	BUR Veri
	FCC Test Report (BT-EDR)
Report No.:	RF171130C26-8
FCC ID:	HD5-660W
Test Model:	SOM660W
Received Date:	Nov. 30, 2017
Test Date:	Jan. 18 to 20, 2018
Issued Date:	Jan. 29, 2018
Applicant:	Honeywell International Inc.
Address:	9680 Old Bailes Road, Fort Mill, SC 29707 USA
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Hsin Chu Laboratory
Lab Address:	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
Test Location :	E-2, No.1, Li Hsin 1st Road, Hsinchu Science Park, Hsinchu City 300, Taiwan R.O.C.
FCC Registration / Designation Number:	723255 / TW2022
	TAFF Testing Laborate 2022

In seport solved exclusive dise. Any copying of replication of this report on to all visit exclusive of the analy, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. The report must not be used by the client to claim product certification, approval, or endorsement by TAF or any government agencies.

Table of Contents

R	elease	e Control Record	4
1	C	Certificate of Conformity	5
2	S	Summary of Test Results	6
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	General Information	7
	3.1	General Description of EUT (BT-EDR)	7
	3.2	Description of Test Modes	9
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Description of Support Units	
	3.3.1		
	3.4	General Description of Applied Standards	
4	Т	est Types and Results	
	4.1	Radiated Emission and Bandedge Measurement	14
		Limits of Radiated Emission and Bandedge Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup	
		EUT Operating Conditions	
		Test Results	
	4.2	Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		EUT Operating Condition	
		Test Results	
	4.3 4.3.1	Number of Hopping Frequency Used	
		Limits of Hopping Frequency Used Measurement Test Setup	
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	•••
		Test Results	
	4.4	Dwell Time on Each Channel	
		Limits of Dwell Time on Each Channel Measurement	
		Test Setup	
		Test Instruments	
	4.4.4	Test Procedures	32
	4.4.5	Deviation from Test Standard	32
	4.4.6	Test Results	33
	4.5	Channel Bandwidth	37
	4.5.1	Limits of Channel Bandwidth Measurement	37
		Test Setup	
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Condition	
		Test Results	
	4.6	Hopping Channel Separation	
	4.6.1	Limits of Hopping Channel Separation Measurement	39

	4.6.2	Test Setup	39
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
	4.6.6	Test Results	40
	4.7	Maximum Output Power	41
		Limits of Maximum Output Power Measurement	
	4.7.2	Test Setup	41
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
		EUT Operating Condition	
	4.7.7	Test Results	
	4.8	Conducted Out of Band Emission Measurement	
	4.8.1	Limits of Conducted Out of Band Emission Measurement	43
		Test Instruments	
		Test Procedure	
	4.8.4	Deviation from Test Standard	43
	4.8.5	EUT Operating Condition	43
	4.8.6	Test Results	43
5	Р	ictures of Test Arrangements	46
-			
Aţ	opend	ix – Information on the Testing Laboratories	47

	R	elease Control F	Record	
Issue No.	Description			Date Issued
RF171130C26-8	Original release.			Jan. 29, 2018

1	Certificate of Conformi	ty
	Product:	HSOM660
	Brand:	Honeywell
	Test Model:	SOM660W
	Sample Status:	ENGINEERING SAMPLE
	Applicant:	Honeywell International Inc.
	Test Date:	Jan. 18 to 20, 2018
	Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247)
		ANSI C63.10: 2013

The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Mary Ko, Date: Jan. 29, 2018 Prepared by :

Mary Ko / Specialist

Jan. 29, 2018 Date:

Approved by :

May Chen / Manager

2 Summary of Test Results

	47 CFR FCC Part 15, Sub	part C (SEC	TION 15.247)
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	PASS	Meet the requirement of limit. Minimum passing margin is -11.27dB at 0.18516MHz.
15.247(a)(1) (iii)	Number of Hopping Frequency Used	PASS	Meet the requirement of limit.
15.247(a)(1) (iii)	Dwell Time on Each Channel	PASS	Meet the requirement of limit.
15.247(a)(1)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	PASS	Meet the requirement of limit.
15.247(b)	Maximum Peak Output Power	PASS	Meet the requirement of limit.
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	PASS	Meet the requirement of limit. Minimum passing margin is -5.9dB at 71.02MHz.
15.247(d)	Antenna Port Emission	PASS	Meet the requirement of limit.
15.203	Antenna Requirement	PASS	Antenna connector is PIFA not a standard connector.

NOTE: If The Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or two-thirds of the 20dB bandwidth of hopping channel whichever is greater.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	1.84 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1GHz	5.33 dB
	1GHz ~ 6GHz	5.10 dB
Radiated Emissions above 1 GHz	6GHz ~ 18GHz	4.85 dB
	18GHz ~ 40GHz	5.24 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT (BT-EDR)

Product	HSOM660
Brand	Honeywell
Test Model	SOM660W
Status of EUT	ENGINEERING SAMPLE
HW Version	V2.0
HW P/N	22
SW Version	HON.01.004
SW P/N	351D
Power Supply Rating	3.85Vdc
Modulation Type	GFSK, π/4-DQPSK, 8DPSK
Modulation Technology	FHSS
Transfer Rate	Up to 3Mbps
Operating Frequency	2402MHz ~ 2480MHz
Number of Channel	79
Output Power	11.066mW
Antenna Type	Refer to Note
Antenna Connector	Refer to Note
Accessory Device	NA
Data Cable Supplied	NA

Note:

1. There are WWAN, WLAN and Bluetooth technology used for the EUT.

2. Simultaneously transmission condition.

Condition	Techn	ology
1	WLAN 2.4GHz	WWAN
2	WLAN 5GHz	WWAN
3	Bluetooth	WWAN
Note: The emission o	f the simultaneous operation has been evalu	uated and no non-compliance was found.

3. The ar	ntenna	s pro	ovided to th	e EUT, p	olease i	refer to	the f	follow	ving tab	ole:				
					WL	AN An	tenna	a Spe	ec.					
Chain No.	Brand	ł	Model	ine	Antenna clude tr and cab (dE	ace los le l oss	ss	rar	uency nge Hz)	Anten type		Connecto type		Trace loss and cable loss (dB)
					-0.3	38	2	2.4~2	.4835					2
					0.4	6		5.15-	~5.25					
Chain 0	USI	5	SOM-WLAN	10	0.4	6		5.25~	~5.35	PIF	4	POGO p	in	3.7
					0.4	6	5	5.47~	5.725					5.7
					0.4	6	5	5.725	~5.85					
					3.	2	2	2.4~2	.4835					1
					3.	8		5.15-	~5.25					
Chain 1	USI	5	SOM-WLAN	J1	3.	8		5.25-	~5.35	PIF	4	POGO p	in	1.9
					3.	8	5	5.47~	5.725					1.5
					3.	8	5	5.725	~5.85					
			_			AN Ar	ntenn	ia Sp	ec.					
Chain No	. Bra	and	Model		tenna G de trace (dBi)			equer range	-	Antenn type	a	Connecto type	r ⁻	Trace loss (dB)
					1.23		700~	~960	MHz					0.7
Chain 0		SI	SOM-WA	N	3.08		1.70	~2.0	GHz	PIFA		POGO pir		1
Chain 0	0	31	main		5.28		2.1~	~2.4 (GHz	FIFA		POGO pi		1.3
					2.66		2.4~	~2.7 (GHz					1.4
					2.15		700~	~960	MHz					0.7
Chain 1	1	SI	SOM-WA	N	3.13		1.70	~2.0	GHz	PIFA		POGO pir	, L	1
Chain	0	01	Aux		1.78		2.1~	~2.4 (GHz			1 000 pi	'	1.3
					3.01		2.4~	~2.7 (GHz					1.4
						ooth A	Anten	nna S	pec.					
Brand	b		Model	Antenna include loss and l os (dE	trace d cable ss	ra	quenc ange GHz)		Anteni	na type	Co	onnector type		ce loss and able loss (dB)
				-0.3	38	2.4~	2.483	35						2
				0.4	6	5.15	5~5.2	25						
USI		SO	M-WLAN0	0.4	6	5.25	5~5.3	5	PI	FA	P	DGO pin		3.7
				0.4	6	5.47	~5.72	25						3.1
				0.4	6	5.72	25~5.8	85						

4. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

79 channels are provided for BT-EDR mode:

Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

3.2.1 Test Mode Applicability and Tested Channel Detail

-	E≥1G					DESCRIPTION
- here RE≥1G	210	RE<1G	PLC /	APCM		
here RE≥1G	\checkmark	\checkmark	\checkmark	\checkmark	-	
		d Emission ab		_	Radiated Emissi	
-		Conducted E				iducted Measurement was found when positioned on)
	been c	onducted to	determine th			rom all possible combinat JT with antenna diversity
Following cha	innel(s)	was (were)	selected for t	he final	test as listed	below.
AVAILABLE CHANNEL		TESTED HANNEL	MODULATIO TECHNOLOG		IODULATION TYPE	PACKET TYPE
0 to 78		0, 39, 78	FHSS		GFSK	DH5
		0, 39, 78	FHSS		8DPSK	3DH5
between avai architecture).	on Test been ce able mo	Below 1 onducted to odulations,	GHz):	lanteni	na ports (if El	rom all possible combinat JT with antenna diversity below.
Adiated Emissi Pre-Scan has between avai architecture). Following cha	on Test been ce lable mc innel(s)	t (Below 10 onducted to odulations, was (were) TESTED	GHz): b determine th data rates and selected for t MODULATIO	he final	na ports (if EL test as listed IODULATION	JT with antenna diversity
Adiated Emissi Pre-Scan has between avai architecture). Following cha	on Test been ce lable mc innel(s)	t (Below 10 onducted to odulations, was (were)	GHz): o determine th data rates and selected for t	he final	na ports (if EL test as listed	JT with antenna diversity below.
Adiated Emissi Pre-Scan has between avail architecture). Following cha AVAILABLE CHANNEL 0 to 78 Ower Line Con Pre-Scan has between avail architecture). Following cha	on Test been co able mo unnel(s) ducted been co able mo	Emission Emission was (were) Emission was (were) Emission was (were)	GHz): o determine th data rates and selected for t MODULATIO TECHNOLOG FHSS	anteni he final N 3Y e worst anteni he final	ha ports (if EU test as listed MODULATION TYPE GFSK -case mode f ha ports (if EU test as listed	JT with antenna diversity below. PACKET TYPE DH5 rom all possible combinat JT with antenna diversity
Adiated Emissi Pre-Scan has between avail architecture). Following cha AVAILABLE CHANNEL 0 to 78 Ower Line Con Pre-Scan has between avail architecture).	on Test been co able mo innel(s) c ducted been co able mo annel(s)	a (Below 10) onducted to odulations, o was (were) TESTED HANNEL 0 Emission onducted to output output	GHz): o determine th data rates and selected for t MODULATIO TECHNOLOG FHSS	anteni he final N M SY e worst anteni he final	na ports (if EL test as listed MODULATION TYPE GFSK -case mode f na ports (if EL	JT with antenna diversity below. PACKET TYPE DH5 rom all possible combinat JT with antenna diversity

Antenna Port Conducted Measurement:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture).

AVAILABLE CHANNEL	TESTED MODULATION CHANNEL TECHNOLOGY		MODULATION TYPE	PACKET TYPE	
0 to 78	0, 39, 78	FHSS	GFSK	DH5	
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5	

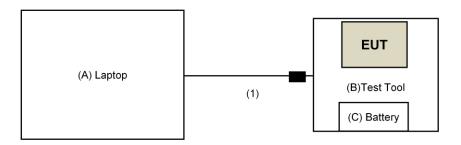
Test Condition:

APPLICABLE TO	ENVIRONMENTAL CONDITIONS	INPUT POWER (System)	TESTED BY	
RE≥1G	22deg. C, 68%RH	120Vac, 60Hz	Andy Ho	
RE<1G	23deg. C, 70%RH	120Vac, 60Hz	Andy Ho	
PLC	25deg. C, 75%RH	120Vac, 60Hz	Andy Ho	
APCM 25deg. C, 60%RH		120Vac, 60Hz	Jyunchun Lin	

3.3 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
Α.	Laptop	DELL	P54G	NA	NA	Supplied by client
В.	Test Tool	NA	NA	NA	NA	Supplied by client
C.	Battery	Inventus Power, Inc.	CW-BAT	CX80-BAT-EXT- WRLS1	NA	Supplied by client


Note:

1. All power cords of the above support units are non-shielded (1.8m).

ID	Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1.	USB Cable	1	1	Yes	1	Supplied by client

Note: The core(s) is(are) originally attached to the cable(s).

3.3.1 Configuration of System under Test

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

Note: The EUT has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (DoC). The test report has been issued separately.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver Keysight	N9038A	MY54450088	July 08, 2017	July 07, 2018
Loop Antenna ^(*) TESEQ	HLA 6121	45745	May 19, 2017	May 18, 2018
Pre-Amplifier Mini-Circuits	ZFL-1000VH2B	AMP-ZFL-01	Nov. 09, 2017	Nov. 08, 2018
Trilog Broadband Antenna SCHWARZBECK	VULB 9168	9168-406	Nov. 29, 2017	Nov. 28, 2018
RF Cable	8D	966-4-1 966-4-2 966-4-3	Apr. 01, 2017	Mar. 31, 2018
Fixed attenuator Mini-Circuits	UNAT-5+	PAD-3m-4-01	Oct. 03, 2017	Oct. 02, 2018
Horn_Antenna SCHWARZBECK	BBHA 9120D	9120D-783	Dec. 12, 2017	Dec. 11, 2018
Pre-Amplifier EMCI	EMC12630SE	980385	Feb. 02, 2017	Feb. 01, 2018
RF Cable	EMC104-SM-SM-1200 EMC104-SM-SM-2000 EMC104-SM-SM-5000	160923 150318 150321	Feb. 02, 2017 Mar. 29, 2017 Mar. 29, 2017	Feb. 01, 2018 Mar. 28, 2018 Mar. 28, 2018
Pre-Amplifier EMCI	EMC184045SE	980387	Feb. 02, 2017	Feb. 01, 2018
Horn_Antenna SCHWARZBECK	BBHA 9170	BBHA9170608	Dec. 14, 2017	Dec. 13, 2018
RF Cable	SUCOFLEX 102	36432/2 36433/2	Jan. 11, 2018	Jan. 10, 2019
Software	ADT_Radiated_V8.7.08	NA	NA	NA
Antenna Tower & Turn Table Max-Full	MF-7802	MF780208410	NA	NA
Boresight Antenna Fixture	FBA-01	FBA-SIP02	NA	NA
Spectrum Analyzer R&S	FSV40	100964	July 1, 2017	June 30, 2018
Power meter Anritsu	ML2495A	1014008	May 11, 2017	May 10, 2018
Power sensor Anritsu	MA2411B	0917122	May 11, 2017	May 10, 2018

Note:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. *The calibration interval of the above test instruments is 24 months and the calibrations are traceable to NML/ROC and NIST/USA.

3. The test was performed in 966 Chamber No. 4.

4 Loop antenna was used for all emissions below 30 MHz.

5. The CANADA Site Registration No. is 20331-2

6. Tested Date: Jan. 18 to 19, 2018

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Both X and Y axes of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

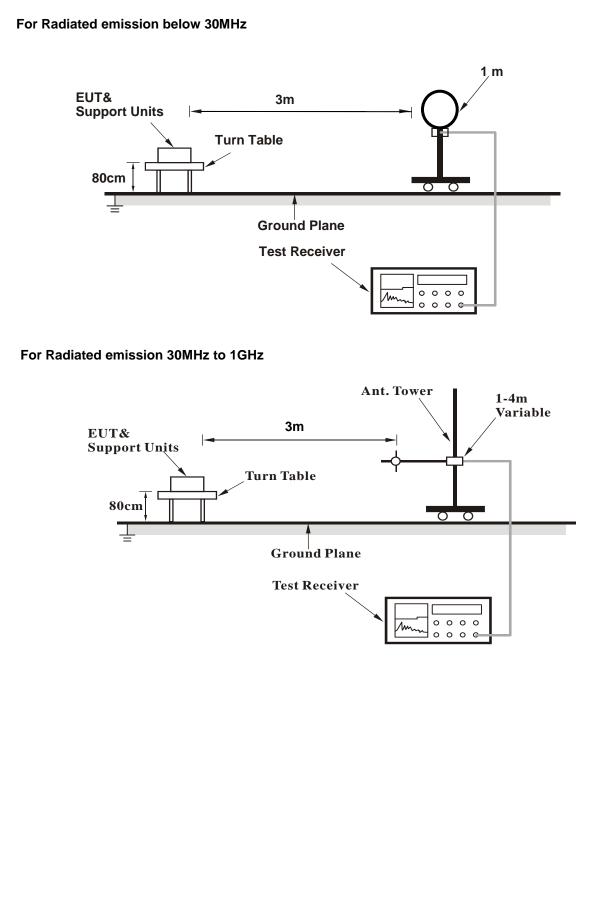
NOTE:

1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

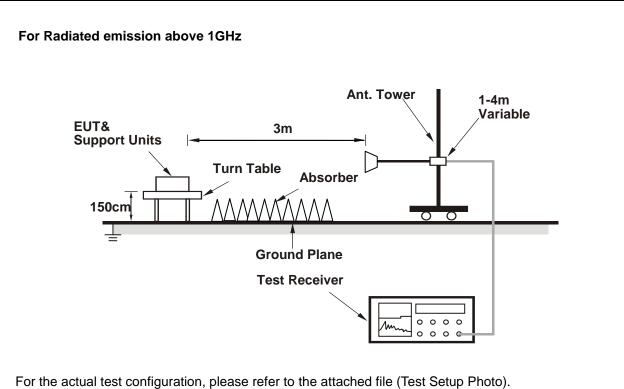
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:


- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.

4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

- 4.1.6 EUT Operating Conditions
- a. Connected the EUT with the Laptop.
- b. Controlling software (QRCT.exe V3.0.268.0) has been activated to set the EUT on specific status.

4.1.7 Test Results

Above 1GHz Data:

BT_GFSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	43.2 PK	74.0	-30.8	1.98 H	135	44.2	-1.0	
2	2390.00	32.2 AV	54.0	-21.8	1.98 H	135	33.2	-1.0	
3	*2402.00	98.6 PK			1.98 H	135	99.6	-1.0	
4	*2402.00	68.5 AV			1.98 H	135	69.5	-1.0	
5	4804.00	39.6 PK	74.0	-34.4	2.97 H	210	36.5	3.1	
6	4804.00	9.5 AV	54.0	-44.5	2.97 H	210	6.4	3.1	
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М	•	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	2390.00	43.5 PK	74.0	-30.5	1.53 V	169	44 5	-1.0	

		(abat/iii)			(,	(209.00)	(abar)	(((,)))
1	2390.00	43.5 PK	74.0	-30.5	1.53 V	169	44.5	-1.0
2	2390.00	32.8 AV	54.0	-21.2	1.53 V	169	33.8	-1.0
3	*2402.00	99.9 PK			1.53 V	169	100.9	-1.0
4	*2402.00	69.8 AV			1.53 V	169	70.8	-1.0
5	4804.00	41.7 PK	74.0	-32.3	1.59 V	254	38.6	3.1
6	4804.00	11.6 AV	54.0	-42.4	1.59 V	254	8.5	3.1

REMARKS:

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M								
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)	
1	*2441.00	98.0 PK			1.99 H	122	99.4	-1.4	
2	*2441.00	67.9 AV			1.99 H	122	69.3	-1.4	
3	4882.00	40.1 PK	74.0	-33.9	3.02 H	194	36.8	3.3	
4	4882.00	10.0 AV	54.0	-44.0	3.02 H	194	6.7	3.3	
5	7323.00	41.6 PK	74.0	-32.4	1.83 H	202	31.6	10.0	
6	7323.00	11.5 AV	54.0	-42.5	1.83 H	202	1.5	10.0	
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М		

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	99.8 PK			1.53 V	188	101.2	-1.4
2	*2441.00	69.7 AV			1.53 V	188	71.1	-1.4
3	4882.00	42.0 PK	74.0	-32.0	1.64 V	253	38.7	3.3
4	4882.00	11.9 AV	54.0	-42.1	1.64 V	253	8.6	3.3
5	7323.00	42.4 PK	74.0	-31.6	1.33 V	170	32.4	10.0
6	7323.00	12.3 AV	54.0	-41.7	1.33 V	170	2.3	10.0

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

		ANTENNA	POLARITY	& TEST DIS	TANCE: HO	RIZONTAL	AT 3 M	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	98.3 PK			2.01 H	133	99.6	-1.3
2	*2480.00	68.2 AV			2.01 H	133	69.5	-1.3
3	2483.50	42.8 PK	74.0	-31.2	2.01 H	133	44.0	-1.2
4	2483.50	12.7 AV	54.0	-41.3	2.01 H	133	13.9	-1.2
5	4960.00	39.6 PK	74.0	-34.4	3.00 H	201	36.1	3.5
6	4960.00	9.5 AV	54.0	-44.5	3.00 H	201	6.0	3.5
7	7440.00	41.2 PK	74.0	-32.8	1.77 H	208	31.1	10.1
8	7440.00	11.1 AV	54.0	-42.9	1.77 H	208	1.0	10.1
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М	
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2480.00	99.6 PK			1.49 V	177	100.9	-1.3
2	*2480.00	69.5 AV			1.49 V	177	70.8	-1.3
3	2483.50	42.8 PK	74.0	-31.2	1.49 V	177	44.0	-1.2
4	2483.50	12.7 AV	54.0	-41.3	1.49 V	177	13.9	-1.2
5	4960.00	41.4 PK	74.0	-32.6	1.62 V	244	37.9	3.5
6	4960.00	11.3 AV	54.0	-42.7	1.62 V	244	7.8	3.5
7	7440.00	41.7 PK	74.0	-32.3	1.32 V	161	31.6	10.1
8	7440.00	11.6 AV	54.0	-42.4	1.32 V	161	1.5	10.1

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB

7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

BT_8DPSK

CHANNEL	TX Channel 0	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	2390.00	43.0 PK	74.0	-31.0	1.98 H	147	44.0	-1.0			
2	2390.00	31.7 AV	54.0	-22.3	1.98 H	147	32.7	-1.0			
3	*2402.00	95.6 PK			1.98 H	147	96.6	-1.0			
4	*2402.00	65.5 AV			1.98 H	147	66.5	-1.0			
5	4804.00	39.6 PK	74.0	-34.4	2.94 H	202	36.5	3.1			
6	4804.00	9.5 AV	54.0	-44.5	2.94 H	202	6.4	3.1			
		ANTENNA		& TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	2390.00	43.5 PK	74.0	-30.5	1.55 V	179	44.5	-1.0			
2	2390.00	32.3 AV	54.0	-21.7	1.55 V	179	33.3	-1.0			
3	*2402.00	96.0 PK			1.55 V	179	97.0	-1.0			
4	*2402.00	65.9 AV			1.55 V	179	66.9	-1.0			
5	4804.00	40.8 PK	74.0	-33.2	1.63 V	242	37.7	3.1			
6	4804.00	10.7 AV	54.0	-43.3	1.63 V	242	7.6	3.1			
	VDKC.										

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. The other emission levels were very low against the limit.
- 4. Margin value = Emission Level Limit value
- 5. " * ": Fundamental frequency.
- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 39	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2441.00	94.0 PK			1.99 H	127	95.4	-1.4			
2	*2441.00	63.9 AV			1.99 H	127	65.3	-1.4			
3	4882.00	39.6 PK	74.0	-34.4	2.92 H	215	36.3	3.3			
4	4882.00	9.5 AV	54.0	-44.5	2.92 H	215	6.2	3.3			
5	7323.00	42.5 PK	74.0	-31.5	1.68 H	204	32.5	10.0			
6	7323.00	12.4 AV	54.0	-41.6	1.68 H	204	2.4	10.0			
	ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M										
	FREQ.	EMISSION	LIMIT	MARGIN	ANTENNA	TABLE	RAW	CORRECTION			

NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)
1	*2441.00	95.3 PK			1.46 V	194	96.7	-1.4
2	*2441.00	65.2 AV			1.46 V	194	66.6	-1.4
3	4882.00	41.3 PK	74.0	-32.7	1.62 V	242	38.0	3.3
4	4882.00	11.2 AV	54.0	-42.8	1.62 V	242	7.9	3.3
5	7323.00	42.1 PK	74.0	-31.9	1.31 V	169	32.1	10.0
6	7323.00	12.0 AV	54.0	-42.0	1.31 V	169	2.0	10.0

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

- 6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB
- 7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M										
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2480.00	94.3 PK			1.96 H	138	95.6	-1.3			
2	*2480.00	64.2 AV			1.96 H	138	65.5	-1.3			
3	2483.50	41.2 PK	74.0	-32.8	1.96 H	138	42.4	-1.2			
4	2483.50	11.1 AV	54.0	-42.9	1.96 H	138	12.3	-1.2			
5	4960.00	39.3 PK	74.0	-34.7	2.96 H	213	35.8	3.5			
6	4960.00	9.2 AV	54.0	-44.8	2.96 H	213	5.7	3.5			
7	7440.00	42.0 PK	74.0	-32.0	1.72 H	212	31.9	10.1			
8	7440.00	11.9 AV	54.0	-42.1	1.72 H	212	1.8	10.1			
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М				
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)			
1	*2480.00	95.8 PK			1.52 V	180	97.1	-1.3			
2	*2480.00	65.7 AV			1.52 V	180	67.0	-1.3			
3	2483.50	41.8 PK	74.0	-32.2	1.52 V	180	43.0	-1.2			
4	2483.50	11.7 AV	54.0	-42.3	1.52 V	180	12.9	-1.2			
5	4960.00	41.1 PK	74.0	-32.9	1.62 V	247	37.6	3.5			
6	4960.00	11.0 AV	54.0	-43.0	1.62 V	247	7.5	3.5			
7	7440.00	41.8 PK	74.0	-32.2	1.34 V	157	31.7	10.1			
8	7440.00	11.7 AV	54.0	-42.3	1.34 V	157	1.6	10.1			

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

5. " * ": Fundamental frequency.

6. The DH5 packet was the worse case duty cycle for a transmit dwell time on a channel, based upon bluetooth theory the transmitter is on 0.625 * 5 per 296.25 ms per channel. Therefore, the duty cycle correlation factor be equal to: 20log(3.125 / 100)= -30.1 dB

7. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle)

Below 1GHz Data:

BT_GFSK

CHANNEL	TX Channel 0	DETECTOR	Over Deals (OD)
FREQUENCY RANGE	9kHz ~ 1GHz	FUNCTION	Quasi-Peak (QP)

	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M									
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	37.49	31.1 QP	40.0	-8.9	2.39 H	112	39.6	-8.5		
2	71.02	34.1 QP	40.0	-5.9	2.06 H	189	44.3	-10.2		
3	159.60	32.8 QP	43.5	-10.7	2.13 H	142	40.5	-7.7		
4	300.00	38.8 QP	46.0	-7.2	1.96 H	205	46.0	-7.2		
5	350.00	36.4 QP	46.0	-9.6	1.64 H	252	42.4	-6.0		
6	927.72	34.9 QP	46.0	-11.1	1.31 H	116	30.0	4.9		
		ANTENNA	POLARITY	& TEST DI	STANCE: V	ERTICAL A	Т 3 М			
NO.	FREQ. (MHz)	EMISSION LEVEL (dBuV/m)	LIMIT (dBuV/m)	MARGIN (dB)	ANTENNA HEIGHT (m)	TABLE ANGLE (Degree)	RAW VALUE (dBuV)	CORRECTION FACTOR (dB/m)		
1	31.10	33.7 QP	40.0	-6.3	1.03 V	182	42.6	-8.9		
2	71.20	33.0 QP	40.0	-7.0	1.15 V	241	43.3	-10.3		
3	158.56	29.3 QP	43.5	-14.2	1.26 V	113	36.9	-7.6		
4	350.01	35.4 QP	46.0	-10.6	1.25 V	82	41.4	-6.0		
5	399.99	34.5 QP	46.0	-11.5	1.46 V	228	39.1	-4.6		
6	850.86	34.5 QP	46.0	-11.5	1.57 V	213	30.8	3.7		

REMARKS:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted Limit (dBuV)				
Frequency (MHz)	Quasi-peak	Average			
0.15 - 0.5	66 - 56	56 - 46			
0.50 - 5.0	56	46			
5.0 - 30.0	60	50			

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

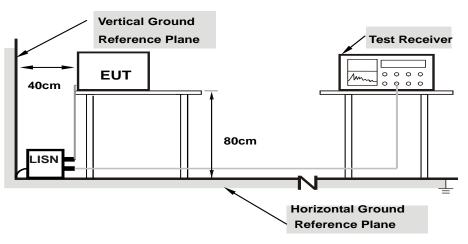
DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
Test Receiver R&S	ESCS 30	847124/029	Nov. 01, 2017	Oct. 31, 2018
Line-Impedance Stabilization Network (for EUT) R&S	ESH3-Z5	848773/004	Nov. 15, 2017	Nov. 14, 2018
Line-Impedance Stabilization Network (for Peripheral) R&S	ENV216	100072	June 03, 2017	June 02, 2018
50 ohms Terminator	N/A	EMC-02	Sep. 22, 2017	Sep. 21, 2018
RF Cable	5D-FB	COCCAB-001	Sep. 29, 2017	Sep. 28, 2018
10 dB PAD Mini-Circuits	HAT-10+	CONATT-004	June 18, 2017	June 17, 2018
Software BVADT	BVADT_Cond_ V7.3.7.4	NA	NA	NA

Note:

1. The calibration interval of the above test instruments are 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in Shielded Room No. 1.

3 Tested Date: Jan. 20, 2018


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- **NOTE:** The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Condition

Controlling software (QRCT.exe V3.0.268.0) has been activated to set the EUT on specific status.

4.2.7 Test Results

Phase Line (L)				D	Detector FunctionQuasi-Peak (QP) / Average (AV)				/	
	Free	Corr.	Readin	g Value	Emissi	Emission Level		Limit		gin
No	Freq.	Factor	[dB (uV)]		[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.15391	10.13	43.24	30.25	53.37	40.38	65.79	55.79	-12.42	-15.41
2	0.18516	10.14	42.84	28.40	52.98	38.54	64.25	54.25	-11.27	-15.71
3	0.22031	10.15	34.64	20.13	44.79	30.28	62.81	52.81	-18.02	-22.53
4	0.78672	10.22	31.32	17.89	41.54	28.11	56.00	46.00	-14.46	-17.89
5	2.24609	10.28	30.48	19.41	40.76	29.69	56.00	46.00	-15.24	-16.31
6	2.40625	10.29	30.92	20.05	41.21	30.34	56.00	46.00	-14.79	-15.66
7	8.69531	10.58	25.90	16.11	36.48	26.69	60.00	50.00	-23.52	-23.31

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Phase Neutral (N)				I				uasi-Peak (QP) / /erage (AV)	
	Freq. Corr. Reading V		-	Emission Level		Limit		Margin		
No	[MHz]	Facto (dB)		(uV)] AV.	Q.P.	3 (uV)] AV.	Q.P.	(uV)] AV.	(dl Q.P.	B) AV.
1	0.15000	10.04	4 38.60	24.35	48.64	34.39	66.00	56.00	-17.36	-21.61
2	0.18125	10.04	41.91	28.11	51.95	38.15	64.43	54.43	-12.48	-16.28
3	0.18125	10.04	41.93	27.91	51.97	37.95	64.43	54.43	-12.46	-16.48
4	0.77500	10.10) 31.36	21.58	41.46	31.68	56.00	46.00	-14.54	-14.32
5	2.17578	10.16	6 26.29	16.51	36.45	26.67	56.00	46.00	-19.55	-19.33
6	8.64844	10.43	3 26.10	17.44	36.53	27.87	60.00	50.00	-23.47	-22.13
7	24.66797	11.04	4 22.30	15.62	33.34	26.66	60.00	50.00	-26.66	-23.34

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

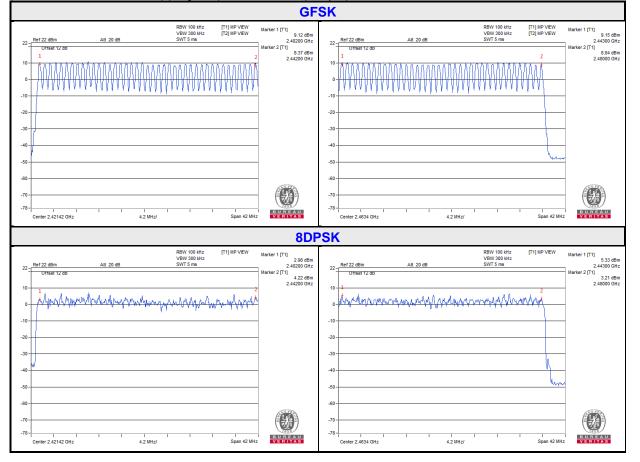
At least 15 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure


- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.
- 4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

There are 79 hopping frequencies in the hopping mode. Please refer to next page for the test result. On the plots, it shows that the hopping frequencies are equally spaced.

4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

4.4.2 Test Setup

4.4.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

No deviation.

4.4.6 Test Results

GFSK

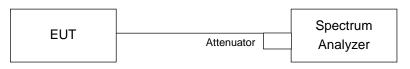
Mode	Number of transmission in a 31.6 (79Hopping*0.4)	transmission		Limit (msec)
DH1	51 (times / 5 sec) * 6.32 = 322.32 times	0.426	137.31	400
DH3	27 (times / 5 sec) * 6.32 = 170.64 times	1.74	296.91	400
DH5	18 (times / 5 sec) * 6.32 = 113.76 times	2.96	336.73	400

NOTE: Test plots of the transmitting time slot are shown on next page.

8DPSK

Mode	Number of transmission in a 31.6 (79Hopping*0.4)	Length of transmission time (msec)	Result (msec)	Limit (msec)
3DH1	51 (times / 5 sec) * 6.32 = 322.32 times	0.462	148.91	400
3DH3	27 (times / 5 sec) * 6.32 = 170.64 times	1.73	295.21	400
3DH5	17 (times / 5 sec) * 6.32 = 107.44 times	3.056	328.34	400

NOTE: Test plots of the transmitting time slot are shown on next page.



4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

For frequency hopping system operating in the 2400-2483.5MHz, If the 20dB bandwidth of hopping channel is greater than 25kHz, two-thirds 20dBbandwidth of hopping channel shell be a minimum limit for the hopping channel separation.

4.5.2 Test Setup

4.5.3 Test Instruments

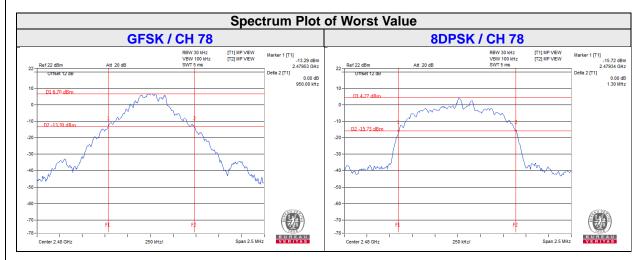
Refer to section 4.1.2 to get information of above instrument.

4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.


4.5.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)			
		GFSK	8DPSK		
0	2402	0.94	1.30		
39	2441	0.94	1.30		
78	2480	0.95	1.30		

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or two-third of 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

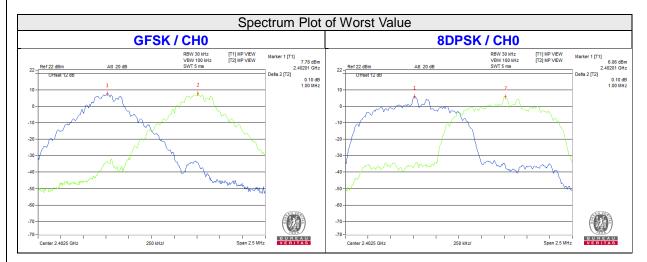
4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

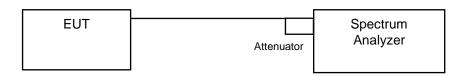
- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.
- 4.6.5 Deviation from Test Standard


No deviation.

4.6.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)		20dB Bandwidth (MHz)		Minimum Limit (MHz)		Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK	GFSK	8DPSK	
0	2402	1.00	1.00	0.94	1.30	0.63	0.87	Pass
39	2441	1.00	1.00	0.94	1.30	0.63	0.87	Pass
78	2480	1.00	1.00	0.95	1.30	0.64	0.87	Pass

NOTE: The minimum limit is two-third 20dB bandwidth.



4.7 Maximum Output Power

4.7.1 Limits of Maximum Output Power Measurement

The Maximum Output Power Measurement is 125mW.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

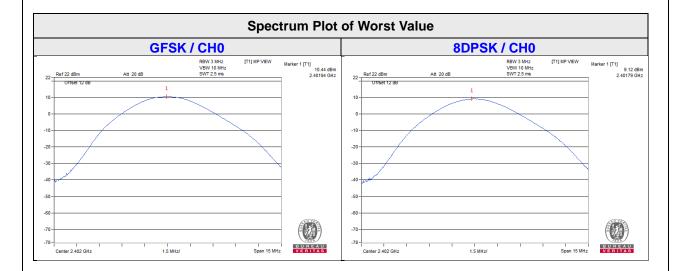
4.7.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. The center frequency of the spectrum analyzer is set to the fundamental frequency and using 3MHz RBW and 10 MHz VBW.
- d. Measure the captured power within the band and recording the plot.
- e. Repeat above procedures until all frequencies required were complete.
- 4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.7.7 Test Results

FOR PEAK POWER

Channel	Frequency (MHZ)	Output Power (mW)		Frequency (mW) (dBm)			Power Limit (mW)	Pass / Fail
		GFSK	8DPSK	GFSK	8DPSK			
0	2402	11.066	8.166	10.44	9.12	125	Pass	
39	2441	8.75	6.095	9.42	7.85	125	Pass	
78	2480	8.414	6.295	9.25	7.99	125	Pass	

FOR AVERAGE POWER - reference only

Channel	Frequency (MHZ)	Output (m	Power W)	Output Power (dBm)		
		GFSK	8DPSK	GFSK	8DPSK	
0	2402	9.572	4.276	9.81	6.31	
39	2441	7.568	3.357	8.79	5.26	
78	2480	7.482	3.42	8.74	5.34	

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits of Conducted Out of Band Emission Measurement

Below –20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 Test Instruments

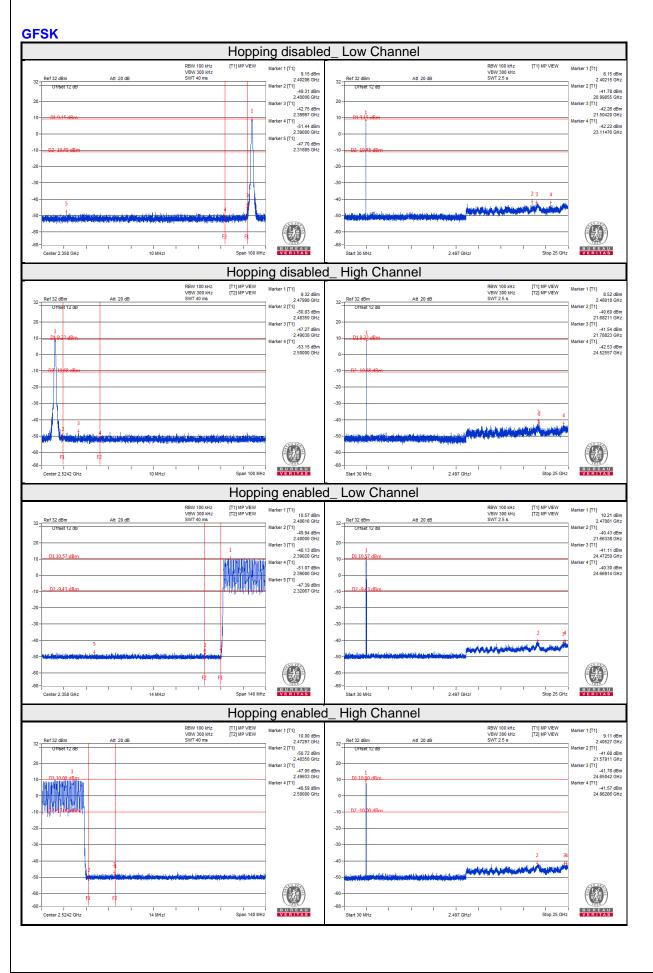
Refer to section 4.1.2 to get information of above instrument.

4.8.3 Test Procedure

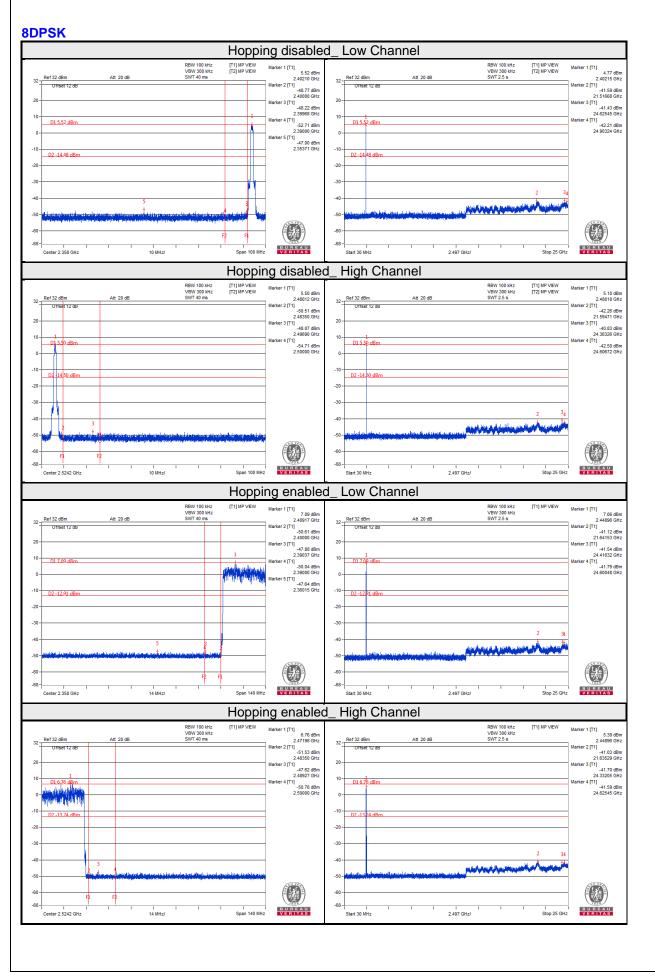
The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

No deviation.


4.8.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.


4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information on the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@tw.bureauveritas.com</u> Web Site: <u>www.bureauveritas-adt.com</u>

The address and road map of all our labs can be found in our web site also.

--- END ---