

FCC Test Report (BT-EDR)

Report No.: RFBERD-WTW-P22060603-8

FCC ID: HD5-CN85L1N

Test Model: CN85L1N

Received Date: Sep. 04, 2018

Test Date: Oct. 09 to 11, 2018

Issued Date: July 05, 2022

Applicant: Honeywell International Inc.

Address: 9680 Old Bailes Road, Fort Mill, SC 29707 USA

Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch

Hsin Chu Laboratory

Lab Address: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

Test Location: E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300,

Taiwan

FCC Registration / Designation Number:

.. 723255 / TW2022

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

Report No.: RFBERD-WTW-P22060603-8 Page No. 1 / 43 Report Format Version: 6.1.1

Table of Contents

R	eleas	e Control Record	4					
1	(Certificate of Conformity	5					
2	;	Summary of Test Results6						
	2.1 2.2	Measurement Uncertainty						
3	(General Information						
	3.1	General Description of EUT (BT-EDR)	7					
	3.2	Description of Test Modes						
	3.2.1							
	3.3	Description of Support Units						
	3.3.1							
	3.4	General Description of Applied Standards and references						
4	-	Test Types and Results						
	4.1	Radiated Emission and Bandedge Measurement	13					
	4.1.1							
		Test Instruments						
		Test Procedures						
		Deviation from Test Standard						
		Test Setup EUT Operating Conditions						
		Test Results						
	4.1.7	Number of Hopping Frequency Used						
	4.2.1							
		Test Setup						
		Test Instruments						
		Test Procedure						
	4.2.5	Deviation from Test Standard	26					
	4.2.6	Test Results						
	4.3	Dwell Time on Each Channel						
	4.3.1							
		Test Setup						
		Test Instruments						
		Test Procedures						
	4.3.5	Deviation from Test Standard						
	4.3.0	Test Results						
	4.4.1							
		Test Setup						
	4.4.3	·						
	4.4.4	Test Procedure						
	4.4.5	Deviation from Test Standard	33					
		EUT Operating Condition						
		Test Results						
	4.5	Hopping Channel Separation						
	4.5.1	11 0						
	4.5.2							
	4.5.3							
	4.5.4 4.5.5	Test Procedure						
	4.5.6							
	4.5.6	Maximum Output Power						
		Limits of Maximum Output Power Measurement						
		Test Setup						
		•						

	Test Instruments	
	Test Procedure	
4.6.5	Deviation from Test Standard	37
	EUT Operating Condition	
4.6.7	Test Results	38
4.7	Conducted Out of Band Emission Measurement	39
	Limits of Conducted Out of Band Emission Measurement	
	Test Instruments	
4.7.3	Test Procedure	39
4.7.4	Deviation from Test Standard	39
4.7.5	EUT Operating Condition	39
4.7.6	Test Results	39
5 P	ictures of Test Arrangements	42
Append	ix – Information of the Testing Laboratories	43

Release Control Record

Issue No.	Description	Date Issued
RFBERD-WTW-P22060603-8	Original release.	July 05, 2022

1 Certificate of Conformity

Product: Mobile computer

Brand: Honeywell

Test Model: CN85L1N

Sample Status: ENGINEERING SAMPLE

Applicant: Honeywell International Inc.

Test Date: Oct. 09 to 11, 2018

Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247)

ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Prepared by: Vivian Huang / Specialist , Date: July 05, 2022

Approved by : , Date: July 05, 2022

May Chen / Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.247)						
	47 OFR FOUR AIL 13, Subpart 6 (SECTION 13.247)					
FCC Clause	Test Item	Result	Remarks			
15.207	AC Power Conducted Emission	NA	Without AC power port of the EUT.			
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.			
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.			
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	PASS	Meet the requirement of limit.			
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.			
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -11.7dB at 2390.00MHz.			
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.			
15.203	Antenna Requirement	PASS	Antenna connector is POGO pin not a standard connector.			

Note:

- 1. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.
- 2. If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.53 dB
	1GHz ~ 6GHz	5.08 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.98 dB
	18GHz ~ 40GHz	5.24 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-EDR)

Product	Mobile computer		
Brand	Honeywell		
Test Model	CN85L1N		
Status of EUT	ENGINEERING SAMPLE		
HW Version	V1.0		
HW P/N	V2.0 (DVT)		
SW Version	OS.02.001-HON01.102		
SW P/N	86.00.35-(0206)		
Power Supply Rating	3.85Vdc from battery		
Modulation Type	GFSK, π/4-DQPSK, 8DPSK		
Modulation Technology	FHSS		
Transfer Rate	Up to 3Mbps		
Operating Frequency	2402MHz ~ 2480MHz		
Number of Channel	79		
Output Power	4.305mW		
Antenna Type	Refer to Note		
Antenna Connector	Refer to Note		
Accessory Device	Battery x 1, Touch pen x 1, Handstrap x 1		
Data Cable Supplied	NA		

Note:

- 1. This report is issued as a supplementary report to BV CPS report no. RF180904C09-8. The difference compared with original report is for adding the extra SKU (refer to note 8) which disable radio 2 (Zigbee+BT 2) by software, after the evaluation, it does not affect the original data, so the original test data is quoted.
- According to above conditions, there is no addition test has to be performed. All test data were copied from the original test report (Report No.: RF180904C09-8). And all data were verified to meet the requirements.
- 3. The test data are copied which have obtained authorization from applicant and brand company both of the original test report (Report No.: RF180904C09-8).

4. EUT Configuration list:

Item
Scanner: N6703ER
with Keypad

5. There are WLAN, Bluetooth, NFC and WWAN technology used for the EUT. The EUT has three radios as following table:

Radio 1	Radio 3	Radio 4			
WLAN+BT 1	NFC	WWAN			
Note: For Bluetooth technology the Radio 1 support BT 5.0 dual mode.					

6. Simultaneously transmission condition.

Condition	Technology		
1	WLAN 2.4GHz	NFC	WWAN
2	WLAN 5GHz	NFC	WWAN
3	Bluetooth (Radio 1)	NFC	WWAN

Note: The emission of the simultaneous operation has been evaluated and no non-compliance was found.

7. The EUT needs to be supplied from battery, the information is as below table:

Brand	Model No.	Spec.
Inventus Power, Inc. / Honeywell	CW-BAT	3.85Vdc, 5800mAh, 22.3Wh

8. The host devices are list as below table for difference of SKU.

Brand	Model	Product Name	USI FG P/N	Description
Honeywell	CN85L1N	Mobile computer	15487-273335-01	CN85G4/UPS/6703SR/CAM/WAN/GMS /FCC
Honeywell	CN85L1N	Mobile computer	15487-775335-01	CN85G4/UPS/6703SR/CAM/WAN/GMS /FCC/No 2nd BT/No Zigbee

9. The antennas provided to the EUT, please refer to the following table:

Radio 1							
WLAN Antenna Spec. / Bluetooth Antenna No. 1 Spec.							
Chain No.	Antenna Gain include trace loss (dBi)	Frequency range (GHz)	Antenna type	Connector type	Trace loss (dB)		
	0.4	2.4~2.4835			1.4		
	1.62	5.15~5.25			2		
Chain 0	1.62	5.25~5.35	PIFA	POGO pin	2		
	1.15	5.47~5.725			2.4		
	1.15	5.725~5.85			2.4		
	1.7	2.4~2.4835	PIFA	PIFA POGO pin	0.3		
	1.3	5.15~5.25			0.9		
Chain 1	1.3	5.25~5.35			0.9		
	2	5.47~5.725			0.9		
	2	5.725~5.85			0.9		
		Rad	io 3				
NFC Antenna Spec.							
	ncy range ЛНz)	Antenna type		Connector type			
1;	3~14	Loc	op	N/	4		

- 10. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.
- 11. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

3.2 Description of Test Modes

79 channels are provided for BT-EDR mode:

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

EUT CONFIGURE		APPLICA	ABLE TO		DESCRIPTION
MODE	RE≥1G	RE<1G	PLC	APCM	BESSKII TISK
-	√	\checkmark	-	√	-

Where **RE≥1G:** Radiated Emission above 1GHz

RE<1G: Radiated Emission below 1GHz

PLC: Power Line Conducted Emission APCM: Antenna Port Conducted Measurement

Note: 1. No need to concern of Conducted Emission due to the EUT is powered by battery.

2. The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on **Y-plane (below 1GHz) & Z-plane (above 1GHz)**.

Radiated Emission Test (Above 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	
0 to 78	0, 39, 78	FHSS	GFSK	DH5	
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5	

Radiated Emission Test (Below 1GHz):

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

Following channel(s) was (were) selected for the final test as listed below.

AVAILABLE	TESTED	MODULATION	MODULATION	PACKET TYPE
CHANNEL	CHANNEL	TECHNOLOGY	TYPE	
0 to 78	78	FHSS	GFSK	DH5

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).
- Following channel(s) was (were) selected for the final test as listed below.

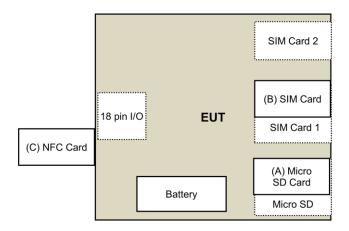
AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	
0 to 78	0, 39, 78	FHSS	GFSK	DH5	
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5	

Test Condition:

APPLICABLE TO ENVIRONMENTAL CONDITIONS		INPUT POWER	TESTED BY	
RE≥1G	23deg. C, 66%RH	DC 3.85V	Rey Chen	
RE<1G	23deg. C, 68%RH	DC 3.85V	Frank Chuang	
APCM	25deg. C, 60%RH	DC 3.85V	Anderson Chen	

Report No.: RFBERD-WTW-P22060603-8 Page No. 10 / 43 Report Format Version: 6.1.1

3.3 Description of Support Units


The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
A.	MicroSD Card	Transcend	NA	NA	NA	Provided by Lab
B.	SIM Card	R&S	CRT-Z3	NA	NA	Provided by Lab
C.	NFC Card	UGSI	NA	NA	NA	Supplied by client

Note:

1. All power cords of the above support units are non-shielded (1.8m).

3.3.1 Configuration of System under Test

3.4 **General Description of Applied Standards and references** The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards: Test standard: FCC Part 15, Subpart C (15.247) ANSI C63.10-2013 All test items have been performed and recorded as per the above standards. KDB 558074 D01 15.247 Meas Guidance v05 All test items have been performed as a reference to the above KDB test guidance.

Report No.: RFBERD-WTW-P22060603-8 Page No. 12 / 43 Report Format Version: 6.1.1

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired

power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

Report No.: RFBERD-WTW-P22060603-8 Page No. 13 / 43 Report Format Version: 6.1.1

4.1.2 Test Instruments

DESCRIPTION &			CALIBRATED	CALIBRATED
MANUFACTURER	MODEL NO.	SERIAL NO.	DATE	UNTIL
Test Receiver	N9038A	MY50010156	July 12, 2018	July 11, 2019
Agilent	113030A	W1130010130	July 12, 2010	July 11, 2019
Pre-Amplifier EMCI	EMC001340	980142	Feb. 09, 2018	Feb. 08, 2019
Loop Antenna(*) Electro-Metrics	EM-6879	264	Dec. 16, 2016	Dec. 15, 2018
RF Cable	NA	LOOPCAB-001	Jan. 15, 2018	Jan. 14, 2019
RF Cable	NA	LOOPCAB-002	Jan. 15, 2018	Jan. 14, 2019
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-05	May 05, 2018	May 04, 2019
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-361	Nov. 29, 2017	Nov. 28, 2018
RF Cable	8D	966-3-1	Mar. 20, 2018	Mar. 19, 2019
RF Cable	8D	966-3-2	Mar. 20, 2018	Mar. 19, 2019
RF Cable	8D	966-3-3	Mar. 20, 2018	Mar. 19, 2019
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-3-01	Sep. 27, 2018	Sep. 26, 2019
Horn_Antenna SCHWARZBECK	BBHA9120-D	9120D-406	Dec. 12, 2017	Dec. 11, 2018
Pre-Amplifier EMCI	EMC12630SE	980384	Jan. 29, 2018	Jan. 28, 2019
RF Cable	EMC104-SM-SM-1200	160922	Jan. 29, 2018	Jan. 28, 2019
RF Cable	EMC104-SM-SM-2000	150317	Jan. 29, 2018	Jan. 28, 2019
RF Cable	EMC104-SM-SM-5000	150322	Jan. 29, 2018	Jan. 28, 2019
Spectrum Analyzer Keysight	N9030A	MY54490679	July 23, 2018	July 22, 2019
Pre-Amplifier EMCI	EMC184045SE	980386	Jan. 29, 2018	Jan. 28, 2019
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 14, 2017	Dec. 13, 2018
RF Cable	EMC102-KM-KM-1200	160924	Jan. 29, 2018	Jan. 28, 2019
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208406	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP01	NA	NA
Spectrum Analyzer R&S	FSV40	100964	June 20, 2018	June 19, 2019

Note:

- 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.
- 3. The test was performed in 966 Chamber No. 3.
- 4. The CANADA Site Registration No. is 20331-1
- 5. Loop antenna was used for all emissions below 30 MHz.
- 6. Tested Date: Oct. 09 to 11, 2018

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

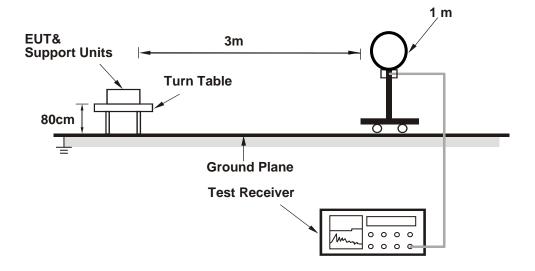
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

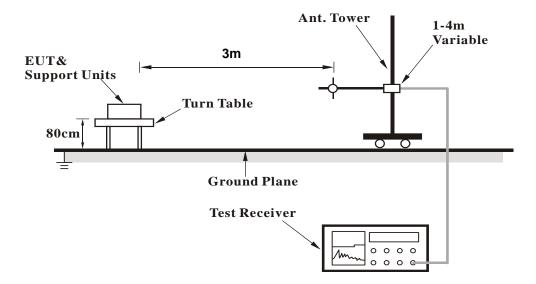
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

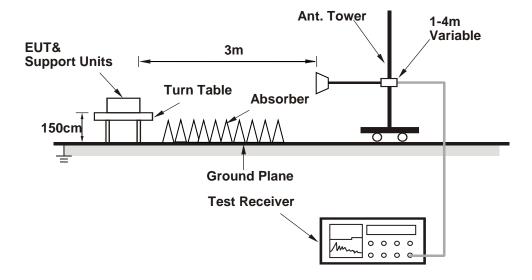

4.1.4 Deviation from Test Standard

No deviation.



4.1.5 Test Setup

For Radiated emission below 30MHz



For Radiated emission 30MHz to 1GHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

- a. Placed the EUT on the testing table.
- b. Controlling software (QRCT_V3.0.298.0) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data:

BT_GFSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M											
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)				
1	2390.00	54.5 PK	74.0	-19.5	1.30 H	249	57.2	-2.7				
2	2390.00	42.3 AV	54.0	-11.7	1.30 H	249	45.0	-2.7				
3	*2402.00	106.7 PK			1.30 H	249	109.4	-2.7				
4	*2402.00	76.6 AV			1.30 H	249	79.3	-2.7				
5	4804.00	41.2 PK	74.0	-32.8	1.79 H	343	39.6	1.6				
6	4804.00	11.1 AV	54.0	-42.9	1.79 H	343	9.5	1.6				
		ANTENNA	POLARITY	' & TEST DI	STANCE: V	ERTICAL A	T 3 M					

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	54.2 PK	74.0	-19.8	2.68 V	314	56.9	-2.7
2	2390.00	42.1 AV	54.0	-11.9	2.68 V	314	44.8	-2.7
3	*2402.00	103.6 PK			2.68 V	314	106.3	-2.7
4	*2402.00	73.5 AV			2.68 V	314	76.2	-2.7
5	4804.00	41.1 PK	74.0	-32.9	1.61 V	88	39.5	1.6
6	4804.00	11.0 AV	54.0	-43.0	1.61 V	88	9.4	1.6

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	106.5 PK			1.33 H	246	109.5	-3.0
2	*2441.00	76.4 AV			1.33 H	246	79.4	-3.0
3	4882.00	41.3 PK	74.0	-32.7	1.73 H	343	39.6	1.7
4	4882.00	11.2 AV	54.0	-42.8	1.73 H	343	9.5	1.7
5	7323.00	42.9 PK	74.0	-31.1	2.54 H	142	35.1	7.8
6	7323.00	12.8 AV	54.0	-41.2	2.54 H	142	5.0	7.8
		ANTENNA	A POLARITY	4 & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	103.4 PK			2.72 V	312	106.4	-3.0
2	*2441.00	70.0.41/			0.70.1/	242	70.0	2.0
	2441.00	73.3 AV			2.72 V	312	76.3	-3.0
3	4882.00	40.4 PK	74.0	-33.6	1.60 V	73	76.3 38.7	1.7
			74.0 54.0	-33.6 -43.7				
3	4882.00	40.4 PK			1.60 V	73	38.7	1.7

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	QUEINCT IN	AITOL	71 12 ~ 2501 12					<u>'</u>
		ANTENNA	POLARITY &	& TEST DIS	STANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	106.8 PK			1.31 H	248	109.8	-3.0
2	*2480.00	76.7 AV			1.31 H	248	79.7	-3.0
3	2483.50	54.7 PK	74.0	-19.3	1.31 H	248	57.7	-3.0
4	2483.50	24.6 AV	54.0	-29.4	1.31 H	248	27.6	-3.0
5	4960.00	41.2 PK	74.0	-32.8	1.77 H	328	39.3	1.9
6	4960.00	11.1 AV	54.0	-42.9	1.77 H	328	9.2	1.9
7	7440.00	43.3 PK	74.0	-30.7	2.52 H	156	35.4	7.9
8	7440.00	13.2 AV	54.0	-40.8	2.52 H	156	5.3	7.9
		ANTENNA	A POLARITY	4 & TEST D	ISTANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	103.7 PK			2.70 V	329	106.7	-3.0
2	*2480.00	73.6 AV			2.70 V	329	76.6	-3.0
3	2483.50	54.4 PK	74.0	-19.6	2.70 V	329	57.4	-3.0
4	2483.50	24.3 AV	54.0	-29.7	2.70 V	329	27.3	-3.0
5	4960.00	40.5 PK	74.0	-33.5	1.58 V	87	38.6	1.9
6	4960.00	10.4 AV	54.0	-43.6	1.58 V	87	8.5	1.9
7	7440.00	44.2 PK	74.0	-29.8	1.36 V	257	36.3	7.9
8	7440.00	14.1 AV	54.0	-39.9	1.36 V	257	6.2	7.9

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

BT_8DPSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	54.5 PK	74.0	-19.5	1.11 H	249	57.2	-2.7
2	2390.00	42.3 AV	54.0	-11.7	1.11 H	249	45.0	-2.7
3	*2402.00	106.4 PK			1.11 H	249	109.1	-2.7
4	*2402.00	76.3 AV			1.11 H	249	79.0	-2.7
5	4804.00	39.5 PK	74.0	-34.5	2.22 H	136	37.9	1.6
6	4804.00	9.4 AV	54.0	-44.6	2.22 H	136	7.8	1.6
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	T 3 M	

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	2390.00	54.2 PK	74.0	-19.8	2.72 V	323	56.9	-2.7
2	2390.00	42.1 AV	54.0	-11.9	2.72 V	323	44.8	-2.7
3	*2402.00	103.3 PK			2.72 V	323	106.0	-2.7
4	*2402.00	73.2 AV			2.72 V	323	75.9	-2.7
5	4804.00	41.0 PK	74.0	-33.0	1.29 V	213	39.4	1.6
6	4804.00	10.9 AV	54.0	-43.1	1.29 V	213	9.3	1.6

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

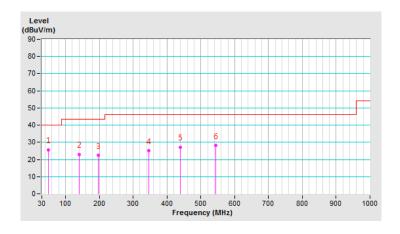
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	106.1 PK			1.07 H	242	109.1	-3.0
2	*2441.00	76.0 AV			1.07 H	242	79.0	-3.0
3	4882.00	39.4 PK	74.0	-34.6	2.22 H	136	37.7	1.7
4	4882.00	9.3 AV	54.0	-44.7	2.22 H	136	7.6	1.7
5	7323.00	44.9 PK	74.0	-29.1	2.61 H	320	37.1	7.8
6	7323.00	14.8 AV	54.0	-39.2	2.61 H	320	7.0	7.8
		ANTENNA	POLARITY	4 & TEST DI	STANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	103.0 PK			2.73 V	318	106.0	-3.0
2	*2441.00	72.9 AV			2.73 V	318	75.9	-3.0
3	4882.00	41.2 PK	74.0	-32.8	1.28 V	194	39.5	1.7
4	4882.00	11.1 AV	54.0	-42.9	1.28 V	194	9.4	1.7
5	7323.00	45.4 PK	74.0	-28.6	2.26 V	168	37.6	7.8
6	7323.00	15.3 AV	54.0	-38.7	2.26 V	168	7.5	7.8

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY &	& TEST DIS	STANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	106.3 PK			1.05 H	248	109.3	-3.0
2	*2480.00	76.2 AV			1.05 H	248	79.2	-3.0
3	2483.50	55.6 PK	74.0	-18.4	1.05 H	248	58.6	-3.0
4	2483.50	25.5 AV	54.0	-28.5	1.05 H	248	28.5	-3.0
5	4960.00	39.7 PK	74.0	-34.3	2.17 H	128	37.8	1.9
6	4960.00	9.6 AV	54.0	-44.4	2.17 H	128	7.7	1.9
7	7440.00	45.1 PK	74.0	-28.9	2.66 H	321	37.2	7.9
8	7440.00	15.0 AV	54.0	-39.0	2.66 H	321	7.1	7.9
		ANTENNA	A POLARITY	4 TEST D	ISTANCE: V	ERTICAL A	T 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	103.2 PK			2.71 V	337	106.2	-3.0
2	*2480.00	73.1 AV			2.71 V	337	76.1	-3.0
3	2483.50	55.3 PK	74.0	-18.7	2.71 V	337	58.3	-3.0
4	2483.50	25.2 AV	54.0	-28.8	2.71 V	337	28.2	-3.0
5	4960.00	40.8 PK	74.0	-33.2	1.34 V	206	38.9	1.9
6	4960.00	10.7 AV	54.0	-43.3	1.34 V	206	8.8	1.9
7	7440.00	45.8 PK	74.0	-28.2	2.25 V	174	37.9	7.9
8	7440.00	15.7 AV	54.0	-38.3	2.25 V	174	7.8	7.9

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

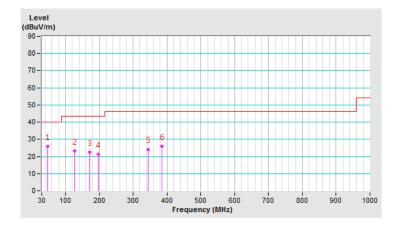

Below 1GHz Worst-Case Data

BT_GFSK

CHANNEL	TX Channel 78	DETECTOR	Oversi Barak (OB)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	49.06	25.7 QP	40.0	-14.3	1.50 H	170	33.7	-8.0		
2	139.85	23.1 QP	43.5	-20.4	1.50 H	0	31.2	-8.1		
3	196.14	22.5 QP	43.5	-21.0	1.00 H	54	33.3	-10.8		
4	345.59	25.3 QP	46.0	-20.7	2.00 H	147	31.0	-5.7		
5	439.34	27.3 QP	46.0	-18.7	1.50 H	360	30.4	-3.1		
6	544.08	28.2 QP	46.0	-17.8	1.50 H	344	29.6	-1.4		

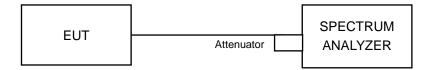
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



CHANNEL	TX Channel 78	DETECTOR	Ougai Pagis (OP)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	47.48	25.9 QP	40.0	-14.1	1.00 V	360	33.9	-8.0		
2	126.95	23.2 QP	43.5	-20.3	1.50 V	249	32.4	-9.2		
3	172.52	22.3 QP	43.5	-21.2	2.00 V	182	30.9	-8.6		
4	196.11	21.2 QP	43.5	-22.3	2.00 V	130	32.0	-10.8		
5	344.62	24.2 QP	46.0	-21.8	1.00 V	245	30.0	-5.8		
6	384.44	25.9 QP	46.0	-20.1	2.00 V	0	30.6	-4.7		

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. Margin value = Emission Level Limit value
- 4. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.



4.2 Number of Hopping Frequency Used

4.2.1 Limits of Hopping Frequency Used Measurement

At least 15 channels frequencies, and should be equally spaced.

4.2.2 Test Setup

4.2.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.2.4 Test Procedure

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.2.5 Deviation from Test Standard

No deviation.

4.2.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.3 Dwell Time on Each Channel

4.3.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

GFSK

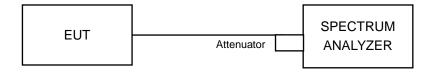
Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
DH1	48 (times / 5 sec) * 6.32 = 303.36 times	0.444	134.69	400
DH3	27 (times / 5 sec) * 6.32 = 170.64 times	1.75	298.62	400
DH5	16 (times / 5 sec) * 6.32 = 101.12 times	3.024	305.79	400

Note: Test plots of the transmitting time slot are shown on next page.

8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
3DH1	50 (times / 5 sec) * 6.32 = 316 times	0.432	136.51	400
3DH3	26 (times / 5 sec) * 6.32 = 164.32 times	1.69	277.7	400
3DH5	16 (times / 5 sec) * 6.32 = 101.12 times	3.024	305.79	400

Note: Test plots of the transmitting time slot are shown on next page.



4.4 Channel Bandwidth

4.4.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

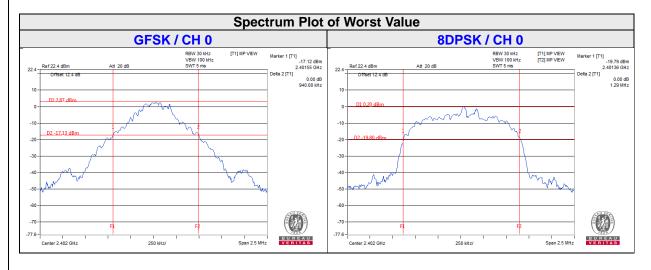
4.4.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Detector = peak.
- e. Repeat above procedures until all frequencies measured were complete.

4.4.5 Deviation from Test Standard

No deviation.

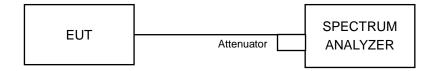
4.4.6 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

Report No.: RFBERD-WTW-P22060603-8 Page No. 33 / 43 Report Format Version: 6.1.1

4.4.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)			
	rioquonoy (iiii i2)	GFSK	8DPSK		
0	2402	0.94	1.29		
39	2441	0.94	1.30		
78	2480	0.94	1.30		



4.5 Hopping Channel Separation

4.5.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

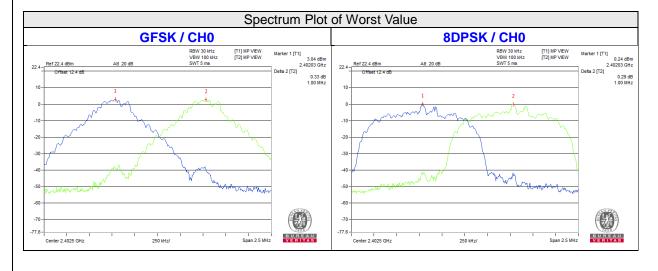
4.5.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

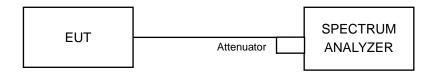
No deviation.


Report No.: RFBERD-WTW-P22060603-8 Page No. 35 / 43 Report Format Version: 6.1.1

4.5.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)		20dB Bandwidth (MHz)		Minimum Limit (MHz)		Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	0.94	1.29	0.63	0.86	Pass
39	2441	1.00	1.00	0.94	1.30	0.63	0.87	Pass
78	2480	1.00	1.00	0.94	1.30	0.63	0.87	Pass

Note: The minimum limit is two-third 20dB bandwidth.



4.6 Maximum Output Power

4.6.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125mW.

4.6.2 Test Setup

4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Detector = peak.
- e. Measure the captured power within the band and recording the plot.
- f. Repeat above procedures until all frequencies required were complete.

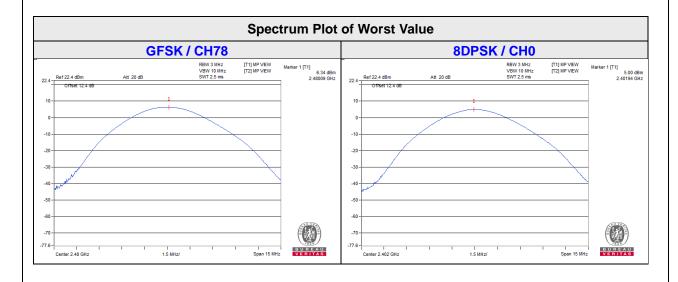
4.6.5 Deviation from Test Standard

No deviation.

4.6.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

Report No.: RFBERD-WTW-P22060603-8 Page No. 37 / 43 Report Format Version: 6.1.1


4.6.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHZ)	Output Power (mW)		Output Power (dBm)		Power Limit (mW)	Pass / Fail
	, ,	GFSK	8DPSK	GFSK	8DPSK	,	
0	2402	4.036	3.162	6.06	5.00	125	Pass
39	2441	4.102	3.069	6.13	4.87	125	Pass
78	2480	4.305	3.097	6.34	4.91	125	Pass

FOR AVERAGE POWER - reference only

Channel	Frequency (MHZ)	-	Power W)	Output Power (dBm)		
	,	GFSK	8DPSK	GFSK	8DPSK	
0	2402	3.581	1.327	5.54	1.23	
39	2441	3.698	1.274	5.68	1.05	
78	2480	3.767	1.306	5.76	1.16	

4.7 Conducted Out of Band Emission Measurement

4.7.1 Limits of Conducted Out of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz RBW).

4.7.2 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

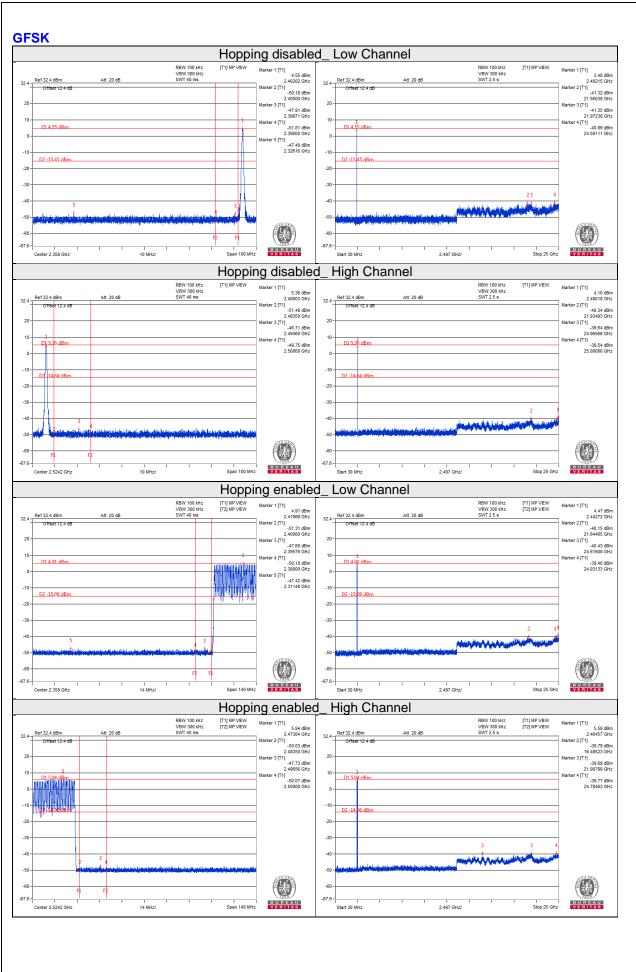
4.7.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

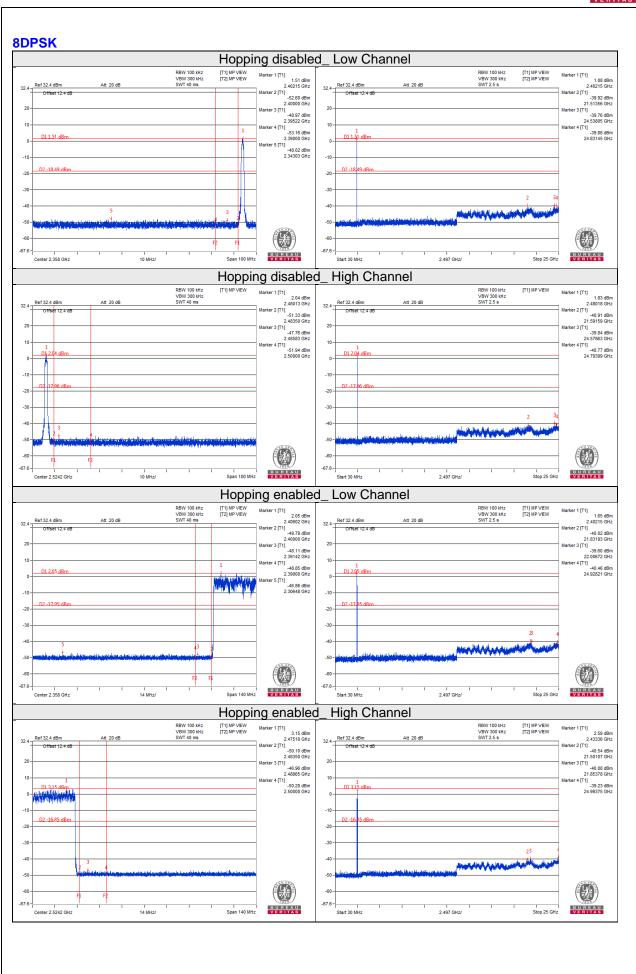
4.7.4 Deviation from Test Standard

No deviation.

4.7.5 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest and highest channel frequencies individually.

4.7.6 Test Results


The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

Report No.: RFBERD-WTW-P22060603-8 Page No. 39 / 43 Report Format Version: 6.1.1

5 Pictures of Test Arrangements							
Please refer to the attached file (Test Setup Photo).							

Report No.: RFBERD-WTW-P22060603-8 Page No. 42 / 43 Report Format Version: 6.1.1

Appendix - Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Hsin Chu EMC/RF/Telecom Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab

Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com
Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---

Report No.: RFBERD-WTW-P22060603-8 Page No. 43 / 43 Report Format Version: 6.1.1