

6.6. Frequency Stability Measurement

6.6.1. Test Limit

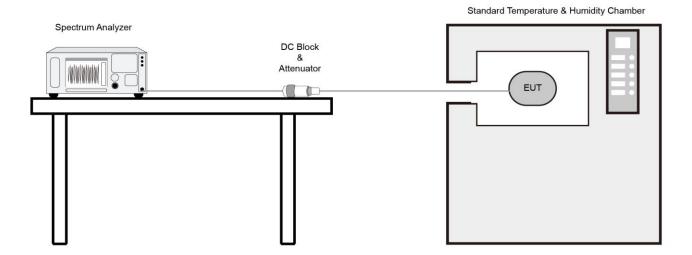
Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

6.6.2. Test Procedure

Frequency Stability Under Temperature Variations:

The equipment under test was connected to an external AC or DC power supply and input rated voltage. RF output was connected to a frequency counter or spectrum analyzer via feed through attenuators. The EUT was placed inside the temperature chamber. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and measure EUT 20°C operating frequency as reference frequency. Turn EUT off and set the chamber temperature to highest. After the temperature stabilized for approximately 30 minutes recorded the frequency. Repeat step measure with 10°C decreased per stage until the lowest temperature reached.

Frequency Stability Under Voltage Variations:


Set chamber temperature to 20°C. Use a variable AC power supply / DC power source to power the EUT and set the voltage to rated voltage. Set the spectrum analyzer RBW low enough to obtain the desired frequency resolution and recorded the frequency.

Reduce the input voltage to specify extreme voltage variation (±15%) and endpoint, recordthe maximum frequency change.

Page Number: 152 of 420

6.6.3. Test Setup

6.6.4. Test Result

Test Site	SR3	Test Engineer	Wen
Test Date	2024/7/2		
Test Mode	5955MHz (Carrier Mode)		

Voltage	Power	Temp	Frequency Tolerance (ppm)									
(%)	(VAC)	(°C)	0 minutes	2 minutes	5 minutes	10 minutes						
		- 30	12.80	12.80	12.76	12.76						
		- 20	12.85	12.83	12.83	12.83						
		- 10	11.20	11.25	12.29	13.37						
		0	4.15	4.65	6.72	11.23						
100	3.8	+ 10	2.02	1.96	2.30	3.59						
		+ 20	2.10	2.45	2.22	2.12						
		+ 30	12.43	10.92	9.92	5.36						
									+ 40	5.16	3.41	1.24
		+ 50	-2.43	-3.49	-4.77	-5.91						
115	4.4	+ 20	2.08	2.33	2.20	2.10						
85	3.2	+ 20	2.25	2.28	2.17	2.07						

Page Number: 154 of 420

6.7. Contention Based Protocol

6.7.1. Test Limit

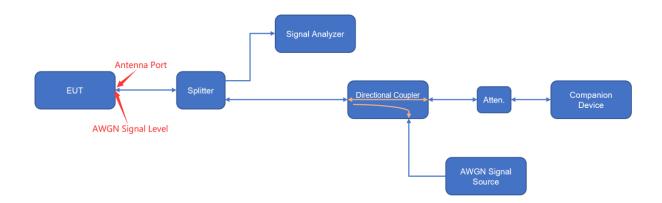
Unlicensed indoor low power device must detect co-channel radio frequency power that is at least -62dBm (The threshold is referenced to a 0dBi antenna gain.) or low.

Indoor low power device must detect an AWGN signal with 90% (or better) level of certainty.

6.7.2. Test Procedure Used

KDB 987594 D02v02r01- Section I

6.7.3. Test Setting


- 1. Configure the EUT to transmit with a constant duty cycle.
- 2. Set the operating parameters of the EUT including power level, operating frequency, modulation and bandwidth.
- 3. Set the signal analyzer center frequency to the nominal EUT channel center frequency. The span range of the signal analyzer shall be between two times and five times the OBW of the EUT.
 Connect the output port of the EUT to the signal analyzer 2. Ensure that the attenuator 2 provides enough attenuation to not overload the signal analyzer 2 receiver.
- 4. Monitoring the signal analyzer 2, verify the EUT is operating and transmitting with the parameters set at step two.
- 5. Using an AWGN signal source, generate a 10 MHz-wide AWGN signal. Use Table 1 of KDB 987594 to determine the center frequency of the 10 MHz AWGN signal relative to the EUT's channel bandwidth and center frequency.
- 6. Set the AWGN signal power to an extremely low level. Connect the AWGN signal source, via a 3-dB splitter, to the signal analyzer 1 and the EUT as shown in below figure.
- 7. Transmit the AWGN signal (RF ON) and verify its characteristics on the signal analyzer 1.
- 8. Monitor the signal analyzer 2 to verify if the AWGN signal has been detected and the EUT has ceased transmission. If the EUT continues to transmit, then incrementally increase the AWGN signal power level until the EUT stops transmitting.

Page Number: 155 of 420

- 9. Determine and record the AWGN signal power level (at the EUT's antenna port) at which the EUT ceased transmission. Repeat the procedure at least 10 times to verify the EUT can detect an AWGN signal with 90% (or better) level of certainty.
- 10. Refer to Table 1 to determine number of times the detection threshold testing needs to be repeated. If testing is required more than once, then go back to step 5, choose a different center frequency for the AWGN signal and repeat the process.

6.7.4. Test Setup

6.7.5. Test Result

Product	CK67X0N	Temperature	25°C
Test Engineer	Wen	Relative Humidity	55%
Test Site	SR6	Test Date	2024/7/19
Test Mode	СВР		

Test	Bandwidt	Freq.	AWGN	AWGN	Ant.	Adjust	Detection	Detected	Detection	Limi	Test	
Channel	h	(MHz)	Freq.	Power	Gain	Power	Limit	Number	Probability	t	Result	
	(MHz)		(MHz)	(dBm)	(dBi)	(dBm)	(dBm)		(%)	(%)		
Operation	Operation Band: U-NII 5											
37	20	6135	6135	-72	2.7	-74.7	≤ -62.0	10	100	90	Pass	
47	160	6185	6110	-62	2.7	-64.7	≤ -62.0	10	90	90	Pass	
47	160	6185	6185	-66	2.7	-68.7	≤ -62.0	10	100	90	Pass	
47	160	6185	6260	-62	2.7	-64.7	≤ -62.0	10	100	90	Pass	
Operation I	Band: U-NII 6	3										
101	20	6455	6455	-74	2.7	-76.7	≤ -62.0	10	100	90	Pass	
111	160	6505	6430	-71	2.7	-73.7	≤ -62.0	10	100	90	Pass	
111	160	6505	6505	-68	2.7	-70.7	≤ -62.0	10	100	90	Pass	
111	160	6505	6580	-68	2.7	-70.7	≤ -62.0	10	100	90	Pass	
Operation	Band: U-NII 7	,										
149	20	6695	6695	-74	3	-77	≤ -62.0	10	100	90	Pass	
143	160	6665	6590	-68	3	-71	≤ -62.0	10	100	90	Pass	
143	160	6665	6665	-68	3	-71	≤ -62.0	10	100	90	Pass	
143	160	6665	6740	-68	3	-71	≤ -62.0	10	100	90	Pass	
Operation	Band: U-NII 8	3										
213	20	7015	7015	-76	3.7	-79.7	≤ -62.0	10	100	90	Pass	
207	160	6985	6910	-65	3.7	-68.7	≤ -62.0	10	100	90	Pass	
207	160	6985	6985	-69	3.7	-72.7	≤ -62.0	10	90	90	Pass	
207	160	6985	7060	-66	3.7	-69.7	≤ -62.0	10	100	90	Pass	

Note 1: Adjust Power (dBm) = AWGN Power (dBm) - Antenna Gain (dBi).

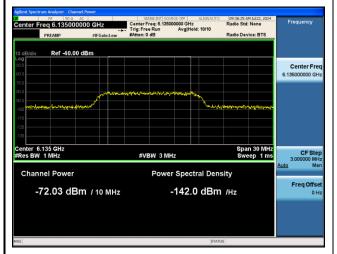
Note 2: Conducted measurements are used.

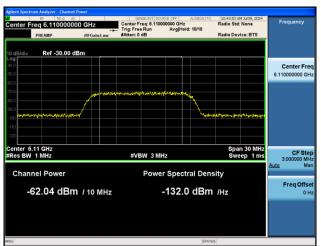
Bandwidth	Freq.	AWGN Freq.	Adjust Power	EUT Tx Status						
(MHz)	(MHz)	(MHz)	(dBm)							
Operation Band: U-N	Operation Band: U-NII 5									
			-80	ON						
20	6135	6135	-73	Minimal						
			-72	OFF						
			-80	ON						
160	6185	6110	-63	Minimal						
			-62	OFF						
			-80	ON						
160	6185	6185	-67	Minimal						
			-66	OFF						
			-80	ON						
160	6185	6260	-63	Minimal						
			-62	OFF						
Operation Band: U-N	II 6									
			-80	ON						
20	6455	6455	-75	Minimal						
			-74	OFF						
			-80	ON						
160	6505	6430	-72	Minimal						
			-71	OFF						
			-80	ON						
160	6505	6505	-69	Minimal						
			-68	OFF						
			-80	ON						
160	6505	6580	-69	Minimal						
			-68	OFF						

Bandwidth	Freq.	AWGN Freq.	Adjust Power	EUT Status					
(MHz)	(MHz)	(MHz)	(dBm)						
Operation Band: U-NII 7									
			-80	ON					
20	6695	6695	-75	Minimal					
			-74	OFF					
			-80	ON					
160	6665	6590	-69	Minimal					
			-68	OFF					
			-80	ON					
160	6665	6665	-69	Minimal					
			-68	OFF					
			-80	ON					
160	6665	6740	-69	Minimal					
			-68	OFF					
Operation Band: U-N	II 8								
		7015	-80	ON					
20	7015		-77	Minimal					
			-76	OFF					
			-80	ON					
160	6985	6910	-66	Minimal					
			-65	OFF					
			-80	ON					
160	6985	6985	-70	Minimal					
			-69	OFF					
			-80	ON					
160	6985	7060	-67	Minimal					
			-66	OFF					

Note:

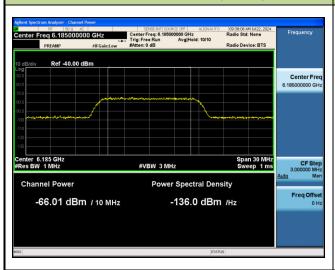
OFF: AWGN level at which no transmission is detected, consistently for a minimum period of 10 seconds Minimal: AWGN level at which the system begins to trigger the transmission switch-off, albeit not being kept off consistently

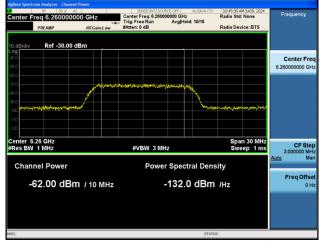

ON: AWGN level at which no impact on the transmission is detected, consistently for a minimum period of 10 seconds



AWGN Signal Level (at Antenna Port) Calibration Plots (NII-5 Band)

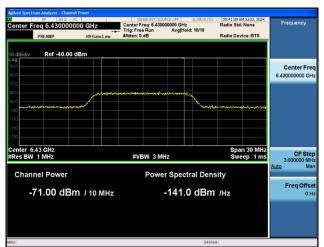
802.11ax-HE20 / CH33


802.11ax-HE160 / CH47 (Low Edge)



802.11ax-HE160 / CH47 (Middle)

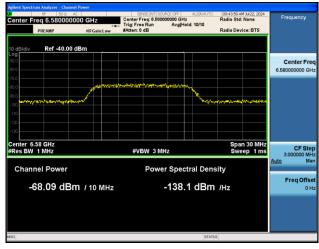
802.11ax-HE160 / CH47 (High Edge)



AWGN Signal Level (at Antenna Port) Calibration Plots (NII-6 Band)

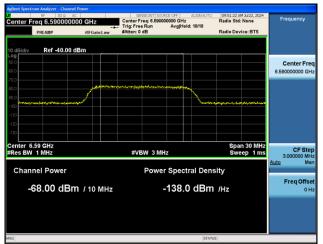
802.11ax-HE20 / CH97

802.11ax-HE80 / CH103 (Low Edge)



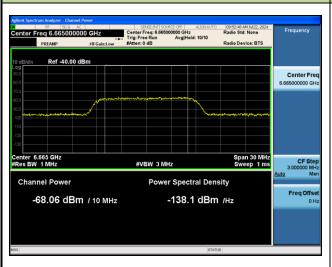
802.11ax-HE80 / CH103 (Middle)

802.11ax-HE80 / CH103 (High Edge)



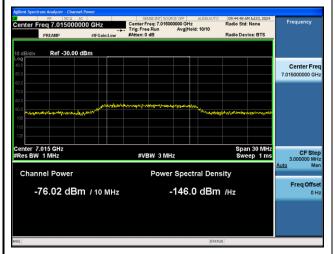
AWGN Signal Level (at Antenna Port) Calibration Plots (NII-7 Band)

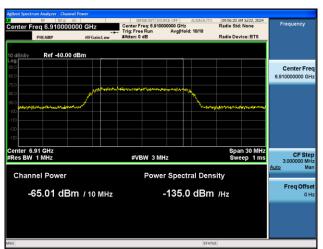
802.11ax-HE20 / CH153


802.11ax-HE160 / CH143 (Low Edge)

802.11ax-HE160 / CH143 (Middle)

802.11ax-HE160 / CH143 (High Edge)





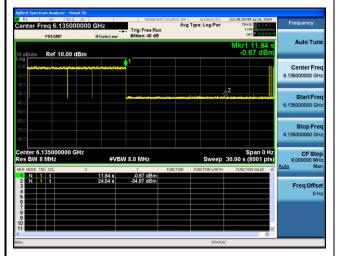
AWGN Signal Level (at Antenna Port) Calibration Plots (NII-8 Band)

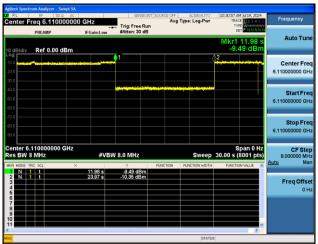
802.11ax-HE20 / CH213


802.11ax-HE160 / CH207 (Low Edge)

802.11ax-HE160 / CH207 (Middle)

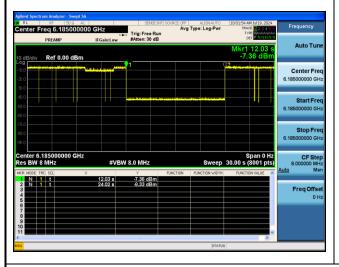
802.11ax-HE160 / CH207 (High Edge)

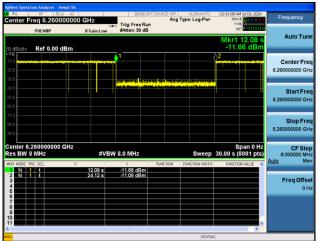




Test Result of EUT ceased transmission (NII-5 Band)

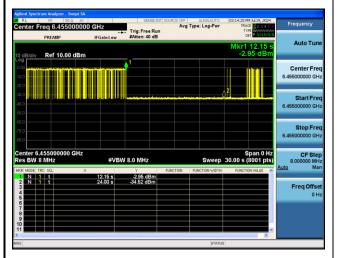
802.11ax-HE20 / CH33

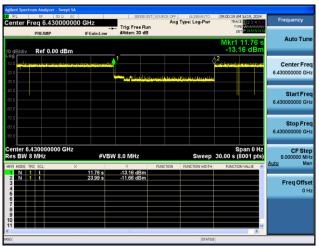

802.11ax-HE160 / CH47 (Low Edge)



802.11ax-HE160 / CH47 (Middle)

802.11ax-HE160 / CH47 (High Edge)

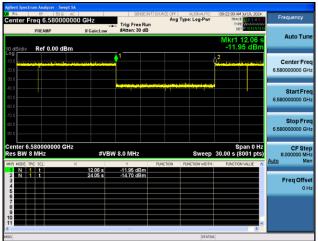

Note - M1: Injection of AWGN Signal, M2: Removal of AWGN Signal



Test Result of EUT ceased transmission (NII-6 Band)

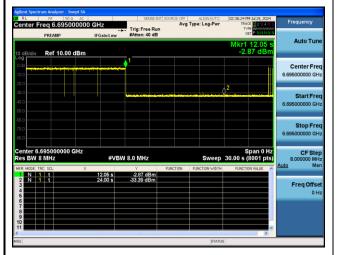
802.11ax-HE20 / CH97

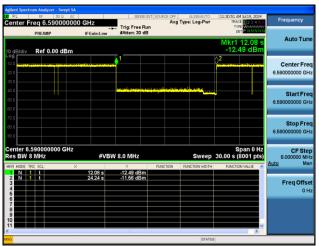
802.11ax-HE80 / CH103 (Low Edge)



802.11ax-HE80 / CH103 (Middle)

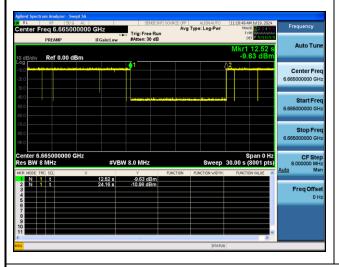
802.11ax-HE80 / CH103 (High Edge)

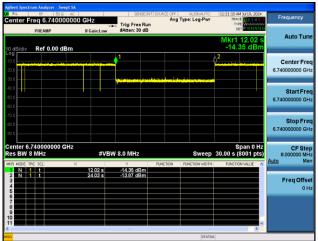

Note - M1: Injection of AWGN Signal, M2: Removal of AWGN Signal



Test Result of EUT ceased transmission (NII-7 Band)

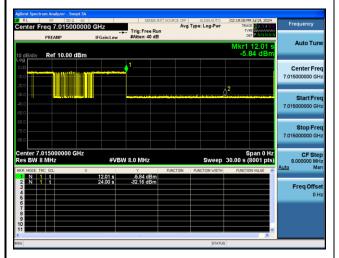
802.11ax-HE20 / CH153

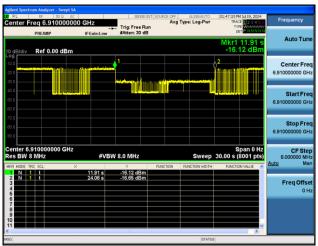

802.11ax-HE160 / CH143 (Low Edge)



802.11ax-HE160 / CH143 (Middle)

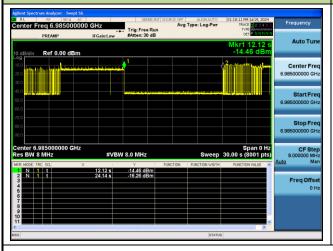
802.11ax-HE160 / CH143 (High Edge)

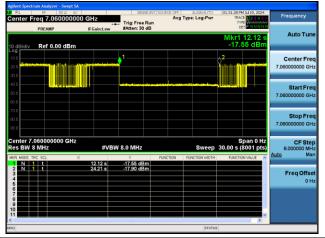

Note - M1: Injection of AWGN Signal, M2: Removal of AWGN Signal



Test Result of EUT ceased transmission (NII-8 Band)

802.11ax-HE20 / CH213


802.11ax-HE160 / CH207 (Low Edge)



802.11ax-HE160 / CH207 (Middle)

802.11ax-HE160 / CH207 (High Edge)

Note - M1: Injection of AWGN Signal, M2: Removal of AWGN Signal

6.8. Radiated Spurious Emission

6.8.1. Test Limit

For 15.407(b)(5) requirement

For transmitters operating within the 5.925-7.125 GHz band: Any emissions outside of the 5.925-7.125 GHz band must not exceed an e.i.r.p. of -27 dBm/MHz.

Refer to 987594 D02 U-NII 6GHz EMC Measurement v02r01 clause G

Use guidance in KDB 789033 for measurements below 1000 MHz and above 1000 MHz. Unwanted emissions outside of restricted bands are measured with a RMS detector. In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit.

All out of band emissions appearing in a restricted band as specified in Section 15.205 of the Title 47CFR must not exceed the limits shown in Table per Section 15.209.

FCC Part 15 Subpart C Paragraph 15.209									
Frequency	Field Strength	Measured Distance							
[MHz]	[uV/m]	[Meters]							
0.009 - 0.490	2400/F (kHz)	300							
0.490 - 1.705	24000/F (kHz)	30							
1.705 - 30	30	30							
30 - 88	100	3							
88 - 216	150	3							
216 - 960	200	3							
Above 960	500	3							

6.8.2. Test Procedure Used

KDB 789033 D02v02r01- Section G

6.8.3. Test Setting

Table 1 - RBW as a function of frequency

Frequency	RBW		
9 ~ 150 kHz	200 ~ 300 Hz		
0.15 ~ 30 MHz	9 ~ 10 kHz		
30 ~ 1000 MHz	100 ~ 120 kHz		
> 1000MHz	1MHz		

Page Number: 168 of 420

Quasi-Peak Measurements below 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. Span was set greater than 1MHz
- 3. RBW = as specified in Table 1
- 4. Detector = CISPR quasi-peak
- 5. Sweep time = auto couple
- 6. Trace was allowed to stabilize

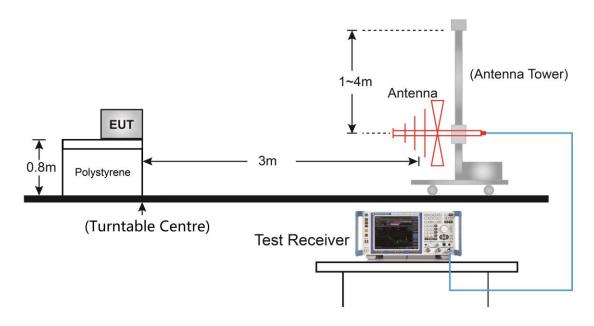
Peak Measurements above 1GHz

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW = 3MHz
- 4. Detector = peak
- 5. Sweep time = auto couple
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

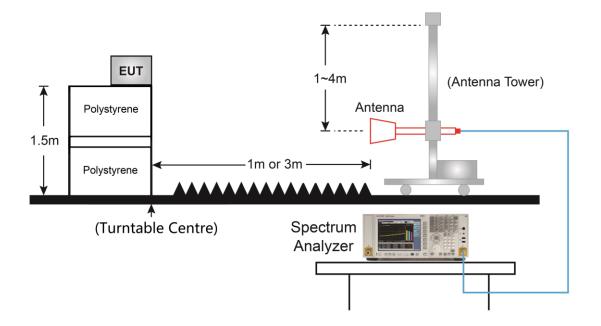
Average Measurements above 1GHz (Method VB)

- 1. Analyzer center frequency was set to the frequency of the radiated spurious emission of interest
- 2. RBW = 1MHz
- 3. VBW; If the EUT is configured to transmit with duty cycle \geq 98%, set VBW = 10 Hz.

If the EUT duty cycle is < 98%, set VBW ≥ 1/T. T is the minimum transmission duration.

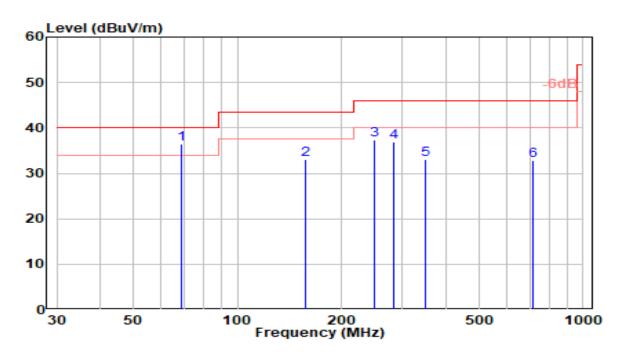

- 4. Detector = Peak
- 5. Sweep time = auto
- 6. Trace mode = max hold
- 7. Trace was allowed to stabilize

Page Number: 169 of 420



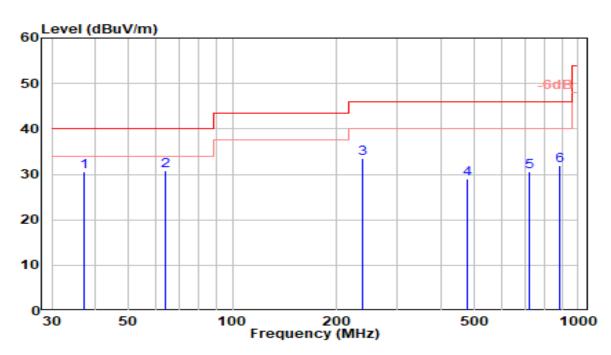
6.8.4. Test Setup

Below 1GHz Test Setup:


Above 1GHz Test Setup:

6.8.5. Test Result

EUT	Mobile Computer	Date of Test	2024-07-21
Factor	VULB 9162	Temp. / Humidity	22°C /58%
Polarity	Horizontal	Site / Test Engineer	AC2 / Owen
Test Mode	802.11ax-20MHz_Band5_TX_CH 1 ANT	Toot Voltage	Dy Notaback DC
	0+1_Client Low Power Indoor	Test Voltage	By Notebook PC


No		Frequency	Reading	C.F	Measurement	Margin	Limit	Height	Angle	Remark
No		(MHz)	(dBuV)	(dB/m)	(dBuV/m)	(dB)	(dBuV/m)	(cm)	(deg)	(QP/PK/AV)
1	*	68.910	20.35	16.00	36.35	-3.65	40.00	286	216	QP
2		157.920	17.69	15.40	33.09	-10.41	43.50	200	140	QP
3		248.930	17.62	19.83	37.46	-8.54	46.00	100	160	QP
4		282.170	16.77	20.20	36.96	-9.04	46.00	100	220	QP
5		350.640	10.65	22.48	33.12	-12.88	46.00	100	30	QP
6		718.630	4.41	28.44	32.85	-13.15	46.00	100	250	QP

Note:

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. The amplitude of radiated emissions (frequency range from 9kHz to 30MHz) is that proximity to ambient noise, which also are attenuated more than 20dB below the permissible value. Therefore, the data is not presented in the report.

EUT	Mobile Computer	Date of Test	2024-07-21	
Factor	VULB 9162	Temp. / Humidity	22°C /58%	
Polarity	Vertical	Site / Test Engineer	AC2 / Owen	
Test Mode	802.11ax-20MHz_Band5_TX_CH 1 ANT	Test Voltage	By Notobook BC	
Test Mode	0+1_Client Low Power Indoor	rest voltage	By Notebook PC	

No		Frequency (MHz)	Reading (dBuV)	C.F (dB/m)	Measurement (dBuV/m)	Margin (dB)	Limit (dBuV/m)	Height (cm)	Angle (deg)	Remark (QP/PK/AV)
1		37.150	11.99	18.64	30.63	-9.37	40.00	100	16	QP
2	*	63.910	12.86	17.82	30.68	-9.32	40.00	200	318	QP
3		238.130	14.10	19.29	33.40	-12.60	46.00	200	160	QP
4		478.130	4.56	24.49	29.05	-16.95	46.00	160	10	QP
5		719.850	2.04	28.46	30.50	-15.50	46.00	100	330	QP
6		886.810	1.21	30.67	31.88	-14.12	46.00	200	60	QP

Note:

- 1. " *", means this data is the worst emission level.
- 2. C.F (Correction Factor) = Antenna Factor (dB/m)+ Cable Loss (dB).
- 3. Measurement (dBuV/m) = Reading(dBuV) + C.F (Correction Factor).
- 4. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 5. The amplitude of radiated emissions (frequency range from 9kHz to 30MHz) is that proximity to ambient noise, which also are attenuated more than 20dB below the permissible value. Therefore, the data is not presented in the report.