26~2022/11/17	Relative Humidity:	51~54	%

Report Number : FR1N0506-05C

TEST RESULTS DATA Average Power Table

	FCC U-NII-1 single antenna											
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		Average onducte Power (dBm)		FCC Conducted Power Limit (dBm)		DG (dBi)		Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	
VHT80	MCS0	1	42	5210	12.10	-		24.00	-	3.30	-	Pass

Report Number : FR1N0506-05C

TEST RESULTS DATA Average Power Table

	FCC U-NII-2A single antenna													
Ν	Mod.	Data Rate	NTX	CH.	Freq. (MHz)		Average conducte Power (dBm)		Cond Powe	CC ucted r Limit 3m)		G Bi)	EIRP Power Limit (dBm)	Pass/Fail
						Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	()	
V	HT80	MCS0	1	58	5290	15.20	-		23.98	-	2.80	-	26.99	Pass

Report Number : FR1N0506-05C

TEST RESULTS DATA Average Power Table

	FCC U-NII-2C single antenna												
Mod.	Data Rate	NTX	CH.	Freq. (MHz)		Average onducte Power (dBm)		FCC Conducted Power Limit (dBm)		DG (dBi)		EIRP Power Limit (dBm)	Pass/Fail
					Ant 1	Ant 2	SUM	Ant 1	Ant 2	Ant 1	Ant 2	()	
VHT80	MCS0	1	106	5530	15.20	-		23.98	-	2.80	-	26.99	Pass

Appendix B. Radiated Spurious Emission

Test Engineer :	Jacky Hong, Rain Lee and Mancy Chou	Temperature :	20~26°C
rest Engineer.	Sacky Hong, Rain Lee and Marcy Chou	Relative Humidity :	40~65%

Band 1 - 5150~5250MHz

WIFI	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
		5148.98	59.36	-14.64	74	48.49	32.1	6.21	27.44	112	2	Р	н
		5145.86	49.9	-4.1	54	39.03	32.1	6.21	27.44	112	2	А	н
	*	5210	93.54	-	-	82.84	31.86	6.27	27.43	112	2	Ρ	Н
	*	5210	86.68	-	-	75.98	31.86	6.27	27.43	112	2	А	Н
802.11ac		5370.4	50.68	-23.32	74	40.16	31.62	6.32	27.42	112	2	Р	Н
VHT80		5453.84	41.62	-12.38	54	30.66	32.01	6.36	27.41	112	2	А	Н
CH 42		5138.58	57.98	-16.02	74	47.12	32.1	6.2	27.44	106	358	Р	V
5210MHz		5145.08	49.27	-4.73	54	38.4	32.1	6.21	27.44	106	358	А	V
	*	5210	93.31	-	-	82.61	31.86	6.27	27.43	106	358	Ρ	V
	*	5210	87.25	-	-	76.55	31.86	6.27	27.43	106	358	Р	V
		5438.44	51.11	-22.89	74	40.22	31.95	6.35	27.41	106	358	Р	V
		5452.44	41.54	-12.46	54	30.59	32	6.36	27.41	106	358	А	V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

WIFI	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)		Avg. (P/A)	
		5149.6	52.95	-21.05	74	42.08	32.1	6.21	27.44	100	348	Р	н
		5106.08	43.74	-10.26	54	32.92	32.1	6.17	27.45	100	348	Α	Н
	*	5290	97.45	-	-	87.04	31.54	6.3	27.43	100	348	Р	н
	*	5290	89.36	-	-	78.95	31.54	6.3	27.43	100	348	А	н
802.11ac		5350.08	68.67	-5.33	74	58.27	31.5	6.32	27.42	100	348	Р	н
VHT80		5350.8	48.99	-5.01	54	38.59	31.5	6.32	27.42	100	348	А	н
CH 58		5146.88	52.89	-21.11	74	42.02	32.1	6.21	27.44	100	270	Р	V
5290MHz		5095.88	43.84	-10.16	54	33.04	32.09	6.16	27.45	100	270	А	V
	*	5290	97.93	-	-	87.52	31.54	6.3	27.43	100	270	Р	V
	*	5290	90	-	-	79.59	31.54	6.3	27.43	100	270	А	V
		5352.48	67.81	-6.19	74	57.4	31.51	6.32	27.42	100	270	Р	V
		5350.56	50.25	-3.75	54	39.85	31.5	6.32	27.42	100	270	А	V
Remark		o other spurious results are PA		Peak and	Average limi	it line.							

Band 2 - 5250~5350MHz

WIFI	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant. 1		(MHz)	(dBµV/m)	(dB)	Line (dBµV/m)	Level (dBµV)	Factor (dB/m)	Loss (dB)	Factor (dB)	Pos (cm)	Pos	Avg.	(H/V)
		5450.32	56.94	-17.06	74	45.99	32	6.36	27.41	100	349	Р	н
		5467.84	58.97	-9.23	68.2	47.96	32.04	6.37	27.4	100	349	Р	н
		5459.44	48.18	-5.82	54	37.2	32.02	6.36	27.4	100	349	А	н
	*	5530	99.98	-	-	88.89	32.1	6.4	27.41	100	349	Р	н
802.11ac	*	5530	92.71	-	-	81.62	32.1	6.4	27.41	100	349	Α	н
VHT80		5758.385	52	-16.2	68.2	40.48	32.42	6.57	27.47	100	349	Р	н
CH 106		5458.24	62.39	-11.61	74	51.42	32.02	6.36	27.41	100	272	Р	V
5530MHz		5468.56	63.54	-4.66	68.2	52.53	32.04	6.37	27.4	100	272	Р	V
		5459.44	51.27	-2.73	54	40.29	32.02	6.36	27.4	100	272	А	V
	*	5530	101.66	-	-	90.57	32.1	6.4	27.41	100	272	Р	V
	*	5530	93.76	-	-	82.67	32.1	6.4	27.41	100	272	А	V
		5726.885	51.65	-16.55	68.2	40.21	32.35	6.55	27.46	100	272	Р	V
Remark		o other spurious results are PA		Peak and	Average lim	it line.							

Band 3 - 5470~5725MHz

Note symbol

*	Fundamental Frequency which can be ignored. However, the level of any
	unwanted emissions shall not exceed the level of the fundamental frequency.
!	Test result is Margin line.
P/A	Peak or Average
H/V	Horizontal or Vertical

A calculation example for radiated spurious emission is shown as below:

WIFI	Note	Frequency	Level	Margin	Limit	Read	Antenna	Path	Preamp	Ant	Table	Peak	Pol.
Ant.					Line	Level	Factor	Loss	Factor	Pos	Pos	Avg.	
1		(MHz)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV)	(dB/m)	(dB)	(dB)	(cm)	(deg)	(P/A)	(H/V)
802.11a		5150	55.45	-18.55	74	54.51	32.22	4.58	35.86	103	308	Р	н
CH 36													
5180MHz		5150	43.54	-10.46	54	42.6	32.22	4.58	35.86	103	308	А	Н

- 1. Path Loss(dB) = Cable loss(dB) + Filter loss(dB) + Attenuator loss(dB)
- 2. Level(dBµV/m) = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- 3. Margin(dB) = Level(dB μ V/m) Limit Line(dB μ V/m)

For Peak Limit @ 5150MHz:

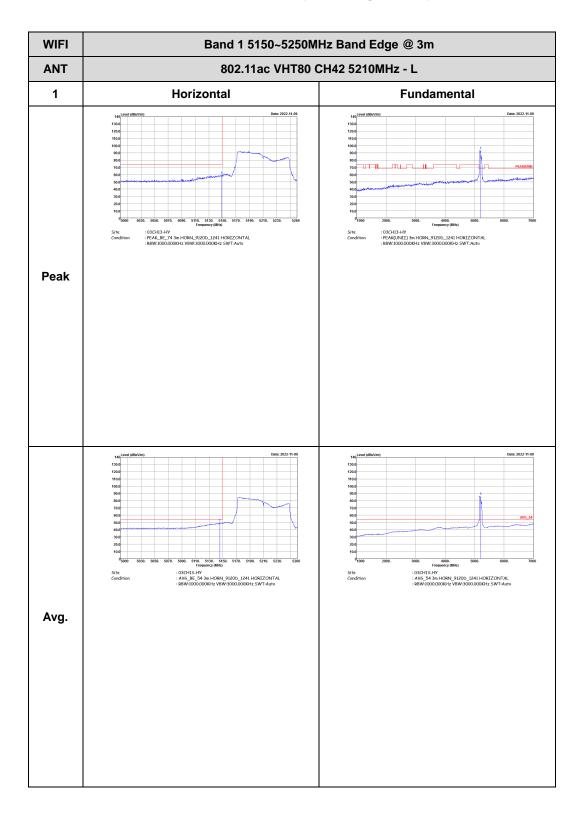
- 1. Level(dB μ V/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- = 32.22(dB/m) + 4.58(dB) + 54.51(dBµV) 35.86 (dB)
- = 55.45 (dBµV/m)
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 55.45(dB\mu V/m) 74(dB\mu V/m)$
- = -18.55(dB)

For Average Limit @ 5150MHz:

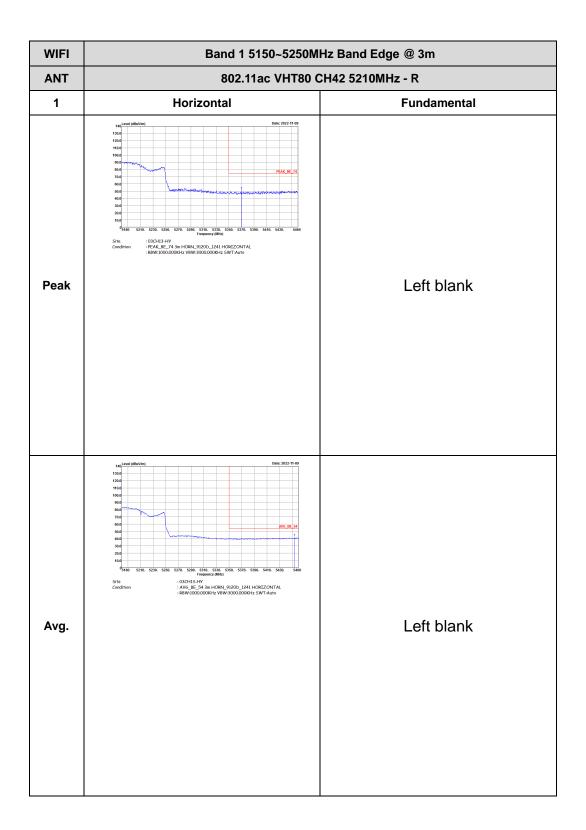
- 1. Level(dBµV/m)
- = Antenna Factor(dB/m) + Path Loss(dB) + Read Level(dBµV) Preamp Factor(dB)
- $= 32.22(dB/m) + 4.58(dB) + 42.6(dB\mu V) 35.86 (dB)$
- = 43.54 (dBµV/m)
- 2. Margin(dB)
- = Level(dBµV/m) Limit Line(dBµV/m)
- $= 43.54(dB\mu V/m) 54(dB\mu V/m)$
- = -10.46(dB)

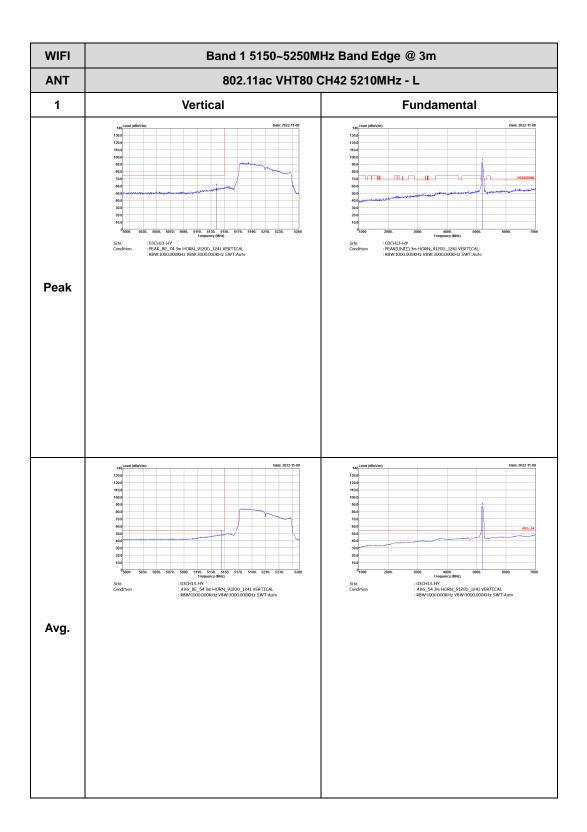
Both peak and average measured complies with the limit line, so test result is "PASS".

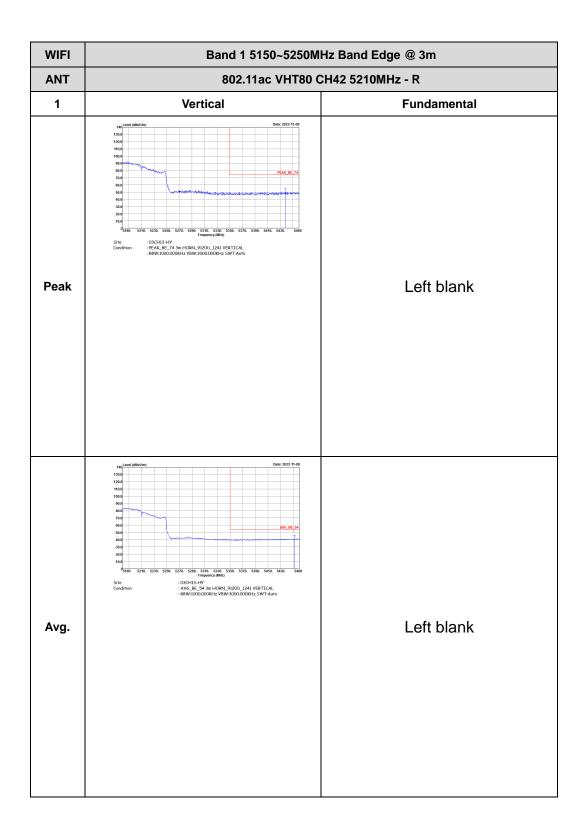
Appendix C. Radiated Spurious Emission Plots

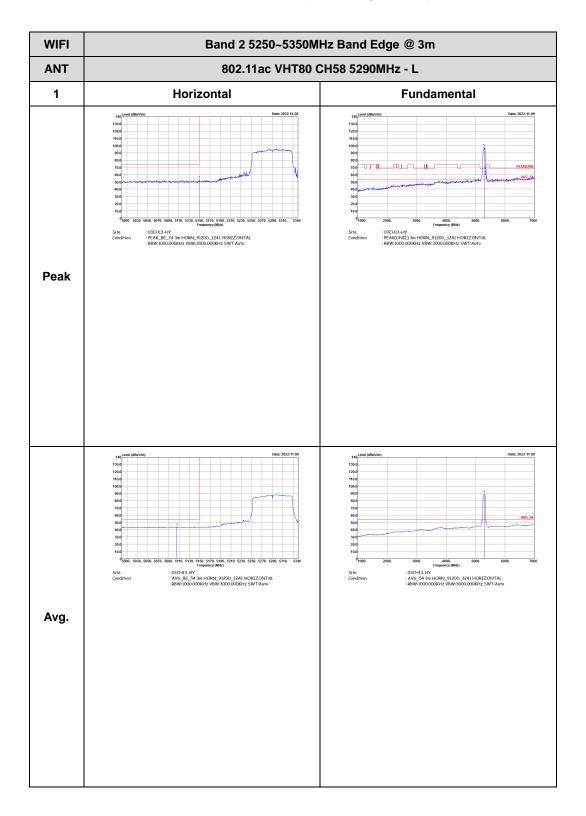

Test Engineer :	Jacky Hong, Rain Lee and Mancy Chou	Temperature :	20~26°C
rest Engineer .		Relative Humidity :	40~65%

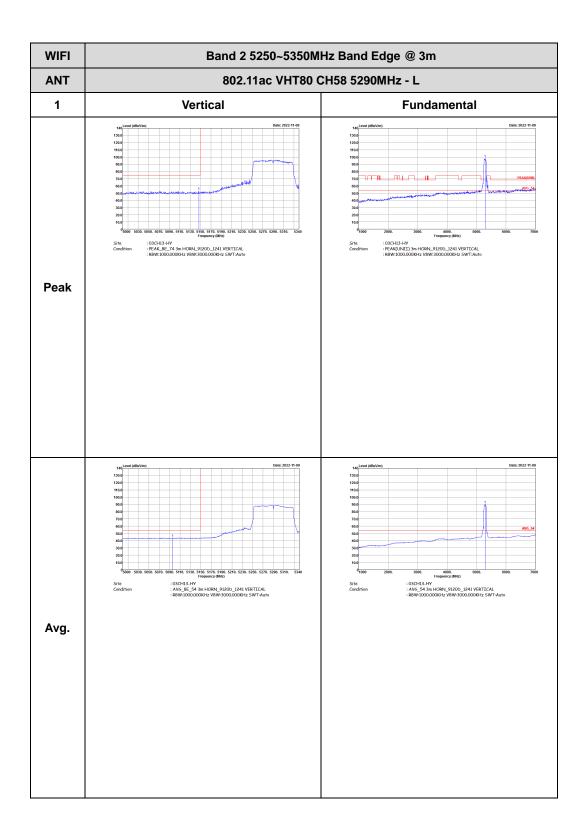
Note symbol

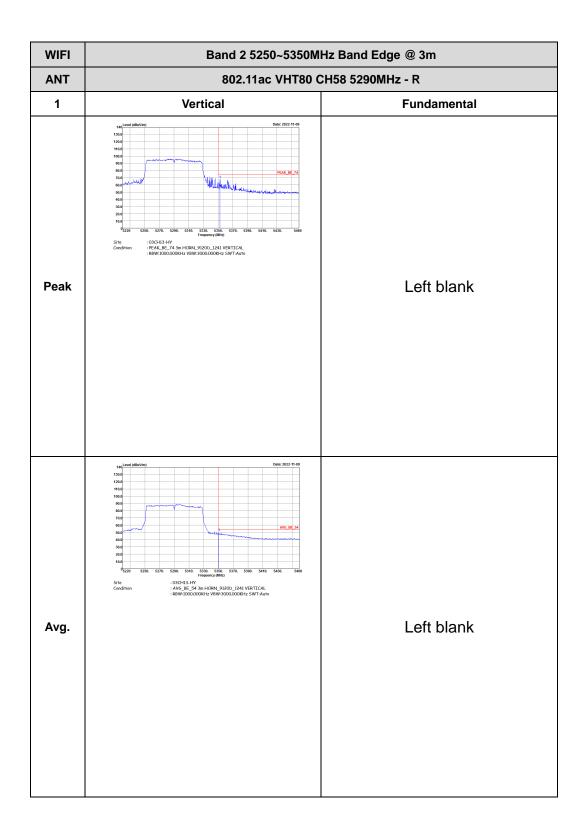

-L	Low channel location
-R	High channel location


Band 1 - 5150~5250MHz

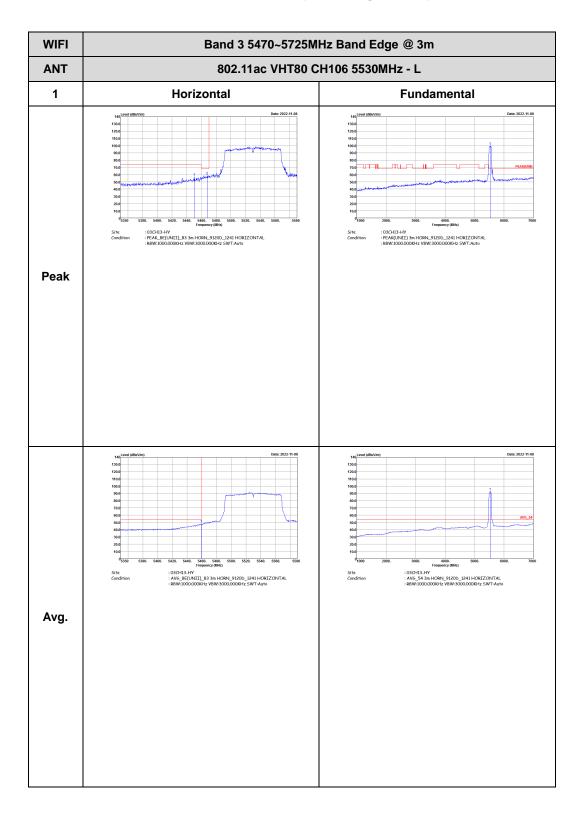


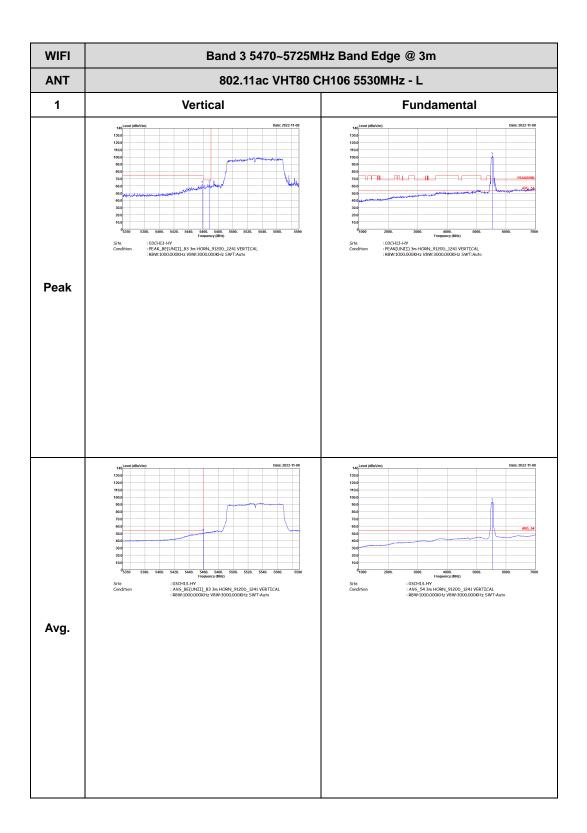



Band 2 - 5250~5350MHz



WIFI	Band 2 5250~5350M	Hz Band Edge @ 3m
ANT	802.11ac VHT80 C	CH58 5290MHz - R
1	Horizontal	Fundamental
Peak	the second secon	Left blank
reuk		Len blank
Avg.	with the second seco	Left blank




Band 3 - 5470~5725MHz

WIFI	Band 3 5470~5725MHz Band Edge @ 3m								
ANT	802.11ac VHT80 CH106 5530MHz - R								
1	Horizontal	Fundamental							
Peak	 Implementation of the second se	Left blank							

WIFI	Band 3 5470~5725MHz Band Edge @ 3m								
ANT	802.11ac VHT80 CH	CH106 5530MHz - R							
1	Vertical	Fundamental							
Peak	Image:	Left blank							

Appendix D. Duty Cycle Plots

Antenna	Band	Duty Cycle(%)	T(us)	1/T(kHz)	VBW Setting
1	5GHz 802.11ac VHT80	91.84	450	2.22	3kHz

<Ant. 1>

RL	rum Analyzer - Swe RF 50 Ω	pt SA DC			ISE:INT		100.075	10:57:13 PM No		
	.48000 ms					#Avg Type:	RMS	TRACE	23456	Marker
			NO: Fast ↔ Gain:Low	Atten: 20				DET	PPPPP	Select Marke
dB/div	Ref 116.99	dBµV					Ν	1kr4 4.48 91.86	0 ms dBµV	4
	erel production primerile	prante partes	ytur yrant	, sel. ∳ ⁴ ?		magnagn	:~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	n ment n	γ ~ ••	Norm
7.0										Del
										Fixed
enter 5.53 es BW 81	30000000 G MHz	Hz	#VBV	V 8.0 MHz		Si	weep 10.	Spa 00 ms (10	n 0 Hz 01 pts)	c
R MODE TRC			50.0 μs (Δ) 180 ms	Y 3.32 91.86 dB	dB	CTION FUNC	TION WIDTH	FUNCTION V	ALUE	_
A4 1 N 1	t (Δ)	49	0.0 μs (Δ) 180 ms		dB					Properties
7									- 1	Мо