Test Report No.	BC400231-1	Issue Date:	July 1, 2004
Model / Serial No.	SSRLA / 02304 109		
Product Type	Frequency Agile Repeater		
Client	Inovonics Wireless Corp.		
Manufacturer	Inovonics Wireless Corp.		
License holder	Inovonics Wireless Corp.		
Address	315 CTC Blvd		
	Louisville, CO 80027		
Test Criteria Applied Test Result	FCC CFR47 Part 15.24	7	
Test Project Number References Total Pages	BC400231-1	Title 47 CFR 1 DEVICES	5: RADIO FREQUENCY
Including Appendices:	33		
Torld July		Start Crassics	le
Reviewed By:	The state of the s	Approved By :	

INTERNATIONAL APPROVALS LABORATORIES (IAL) reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. IAL have no liability for any deductions, inferences or generalizations drawn by the client or others from IAL issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval of IAL. This report shall not be used by the client to claim product endorsement by NVLAP (No. 200624-0) or any agency of the US government.

International Approval Laboratories and its professional staff hold government and professional organization certifications and are members of IEEE, NVLAP, and VCCI.

INTERNATIONAL APPROVALS LABORATORIES

DIRECTORY

Documentation	Page(s)
Test report	1 - 33
Directory	2
Test Regulations	3
General Remarks	4-5
Test-setup Photographs	6 - 10
Appendix A	
Test Data Sheets and Test Equipment Used	11-25
Appendix B	
Test Plan/Constructional Data Form	26-28
Appendix C	
Measurement Protocol/Test Procedures	29-33

STATEMENT OF MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The measurement uncertainty for Conducted Emissions in the frequency range of 150 kHz - 30 MHz is calculated to be $\pm 2.30 \text{dB}$ and for Radiated Emissions is calculated to be $\pm 3.60 \text{dB}$ in the frequency range of 30 MHz - 200 MHz and $\pm 3.38 \text{dB}$ in the frequency range of 200 MHz - 1000 MHz.

EUT Received Date: 3-June-2004

Testing Start Date: _3-June-2004

Testing End Date: 6-July-2004

The tests were performed according to following regulations:

- 1. FCC CFR47 Part 15.205
- 2. FCC CFR47 Part 15.207
- 3. FCC CFR47 Part 15.209
- 4. FCC CFR47 Part 15.247
- 5. ICES-003

Emission Test Results:

Conducted Emissions, Powerline (15.2	07) - Not Applicable	
Test Result		
Minimum limit margin	<u>NA</u> dB at <u>NA</u> MHz	
Maximum limit exceeding	dB atMHz	
Remarks:		
Radiated Emissions (15.209) - PA	SS	
Test Result		
Minimum limit margin	<u>-13.5</u> dB at <u>204.18</u> MHz	
Maximum limit exceeding	dB atMHz	
Remarks:		
Radiated Emissions (15.205)/(15.247) (c) - PASS	
Test Result		
Minimum limit margin	8.58_ dB	
Maximum limit exceeding	dB atMHz	
Remarks:		
Peak Output Power (15.247) (b)(2) -	PASS	
Test Result		
Minimum limit margin	<u>-15.28</u> dB at <u>912.59</u> MHz	
Maximum limit exceeding	dB atMHz	
Remarks:		

GENERAL REMARKS:

The following remarks are to be considered as "where applicable" and are taken into account while completing any FCC/IC/ETSI radio tests at International Approvals Laboratories, LLC.

Testing was performed in 3 different orthogonal axis to determine the worst case emissions from the device. The worst case emissions measurements are shown in this report.

FCC CFR47 Part 15.31: Measurement Standards: In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was varied per Part 15.31 to find worst case emissions.

FCC CFR47 Part 15.35: Measurement Detector Functions and Bandwidths: FCC Part 15.35 was utilized when performing the measurements within this report.

In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was verified per Part 15.31 to find worst case emissions.

The actual test distance for the FCC Part 15.209 testing was conducted at 10m for the fact that the device was being tested to EN55022 Class B from 30 MHz to 1000 MHz (meets/exceeds the FCC Part 15.209 & 109B limits) The data is automatically extrapolated back to the FCC 3m limits and measurements are corrected to better show the compliance to FCC requirements and reduce confusion. A correction factor of 10.54dB is used in cases of 30MHz and up for a difference between 10m and 3m measurement distances. All measurements that are lesser than 30MHz where applicable are accompanied with the fall of measurements and calculations to support the interpolation.

Client requested that the name on the test report be changed from FA575 to SSRL November 2004.

Modifications required to pass:	
Test Specification Deviations: A	Additions to or Exclusions from

This test report is in-part, International Approvals Laboratories, LLC was asked to test only the field strength of the fundamental and harmonics as well as the unintentional radiated and conducted emissions when applicable.

Fax: 303 449 6160

Voice: 303 786 7999

Required Information In Accordance to FCC CFR 47 Part 2.1033:

Rule Part 11, 15 & 18 Devices	Other Rule Part Devices	Description	Comments
2.1033(b)(1)	2.1033(c)(1)	Manu, Contact	See Page 1 of this report
2.1033(b)(2)	2.1033(c)(2)	FCC Identifier	
2.1033(b)(3)	2.1033(c)(3)	Users Manual to include Operating, installation	Attached as Exhibit
` ' ' '	2.1033(c)(4)	Emissions Designator per 2.	
	2.1033(c)(5)	Frequency Range	Not Applicable to Part 15 Devcies
	2.1033(c)(6)	Power range and controls	Not Applicable to Part 15 Devcies
	2.1033(c)(7)	Maximum power ouput rating	Not Applicable to Part 15 Devcies
	2.1033(c)(8)	DC Voltage and Current suplying final RF stages	Not Applicable to Part 15 Devcies
2.1033(b)(3)	2.1033(c)(9)	Tune –up procedure	Please refer to the users manual for applicability
2.1033(b)(4&5)	2.1033(c)(10)	Complete Circuit Diagrams and circuit operation description	Attached as Exhibit
2.1033(b)(7)	2.1033(c)(11)	Photographs/drawings of the identification label & its location on the device	Attached as Exhibit
2.1033(b)(7)	2.1033(c)(12)	Photographs of the external and internal surfaces, and construction	Attached as Exhibit
	2.1033(c)(13)	Digital Modulation	Not Applicable
2.1033(b)(6)	2.1033(c)(14)	Report of Measurement Data Required by 2.1046 – 2.1057	See Data Below (This report consists of the testing required under Part 15.231)
2.1033(b)(8)		Description of publicly available support equipment used during test	Refer to Exhibit B of this report (Client Test Plan)
2.1033(b)(9)		Statement of Autorization to Part 15.37 of CFR47	The equipment herein is being authorized in accordance to 15.37 of the CFR47 Rules.
2.1033(b)(10)		Direct Sequence Spread Spectrum Devices (DSSS)	Exhibit of compliance to 15.247(e)
2.1033(b)(10)		Frequency Hopping Devices	Exhibit of compliance to 15.247(a)(1)
2.1033(b)(11)		Scanning receiver construction	Exhibit stating compliance to construction in accordance to 15.121.
15.31	15.31	Transmitter Supply Voltage	Testing herein was completed in accordance to FCC CFR47 Part 15.31

Exhibits Including (where applicable):

1	Users Manual	7	Parts List

- 2. Operation Description 8. Tuning Procedure (if applicable)
- 3. Block Diagram Test Setup Photograph 9.
- 4. Report of Measurement 10. Label Drawings and or Photograpghs
- Description of Support Equipment (where 5. External & Internal Photographs 11. Applicable)
- Schematic 6.

Required Information in Accordance to Industry Canada Regulations (In addition to the above):

Information Required	Description	Comments
Modulation Type	(i.e. ASK, NON, FSK, DSSS, FHSS, etc.)	
Emissions Designator	Per TRC-49	
In Country Representative	Contact Information	
99% Bandwidth Measurement	Per RSS-210	

Project File: BC400231 Page 5 of 33

Voice: 303 786 7999

Fax: 303 449 6160

Test-setup photo(s): Conducted Emissions

Not Applicable

Test-setup photo(s): Radiated Intentional Emissions

Test-setup photo(s): Radiated Intentional Emissions

Test-setup photo(s): Radiated Unintentional Emissions

Test-setup photo(s): Radiated Unintentional Emissions

Appendix A	
Test Data Sheets	
and	
Test Equipment Used	

Test F	Report #:	BC400278 Run 01	Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C
Test	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	02304 109	_		•		
Manu	facturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Intentional transmitters			Pk - Peak	Nb – N	larrow Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	ater, EN6040,		Qp – QuasiPeak	Bb – E	Broad Band
-	EN5000,	ES1262, DS350, DS100			Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
Bicon Antenr	na, Vertical					
) degrees						
59.30	24.1 Qp	0.8 / 9.1 / 28.3	5.7	V / 1.0 / 0.0	-34.3	N/A
118.60	25.4 Qp	1.1 / 11.9 / 28.2	10.2	V / 1.0 / 0.0	-33.3	N/A
177.90	30.4 Qp	1.4 / 12.9 / 27.7	16.9	V / 1.0 / 0.0	-26.6	N/A
30.00	20.0 Qp	0.6 / 13.5 / 28.4	5.7	V / 1.0 / 0.0	-34.3	N/A
40.00	29.6 Qp	0.7 / 12.3 / 28.4	14.2	V / 1.0 / 0.0	-25.8	N/A
46.00	29.6 Qp	0.8 / 11.3 / 28.4	13.3	V / 1.0 / 0.0	-26.7	N/A
50.00	24.5 Qp	0.8 / 10.7 / 28.4	7.6	V / 1.0 / 0.0	-32.4	N/A
110.00	28.7 Qp	1.0 / 11.0 / 28.2	12.6	V / 1.0 / 0.0	-30.9	N/A
164.00	29.8 Qp	1.3 / 12.6 / 27.8	15.9	V / 1.0 / 0.0	-27.6	N/A
178.00	25.6 Qp	1.4 / 12.9 / 27.7	12.1	V / 1.0 / 0.0	-31.4	N/A
/	•					
0 degrees		/		/		
40.00	27.0 Qp	0.7 / 12.3 / 28.4	11.7	V / 1.0 / 90.0	-28.3	N/A
177.90	30.5 Qp	1.4 / 12.9 / 27.7	17.0	V / 1.0 / 90.0	-26.5	N/A
80 degrees						
40.00	26.4 Qp	0.7 / 12.3 / 28.4	11.0	V / 1.0 / 180.0	-29.0	N/A
164.00	28.4 Qp	1.3 / 12.6 / 27.8	14.5	V / 1.0 / 180.0	-29.0	N/A
178.00	25.3 Qp	1.4 / 12.9 / 27.7	11.8	V / 1.0 / 180.0	-31.7	N/A
	•					
270 degrees						
111.33	26.8 Qp	1.1 / 11.2 / 28.1	10.9	V / 1.0 / 270.0	-32.6	N/A
166.96	23.9 Qp	1.3 / 12.6 / 27.8	10.0	V / 1.0 / 270.0	-33.5	N/A
177.91	26.9 Qp	1.4 / 12.9 / 27.7	13.4	V / 1.0 / 270.0	-30.1	N/A
193.56	24.4 Qp	1.4 / 13.8 / 27.6	12.0	V / 1.0 / 270.0	-31.5	N/A
	1			l l	l	
No emission:	s within 20 dB	of the limit, vertical, from 30-2	200 MHz			
Changing to	Horizontal					
) degrees						

Project File: BC400231 Page 13 of 33 Voice: 303 786 7999 Fax: 303 449 6160

Test F	Report #:	BC400278 Run 01	Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C
Test	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	02304 109	_		-		•
Manu	ıfacturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Intentional transmitters			Pk – Peak	Nb – Nar	row Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	ter, EN6040,		Qp – QuasiPeak	Bb – Bro	ad Band
	EN5000,	ES1262, DS350, DS100			Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
30.00	17.2 Qp	0.6 / 13.5 / 28.4	2.9	H/2.0/0.0	-37.1	N/A
110.00	25.0 Qp	1.0 / 11.0 / 28.2	8.9	H/2.0/0.0	-34.6	N/A
177.90	27.0 Qp	1.4 / 12.9 / 27.7	13.5	H/2.0/0.0	-30.0	N/A
99.94	32.7 Qp	1.0 / 9.7 / 28.2	15.2	H/2.0/0.0	-28.3	N/A
96.50	35.2 Qp	1.0 / 9.1 / 28.2	17.1	H/2.0/0.0	-26.4	N/A
102.33	32.8 Qp	1.0 / 10.0 / 28.2	15.7	H/2.0/0.0	-27.8	N/A
102.88	30.2 Qp	1.0 / 10.1 / 28.2	13.2	H/2.0/0.0	-30.3	N/A
0 degrees						
96.50	35.3 Qp	1.0 / 9.1 / 28.2	17.2	H / 2.0 / 90.0	-26.3	N/A
102.33	34.3 Qp	1.0 / 10.0 / 28.2	17.2	H/2.0/90.0	-26.3	N/A
102.88	33.3 Qp	1.0 / 10.1 / 28.2	16.2	H/2.0/90.0	-27.3	N/A
111.33	25.6 Qp	1.1 / 11.2 / 28.1	9.7	H/2.0/90.0	-33.8	N/A
166.96	30.4 Qp	1.3 / 12.6 / 27.8	16.5	H/2.0/90.0	-27.0	N/A
177.90	39.5 Qp	1.4 / 12.9 / 27.7	26.0	H/2.0/90.0	-17.5	N/A
80 degrees	_/_					
80 degrees 96.50	37.5 Qp	1.0 / 9.1 / 28.2	19.4	H/2.0/180.0	-24.1	N/A
	37.5 Qp 32.9 Qp	1.0 / 9.1 / 28.2	19.4 15.8	H/2.0/180.0 H/2.0/180.0	-24.1 -27.7	N/A N/A
96.50						
96.50 102.88						
96.50 102.88						
96.50 102.88 270 degrees	32.9 Qp	1.0 / 10.1 / 28.2	15.8	H/2.0/180.0	-27.7	N/A
96.50 102.88 270 degrees 96.50	32.9 Qp	1.0 / 10.1 / 28.2	15.8	H/2.0/180.0 H/2.0/270.0	-27.7	N/A
96.50 102.88 270 degrees 96.50 177.90	32.9 Qp 39.1 Qp 34.9 Qp	1.0 / 10.1 / 28.2	15.8	H/2.0/180.0 H/2.0/270.0	-27.7	N/A
102.88 270 degrees 96.50 177.90	32.9 Qp 39.1 Qp 34.9 Qp	1.0 / 10.1 / 28.2 1.0 / 9.1 / 28.2 1.4 / 12.9 / 27.7	15.8	H/2.0/180.0 H/2.0/270.0	-27.7	N/A
96.50 102.88 270 degrees 96.50 177.90	32.9 Qp 39.1 Qp 34.9 Qp	1.0 / 10.1 / 28.2 1.0 / 9.1 / 28.2 1.4 / 12.9 / 27.7 zontal, from 30-200 MHz	21.0 21.4	H/2.0/180.0 H/2.0/270.0 H/2.0/270.0	-27.7 -22.5 -22.1	N/A N/A N/A
96.50 102.88 270 degrees 96.50 177.90 Maximized e	32.9 Qp 39.1 Qp 34.9 Qp	1.0 / 10.1 / 28.2 1.0 / 9.1 / 28.2 1.4 / 12.9 / 27.7 zontal, from 30-200 MHz 1.4 / 12.9 / 27.7	21.0 21.4	H/2.0/180.0 H/2.0/270.0 H/2.0/270.0	-27.7 -22.5 -22.1	N/A N/A N/A
96.50 102.88 270 degrees 96.50 177.90 Maximized e 177.90	32.9 Qp 39.1 Qp 34.9 Qp missions, Horiz 40.0 Qp	1.0 / 10.1 / 28.2 1.0 / 9.1 / 28.2 1.4 / 12.9 / 27.7 zontal, from 30-200 MHz 1.4 / 12.9 / 27.7	21.0 21.4	H/2.0/180.0 H/2.0/270.0 H/2.0/270.0	-27.7 -22.5 -22.1	N/A N/A N/A
96.50 102.88 270 degrees 96.50 177.90 Maximized e 177.90	32.9 Qp 39.1 Qp 34.9 Qp missions, Horiz 40.0 Qp	1.0 / 10.1 / 28.2 1.0 / 9.1 / 28.2 1.4 / 12.9 / 27.7 zontal, from 30-200 MHz 1.4 / 12.9 / 27.7	21.0 21.4	H/2.0/180.0 H/2.0/270.0 H/2.0/270.0	-27.7 -22.5 -22.1	N/A N/A N/A
96.50 102.88 270 degrees 96.50 177.90 Maximized e 177.90	32.9 Qp 39.1 Qp 34.9 Qp missions, Horiz 40.0 Qp	1.0 / 10.1 / 28.2 1.0 / 9.1 / 28.2 1.4 / 12.9 / 27.7 zontal, from 30-200 MHz 1.4 / 12.9 / 27.7	21.0 21.4 26.5	H/2.0/180.0 H/2.0/270.0 H/2.0/270.0 H/2.1/89.0	-27.7 -22.5 -22.1 -17.0	N/A N/A N/A

Test Report #: BC400278 Run 01		Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C	
Test Method: FCC Part 15.209		Test Date:	02-Jul-2004	Relative Humidity:	40	%	
EUT	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	02304 109			-		-
Manu	ıfacturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Intentional transmitters			Pk – Peak	Nb – Nai	row Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	ter, EN6040,		Qp – QuasiPeak	Bb – Bro	ad Band
	EN5000,	ES1262, DS350, DS100			Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
415.11	28.1 Qp	2.2 / 15.4 / 28.1	17.5	H / 2.1 / 0.0	-28.5	N/A
474.41	24.2 Qp	2.3 / 17.1 / 28.5	15.1	H/2.1/0.0	-30.9	N/A
200.19	38.6 Qp	1.5 / 11.3 / 27.6	23.8	H/2.1/0.0	-19.7	N/A
201.50	39.3 Qp	1.5 / 11.3 / 27.6	24.5	H/2.1/0.0	-19.0	N/A
202.84	39.9 Qp	1.5 / 11.3 / 27.6	25.1	H/2.1/0.0	-18.4	N/A
204.18	40.2 Qp	1.5 / 11.3 / 27.6	25.4	H/2.1/0.0	-18.1	N/A
206.53	41.2 Qp	1.5 / 11.2 / 27.6	26.4	H/2.1/0.0	-17.1	N/A
208.92	41.1 Qp	1.5 / 11.2 / 27.5	26.2	H/2.1/0.0	-17.3	N/A
210.25	41.1 Qp	1.5 / 11.1 / 27.5	26.2	H/2.1/0.0	-17.3	N/A
211.82	41.0 Qp	1.5 / 11.1 / 27.5	26.1	H / 2.1 / 0.0	-17.4	N/A
214.46	39.4 Qp	1.5 / 11.0 / 27.5	24.4	H / 2.1 / 0.0	-19.1	N/A
216.84	38.0 Qp	1.5 / 10.9 / 27.5	22.9	H/2.1/0.0	-23.1	N/A
209.47	40.7 Qp	1.5 / 11.1 / 27.5	25.8	H/2.1/0.0	-17.7	N/A
317.74	27.6 Qp	2.0 / 14.9 / 27.2	17.3	H/2.1/0.0	-28.7	N/A
367.24	29.0 Qp	2.1 / 14.4 / 27.7	17.8	H/2.1/0.0	-28.2	N/A
90 degrees						
202.84	42.5 Qp	1.5 / 11.3 / 27.6	27.7	H / 2.1 / 90.0	-15.8	N/A
204.18	42.9 Qp	1.5 / 11.3 / 27.6	28.0	H / 2.1 / 90.0	-15.5	N/A
209.47	42.9 Qp	1.5 / 11.1 / 27.5	28.0	H / 2.1 / 90.0	-15.5	N/A
237.21	40.6 Qp	1.6 / 11.2 / 27.4	26.0	H / 2.1 / 90.0	-20.0	N/A
355.81	31.3 Qp	2.1 / 14.3 / 27.6	20.1	H / 2.1 / 90.0	-25.9	N/A
972.72	35.9 Qp	2.2 / 23.0 / 28.0	33.2	H / 2.1 / 90.0	-20.8	N/A
972.93	35.9 Qp	2.2 / 23.0 / 28.0	33.1	H / 2.1 / 90.0	-20.9	N/A
976.63	35.9 Qp	2.2 / 22.9 / 28.0	33.1	H / 2.1 / 90.0	-20.9	N/A
987.99	37.4 Qp	2.2 / 23.1 / 27.7	35.0	H / 2.1 / 90.0	-19.0	N/A
180 degrees						
216.84	37.6 Qp	1.5 / 10.9 / 27.5	22.5	H / 2.1 / 180.0	-23.5	N/A
355.81	29.1 Qp	2.1 / 14.3 / 27.6	17.9	H / 2.1 / 180.0	-28.1	N/A
972.72	34.8 Qp	2.2 / 23.0 / 28.0	32.0	H / 2.1 / 180.0	-22.0	N/A
976.63	32.8 Qp	2.2 / 22.9 / 28.0	29.9	H / 2.1 / 180.0	-24.1	N/A
987.99	34.1 Qp	2.2 / 23.1 / 27.7	31.8	H / 2.1 / 180.0	-22.2	N/A

Test R	eport #:	BC400278 Run 01	Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C
Test I	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT N	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT S	Serial #:	02304 109	_		-		_
Manuf	acturer:	Inovonics			Leve	el Key	
EUT Des	cription:	Intentional transmitters			Pk – Peak	Nb – Na	arrow Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	ter, EN6040,		Qp – QuasiPeak	Bb – Br	oad Band
_	EN5000,	ES1262, DS350, DS100	Av - Average				
_							

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
270 degrees						
200.19	40.5 Qp	1.5 / 11.3 / 27.6	25.6	H / 2.1 / 270.0	-17.9	N/A
201.50	40.2 Qp	1.5 / 11.3 / 27.6	25.4	H / 2.1 / 270.0	-18.1	N/A
206.53	41.7 Qp	1.5 / 11.2 / 27.6	26.9	H / 2.1 / 270.0	-16.6	N/A
210.25	39.3 Qp	1.5 / 11.1 / 27.5	24.4	H / 2.1 / 270.0	-19.1	N/A
216.84	38.7 Qp	1.5 / 10.9 / 27.5	23.6	H / 2.1 / 270.0	-22.4	N/A
972.72	29.4 Qp	2.2 / 23.0 / 28.0	26.6	H / 2.1 / 270.0	-27.4	N/A
Maximized e	missions, Hori	zontal, from 200-1,000 MHz				
204.18	44.9 Qp	1.5 / 11.3 / 27.6	30.0	H / 1.6 / 302.0	-13.5	N/A
Changing to	Vertical					
) degrees		/				
210.25	34.0 Qp	1.5 / 11.1 / 27.5	19.1	V / 1.5 / 0.0	-24.4	N/A
237.21	35.2 Qp	1.6 / 11.2 / 27.4	20.7	V / 1.5 / 0.0	-25.3	N/A
355.81	30.5 Qp	2.1 / 14.3 / 27.6	19.3	V / 1.5 / 0.0	-26.7	N/A
972.72	33.8 Qp	2.2 / 23.0 / 28.0	31.0	V / 1.5 / 0.0	-23.0	N/A
972.93	33.6 Qp	2.2 / 23.0 / 28.0	30.8	V / 1.5 / 0.0	-23.2	N/A
976.63	33.3 Qp	2.2 / 22.9 / 28.0	30.5	V / 1.5 / 0.0	-23.5	N/A
221.63	41.5 Qp	1.6 / 10.8 / 27.5	26.4	V / 1.5 / 0.0	-19.6	N/A
296.50	27.2 Qp	1.9 / 13.5 / 27.2	15.4	V / 1.5 / 0.0	-30.6	N/A
	•					
90 degrees						
221.63	41.2 Qp	1.6 / 10.8 / 27.5	26.1	V / 1.5 / 90.0	-19.9	N/A
296.51	31.4 Qp	1.9 / 13.5 / 27.2	19.7	V / 1.5 / 90.0	-26.3	N/A
355.81	34.5 Qp	2.1 / 14.3 / 27.6	23.3	V / 1.5 / 90.0	-22.7	N/A
972.72	34.2 Qp	2.2 / 23.0 / 28.0	31.4	V / 1.5 / 90.0	-22.6	N/A
987.99	36.5 Qp	2.2 / 23.1 / 27.7	34.1	V / 1.5 / 90.0	-19.9	N/A
	•	•		· '	1	
180 degrees						
221.63	37.6 Qp	1.6 / 10.8 / 27.5	22.5	V / 1.5 / 180.0	-23.5	N/A

Test Report #: BC400278 Run 01		Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C	
Test	Method:	FCC Part 15.209	Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT Serial #:		02304 109			-		-
Manu	ufacturer:	Inovonics			Leve	el Key	
EUT De	scription:	Intentional transmitters			Pk – Peak	Nb – Nai	row Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	ter, EN6040,		Qp – QuasiPeak	Bb – Bro	ad Band
-	EN5000,	ES1262, DS350, DS100			Av - Average		

	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
355.81	30.9 Qp	2.1 / 14.3 / 27.6	19.7	V / 1.5 / 180.0	-26.3	N/A
972.72	36.8 Qp	2.2 / 23.0 / 28.0	34.0	V / 1.5 / 180.0	-20.0	N/A
976.63	35.7 Qp	2.2 / 22.9 / 28.0	32.8	V / 1.5 / 180.0	-21.2	N/A
270 degrees						
210.25	38.2 Qp	1.5 / 11.1 / 27.5	23.3	V / 1.5 / 270.0	-20.2	N/A
216.84	38.5 Qp	1.5 / 10.9 / 27.5	23.3	V / 1.5 / 270.0	-22.7	N/A
296.51	29.3 Qp	1.9 / 13.5 / 27.2	17.6	V / 1.5 / 270.0	-28.4	N/A
355.81	33.5 Qp	2.1 / 14.3 / 27.6	22.3	V / 1.5 / 270.0	-23.7	N/A
367.24	27.5 Qp	2.1 / 14.4 / 27.7	16.3	V / 1.5 / 270.0	-29.7	N/A
415.11	30.5 Qp	2.2 / 15.4 / 28.1	19.9	V / 1.5 / 270.0	-26.1	N/A
972.72	33.7 Qp	2.2 / 23.0 / 28.0	30.9	V / 1.5 / 270.0	-23.1	N/A
976.63	32.8 Qp	2.2 / 22.9 / 28.0	29.9	V / 1.5 / 270.0	-24.1	N/A
Maximized er 221.63	missions, Vert 42.8 Qp	cal, from 200-1,000 MHz 1.6 / 10.8 / 27.5	27.7	V/1.4/72.0	-18.3	N/A
221.63	42.8 Qp	1.6 / 10.8 / 27.5	27.7	V/1.4/72.0	-18.3	N/A
221.63		1.6 / 10.8 / 27.5	27.7	V/1.4/72.0	-18.3	N/A
221.63 Changing to 0 degrees	42.8 Qp	1.6 / 10.8 / 27.5		V/1.4/72.0	-18.3	N/A
221.63 Changing to 0 degrees	42.8 Qp	1.6 / 10.8 / 27.5 nna, Vertical		V/1.4/72.0 V/1.0/0.0	-18.3 N/A	N/A -21.6
221.63 Changing to 0 degrees The follow income	42.8 Qp the Horn Ante	1.6 / 10.8 / 27.5 nna, Vertical e noise floor taken for reference	ee only			
Changing to 0 degrees The follow incompared 4000.00	the Horn Anter g reading is the 31.3 Av	1.6 / 10.8 / 27.5 nna, Vertical e noise floor taken for reference	e only 32.4			
Changing to 0 degrees The follow income 4000.00	the Horn Anter g reading is the 31.3 Av	1.6 / 10.8 / 27.5 nna, Vertical e noise floor taken for reference 5.7 / 33.0 / 37.6	e only 32.4			
221.63 Changing to 10 degrees The following 4000.00 the following 90 degrees	the Horn Anter g reading is the 31.3 Av	1.6 / 10.8 / 27.5 nna, Vertical e noise floor taken for reference 5.7 / 33.0 / 37.6	e only 32.4			
Changing to 0 degrees The follow ing 4000.00 the following 90 degrees no emissions	the Horn Anter g reading is the 31.3 Av	1.6 / 10.8 / 27.5 nna, Vertical e noise floor taken for reference 5.7 / 33.0 / 37.6	e only 32.4			
221.63 Changing to 10 degrees The following 4000.00 the following 90 degrees no emissions	the Horn Anter greading is the 31.3 Av reading is the	1.6 / 10.8 / 27.5 nna, Vertical e noise floor taken for reference 5.7 / 33.0 / 37.6	e only 32.4			
221.63 Changing to 10 degrees The follow into 10 degrees The following	the Horn Anter greading is the 31.3 Av reading is the	1.6 / 10.8 / 27.5 nna, Vertical e noise floor taken for reference 5.7 / 33.0 / 37.6	e only 32.4			

Test Report #: BC400278 Run 01		Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C	
Test Method: FCC Part 15.209		Test Date:	02-Jul-2004	Relative Humidity:	40	<u> </u>	
EUT Model #: 8 eut's on the table see below		8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	02304 109					_
Manu	facturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Intentional transmitters			Pk – Peak	Nb – Na	arrow Band
Notes: Models tested: ES1265, FA206C, FA repeater, EN6040,		Qp – QuasiPeak	Bb – Br	oad Band			
-	EN5000,	ES1262, DS350, DS100			Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
changed to h	orizontal					
0 degrees						
no emissions	detected					
90 degrees						
no emissions	detected					
180 degrees						
no emissions	detected					
270 degrees						<u> </u>
no emissions	detected					
	5 Ghz Horizo					
•	8208 AvAntel	/		/		
		missions detected				
		r taken for reference only				
5000.00	31.1 Av	7.6 / 34.7 / 39.1	34.3	H/1.0/0.0	N/A	-19.7
Full turn table	e rotation no e	missions detected				
•	0 GHz Horizo					
		missions detected				
		r taken for reference only				T
7500.00	29.4 Av	8.7 / 37.6 / 36.4	39.3	H / 1.0 / 0.0	N/A	-14.7
9500.00	27.3 Av	11.0 / 38.6 / 32.8	44.1	H / 1.0 / 0.0	N/A	-9.9
Checking 5-1	0 GHz Vertica	al				
	e rotation no e	missions detected				
Full turn table						
	ding noise floo	r taken for reference only				
	ding noise floo 29.6 Av	9.5 / 37.4 / 33.9	42.6	V / 1.0 / 0.0	N/A	-11.4

Test R	Report #:	BC400278 Run 01	Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C
Test	Test Method: FCC Part 15.209		Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT I	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	02304 109	_		-		
Manut	facturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Intentional transmitters			Pk – Peak	Nb – N	larrow Band
Notes:	Models to	ested: ES1265, FA206C, FA repea	Qp – QuasiPeak	p – QuasiPeak Bb – Broad Band			
EN5000, ES1262, DS350, DS100			Av - Average				

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
	_	****** M	easurem	ent Summar	y ******	
204.18	44.9 Qp	1.5 / 11.3 / 27.6	30.0	H / 1.6 / 302.0	-13.5	N/A
209.47	42.9 Qp	1.5 / 11.1 / 27.5	28.0	H / 2.1 / 90.0	-15.5	N/A
202.84	42.5 Qp	1.5 / 11.3 / 27.6	27.7	H / 2.1 / 90.0	-15.8	N/A
206.53	41.7 Qp	1.5 / 11.2 / 27.6	26.9	H / 2.1 / 270.0	-16.6	N/A
177.90	40.0 Qp	1.4 / 12.9 / 27.7	26.5	H / 2.1 / 89.0	-17.0	N/A
208.92	41.1 Qp	1.5 / 11.2 / 27.5	26.2	H/2.1/0.0	-17.3	N/A
210.25	41.1 Qp	1.5 / 11.1 / 27.5	26.2	H / 2.1 / 0.0	-17.3	N/A
211.82	41.0 Qp	1.5 / 11.1 / 27.5	26.1	H/2.1/0.0	-17.4	N/A
200.19	40.5 Qp	1.5 / 11.3 / 27.6	25.6	H / 2.1 / 270.0	-17.9	N/A
201.50	40.2 Qp	1.5 / 11.3 / 27.6	25.4	H / 2.1 / 270.0	-18.1	N/A
221.63	42.8 Qp	1.6 / 10.8 / 27.5	27.7	V / 1.4 / 72.0	-18.3	N/A
987.99	37.4 Qp	2.2 / 23.1 / 27.7	35.0	H / 2.1 / 90.0	-19.0	N/A
214.46	39.4 Qp	1.5 / 11.0 / 27.5	24.4	H/2.1/0.0	-19.1	N/A
237.21	40.6 Qp	1.6 / 11.2 / 27.4	26.0	H / 2.1 / 90.0	-20.0	N/A
972.72	36.8 Qp	2.2 / 23.0 / 28.0	34.0	V / 1.5 / 180.0	-20.0	N/A
972.93	35.9 Qp	2.2 / 23.0 / 28.0	33.1	H / 2.1 / 90.0	-20.9	N/A
976.63	35.9 Qp	2.2 / 22.9 / 28.0	33.1	H / 2.1 / 90.0	-20.9	N/A
216.84	38.7 Qp	1.5 / 10.9 / 27.5	23.6	H / 2.1 / 270.0	-22.4	N/A
96.50	39.1 Qp	1.0 / 9.1 / 28.2	21.0	H / 2.0 / 270.0	-22.5	N/A
355.81	34.5 Qp	2.1 / 14.3 / 27.6	23.3	V / 1.5 / 90.0	-22.7	N/A
40.00	29.6 Qp	0.7 / 12.3 / 28.4	14.2	V / 1.0 / 0.0	-25.8	N/A
415.11	30.5 Qp	2.2 / 15.4 / 28.1	19.9	V / 1.5 / 270.0	-26.1	N/A
296.51	27.9 Qp	1.9 / 17.3 / 27.2	19.8	H/2.1/0.0	-26.2	N/A
102.33	34.3 Qp	1.0 / 10.0 / 28.2	17.2	H/2.0/90.0	-26.3	N/A
46.00	29.6 Qp	0.8 / 11.3 / 28.4	13.3	V / 1.0 / 0.0	-26.7	N/A

Test F	Test Report #: BC400278 Run 01		Test Area:	Pinewood Site 1 (3m)	Temperature:	21	°C
Test	Test Method: FCC Part 15.209		Test Date:	02-Jul-2004	Relative Humidity:	40	%
EUT	Model #:	8 eut's on the table see below	EUT Power:	DC	Air Pressure:	80	kPa
EUT	Serial #:	02304 109	_				_
Manu	facturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Intentional transmitters			Pk - Peak	Nb – Na	arrow Band
Notes: Models tested: ES1265, FA206C, FA repeater, EN6040,			Qp – QuasiPeak	Qp – QuasiPeak Bb – Broad Band			
EN5000, ES1262, DS350, DS100			Av - Average				

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
166.96	30.4 Qp	1.3 / 12.6 / 27.8	16.5	H/2.0/90.0	-27.0	N/A
102.88	33.3 Qp	1.0 / 10.1 / 28.2	16.2	H/2.0/90.0	-27.3	N/A
164.00	29.8 Qp	1.3 / 12.6 / 27.8	15.9	V / 1.0 / 0.0	-27.6	N/A
367.24	29.0 Qp	2.1 / 14.4 / 27.7	17.8	H / 2.1 / 0.0	-28.2	N/A
99.94	32.7 Qp	1.0 / 9.7 / 28.2	15.2	H/2.0/0.0	-28.3	N/A
317.74	27.6 Qp	2.0 / 14.9 / 27.2	17.3	H / 2.1 / 0.0	-28.7	N/A
110.00	28.7 Qp	1.0 / 11.0 / 28.2	12.6	V / 1.0 / 0.0	-30.9	N/A
474.41	24.2 Qp	2.3 / 17.1 / 28.5	15.1	H/2.1/0.0	-30.9	N/A
178.00	25.6 Qp	1.4 / 12.9 / 27.7	12.1	V / 1.0 / 0.0	-31.4	N/A
193.56	24.4 Qp	1.4 / 13.8 / 27.6	12.0	V / 1.0 / 270.0	-31.5	N/A
50.00	24.5 Qp	0.8 / 10.7 / 28.4	7.6	V / 1.0 / 0.0	-32.4	N/A
111.33	26.8 Qp	1.1 / 11.2 / 28.1	10.9	V / 1.0 / 270.0	-32.6	N/A
118.60	25.4 Qp	1.1 / 11.9 / 28.2	10.2	V / 1.0 / 0.0	-33.3	N/A
30.00	20.0 Qp	0.6 / 13.5 / 28.4	5.7	V / 1.0 / 0.0	-34.3	N/A
59.30	24.1 Qp	0.8 / 9.1 / 28.3	5.7	V / 1.0 / 0.0	-34.3	N/A
The following	are the record	ded noise floor points				
10000.0	26.9 Av	12.3 / 38.4 / 32.0	45.7	V / 1.0 / 0.0	N/A	-8.3
9500.00	27.3 Av	11.0 / 38.6 / 32.8	44.1	H / 1.0 / 0.0	N/A	-9.9
8000.00	29.6 Av	9.5 / 37.4 / 33.9	42.6	V / 1.0 / 0.0	N/A	-11.4
7500.00	29.4 Av	8.7 / 37.6 / 36.4	39.3	H / 1.0 / 0.0	N/A	-14.7
5000.00	31.1 Av	7.6 / 34.7 / 39.1	34.3	H / 1.0 / 0.0	N/A	-19.7
4000.00	31.3 Av	5.7 / 33.0 / 37.6	32.4	V / 1.0 / 0.0	N/A	-21.6

Field Strength Measurements Fundamental and Spurious of the Transmitter

Test Report #: BC400231			Т	Test Area: Pinewood Site 1 (3m)			Tempera	ture: 22	2 °C
Test M	Test Method: FCC CFR47 Part 15.247/205		205 T	Test Date: 3-Jun-2004			Relative Hum	idity: 35	%
EUT M	/lodel #:	FA575X	EL	JT Power:	DC		Air Pressure: 80 kl		kPa
EUT S	Serial #:	02304 109					-		
Manufa	acturer:	Inovonics					_	Level Key	
EUT Desc	cription:	Frequency Agile Repeate	<u> </u>				Pk – Peak	Nb –	Narrow Band
							-		
Notes:							Qp – QuasiPe	ак вр-	Broad Band
							Av - Average		
FREQ	LEVE	CABLE / ANT / PREAMP	FINAL	POL / H	GT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBu	V) (dB) (dB\m) (dB)	(dBuV)	(m)	(DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
The follow	ina duty	cycle was declared by the r	manufacturei						
	•	e / 100ms. = 20%	nanaraotaro	•					
			alaulatian i		nos to ECC	CED 47 Dort 45 3	E utilized to colour	ata fiald atra	n sut la
emission		d for pulsed signals and o	aiculation	ii accordai	ice to FCC	GFR4/ Part 15.5	5 utilized to calcul	ale lielu Sile	ngui
The testing	g perforn	ned in accordance to FCC (CFR47 Part 1	15.205 (res	tricted band	ds of operation) ar	nd 15.247 emissions	and delta lim	its were
calculated	as follo	vs:							
Final Corre	ected Pe	ak Measurement – Duty Cy	cle Correction	n Factor* =	Final Calc	culated Emission			
The Final (Calculate	ed Emission was then comp	ared to the L	imits in CF	R47 Part 1	5.209 and 15.247	and the emission/lin	mit delta was	calculated.
the D	TCF is c	alculated as follows 20*log-	10 (duty cycle	in 100mS)	"not to exce	eed 20dB"			
Part 15.24	<mark>7</mark> and <mark>15</mark>	.205 Respectively							
Worst case	e positio	n was determined in previou	us testing.						
		n the table in the worst case	position.						
Low Chan	nel 82.7	Pk 2.2 / 22.4 / 0.0			/				
907.08 907.03	92.0		107.2	\/ / 4 2	/26.0		107.2	110	44.2
Mid Chan		JL 1 33/33/1/00	107.3	V / 1.2		0	107.3	119	-11.3
912.59	וסחר	Pk 2.2 / 22.4 / 0.0	107.3 116.7	V / 1.2 H / 1.0		0 0	107.3 116.70	119 119	-11.3 -2.3
912.51			<mark>116.7</mark>	H / 1.0	<mark>/ 25.0</mark>	0	<mark>116.70</mark>	<mark>119</mark>	<mark>-2.3</mark>
	92.7	Pk 2.2 / 22.7 / 0.0	116.7 117.7	H / 1.0 H / 1.0	/ 25.0 / 48.0	0	116.70 117.70	119 119	-2.3 -1.3
	92.7 84.0	Pk 2.2 / 22.7 / 0.0	<mark>116.7</mark>	H / 1.0	/ 25.0 / 48.0	0	<mark>116.70</mark>	<mark>119</mark>	<mark>-2.3</mark>
	92.7 84.0	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0	116.7 117.7	H / 1.0 H / 1.0	/ 25.0 / 48.0 / 312.0	0	116.70 117.70	119 119	-2.3 -1.3
High Chan	92.7 84.0 nnel	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0	116.7 117.7 109	H / 1.0 H / 1.0 V / 1.6 /	/ 25.0 / 48.0 / 312.0 / 99.0	0 0	116.70 117.70 109.0	119 119 119	-1.3 -10.0
High Chan 918.36 918.5	92.7 84.0 nnel 85.2 90.5	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0	116.7 117.7 109	H/1.0 H/1.0 V/1.6/	/ 25.0 / 48.0 / 312.0 / 99.0	0 0 0	116.70 117.70 109.0	119 119 119 119	-2.3 -1.3 -10.0
High Chan 918.36	92.7 84.0 nnel 85.2 90.5	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0	116.7 117.7 109	H/1.0 H/1.0 V/1.6/	/ 25.0 / 48.0 / 312.0 / 99.0	0 0 0	116.70 117.70 109.0	119 119 119 119	-2.3 -1.3 -10.0
High Chan 918.36 918.5 Harmonic	92.7 84.0 nnel 85.2 90.5 cs nnel	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 3.1/27.7/35.4	116.7 117.7 109 110.1 115.4	H/1.0 H/1.0 V/1.6 V/1.9 H/1.0	/ 25.0 / 48.0 / 312.0 / 99.0 / 40.0	0 0 0 0	116.70 117.70 109.0 110.1 115.40	119 119 119 119 119	-2.3 -1.3 -10.0 -8.9 -3.6
High Chan 918.36 918.5 Harmonic Low Chan 1813.58 1813.71	92.7 84.0 nnel 85.2 90.5 cs nnel 51.9	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 3.1/27.7/35.4 Pk 3.1/27.7/35.4	116.7 117.7 109 110.1 115.4 47.3 47.2	H/1.0 H/1.0 V/1.6 / V/1.9 H/1.0 V/1.1 H/1.0	/ 25.0 / 48.0 / 312.0 / 99.0 / 40.0 / 97.0 / 84.0	0 0 0 0 0 -13.98 -13.98	116.70 117.70 109.0 110.1 115.40 33.32 33.22	119 119 119 119 119 119	-2.3 -1.3 -10.0 -8.9 -3.6 -65.68 -65.78
High Chan 918.36 918.5 Harmonic Low Chan 1813.58 1813.71 2720.44	92.7 84.0 nnel 85.2 90.5 cs nnel 51.9 51.8 60.2	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 3.1/27.7/35.4 Pk 3.1/27.7/35.4 Pk 4.3/29.7/36.0	116.7 117.7 109 110.1 115.4 47.3 47.2 58.2	H/1.0 H/1.0 V/1.6 / V/1.9 H/1.0 V/1.1 H/1.0 V/1.1	/ 25.0 / 48.0 / 312.0 / 99.0 / 40.0 / 97.0 / 84.0 / 353.0	0 0 0 0 0 0 -13.98 -13.98 -13.98	116.70 117.70 109.0 110.1 115.40 33.32 33.22 44.22	119 119 119 119 119 99 99 99	-2.3 -1.3 -10.0 -8.9 -3.6 -65.68 -65.78 -9.78
High Chan 918.36 918.5 Harmonic Low Chan 1813.58 1813.71 2720.44 2720.5	92.7 84.0 nnel 85.2 90.5 S nnel 51.9 51.8 60.2 54.8	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 3.1/27.7/35.4 Pk 3.1/27.7/35.4 Pk 4.3/29.7/36.0 Pk 4.3/29.7/35.9	116.7 117.7 109 110.1 115.4 47.3 47.2 58.2 52.8	H/1.0 H/1.0 V/1.6 / V/1.9 H/1.0 V/1.1 H/1.0 V/1.1 / H/1.1	/ 25.0 / 48.0 / 312.0 / 99.0 / 40.0 / 97.0 / 84.0 / 353.0 / 59.0	0 0 0 0 0 -13.98 -13.98 -13.98 -13.98	116.70 117.70 109.0 110.1 115.40 33.32 33.22 44.22 38.82	119 119 119 119 119 99 99 99 54 54	-2.3 -1.3 -10.0 -8.9 -3.6 -65.68 -65.78 -9.78 -15.18
High Chan 918.36 918.5 Harmonic Low Chan 1813.58 1813.71 2720.44 2720.5 3626.6	92.7 84.0 nnel 85.2 90.5 cs nnel 51.9 60.2 54.8	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 3.1/27.7/35.4 Pk 3.1/27.7/35.4 Pk 4.3/29.7/36.0 Pk 4.3/29.7/35.9 Pk 5.0/32.0/36.5	116.7 117.7 109 110.1 115.4 47.3 47.2 58.2 52.8 51.3	H/1.0 H/1.0 V/1.6 V/1.9 H/1.0 V/1.1 H/1.0 V/1.1 H/1.1 H/1.3	/ 25.0 / 48.0 312.0 / 99.0 / 40.0 / 97.0 / 84.0 353.0 / 59.0 352.0	0 0 0 0 0 -13.98 -13.98 -13.98 -13.98 -13.98	116.70 117.70 109.0 110.1 115.40 33.32 33.22 44.22 38.82 37.32	119 119 119 119 119 99 99 54 54	-2.3 -1.3 -10.0 -8.9 -3.6 -65.68 -65.78 -9.78 -15.18 -16.68
High Chan 918.36 918.5 Harmonic Low Chan 1813.58 1813.71 2720.44 2720.5 3626.6 3627.43	92.7 84.0 nnel 85.2 90.5 cs nnel 51.9 51.8 60.2 54.8 50.7	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 3.1/27.7/35.4 Pk 3.1/27.7/35.4 Pk 4.3/29.7/36.0 Pk 4.3/29.7/35.9 Pk 5.0/32.0/36.5 Pk 5.0/32.0/36.5	116.7 117.7 109 110.1 115.4 47.3 47.2 58.2 52.8 51.3 58.1	H/1.0 H/1.0 V/1.6 V/1.9 H/1.0 V/1.1 H/1.0 V/1.1 H/1.1 H/1.3 V/1.5	/ 25.0 / 48.0 312.0 / 99.0 / 40.0 / 97.0 / 84.0 353.0 / 59.0 352.0 / 72.0	0 0 0 0 0 0 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98	116.70 117.70 109.0 110.1 115.40 33.32 33.22 44.22 38.82 37.32 44.12	119 119 119 119 119 99 99 54 54 54 54	-2.3 -1.3 -10.0 -8.9 -3.6 -65.68 -65.78 -9.78 -15.18 -16.68 -9.88
High Chan 918.36 918.5 Harmonic Low Chan 1813.58 1813.71 2720.44 2720.5 3626.6	92.7 84.0 nnel 85.2 90.5 cs nnel 51.9 60.2 54.8	Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 2.2/22.7/0.0 Pk 3.1/27.7/35.4 Pk 3.1/27.7/35.4 Pk 4.3/29.7/36.0 Pk 4.3/29.7/35.9 Pk 5.0/32.0/36.5 Pk 5.0/32.0/36.5 Pk 6.7/33.0/37.6	116.7 117.7 109 110.1 115.4 47.3 47.2 58.2 52.8 51.3	H/1.0 H/1.0 V/1.6 V/1.9 H/1.0 V/1.1 H/1.0 V/1.1 H/1.1 H/1.3	/ 25.0 / 48.0 312.0 / 99.0 / 40.0 / 97.0 / 84.0 353.0 / 59.0 (352.0 / 72.0 / 46.0	0 0 0 0 0 -13.98 -13.98 -13.98 -13.98 -13.98	116.70 117.70 109.0 110.1 115.40 33.32 33.22 44.22 38.82 37.32	119 119 119 119 119 99 99 54 54	-2.3 -1.3 -10.0 -8.9 -3.6 -65.68 -65.78 -9.78 -15.18 -16.68

Project File: BC400231 Page 22 of 33 Voice: 303 786 7999 Fax: 303 449 6160

-11.28

5541 Central Avenue, Suite 110 Boulder, Colorado 80301

Field Strength Measurements Fundamental and Spurious of the Transmitter

Test Report #:		BC400231	Test Area:	Pinewood Site 1 (3m)		Temperat	ture: 22	°C
Test M	1ethod:	FCC CFR47 Part 15.247/205	Test Date:	3-Jun-200)4	Relative Humi	idity: 35	%
EUT M	lodel #:	FA575X	EUT Power:	DC		- Air Press	sure: 80	kPa
EUT S	erial #:	02304 109				-		<u> </u>
Manufa	cturer:	Inovonics					Level Key	
EUT Desc	ription:	Frequency Agile Repeater				Pk – Peak	1 – dN	Narrow Band
Notes:						- Qp – QuasiPea	ak Bh-l	Broad Band
_						Av - Average	A.	2.00 0 2 0.1 0
FREQ	LEV	EL CABLE / ANT / FI PREAMP	INAL POL/H	GT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBu	V) (dB) (dB\m) (dB) (d	BuV) (m)	(DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
The followi	ing duty	cycle was declared by the manu	facturer.			l l		
Duty Cycle	e = active	e / 100ms. = 20%						
Averaging	g metho	d for pulsed signals and calcu	lation in accordar	nce to FCC	CFR47 Part 15.3	5 utilized to calcula	ate field strer	ngth
The testing calculated		ned in accordance to FCC CFR4 ws:	7 Part 15.205 (res	tricted band	s of operation) ar	nd 15.247 emissions	and delta limi	ts were
Final Corre	ected Pe	ak Measurement – Duty Cycle C	orrection Factor* =	Final Calcu	ulated Emission			
		ed Emission was then compared				and the emission/lin	nit delta was d	calculated.
		calculated as follows 20*log ₁₀ (du						
Part 15.24	7 and 1	5.205 Respectively						
6346.6	51.6	A SECTION AND ADDRESS OF THE PROPERTY OF THE P	57.7 H / 1.4		<mark>-13.98</mark>	<mark>43.72</mark>	99	<mark>-55.28</mark>
6347.63	<mark>51.4</mark>		57.5 V / 1.5	<mark>/ 58.0</mark>	<mark>-13.98</mark>	<mark>43.52</mark>	99	<mark>-55.48</mark>
Mid Chan		cs not found Vertical or Horiz	ontal					
1824.48	51.0	Pk 3.1 / 27.8 / 35.6 4	16.3 H / 1.0	<u>/ 65 0</u>	-13.98	32.32	99	-66.68
1824.53	49.6		14.9 V / 1.1 /		-13.98	30.92	99	-68.08
2737.22	59.4		6.7 V / 1.1		-13.98	42.72	54	-11.28
2737.46	52.9		50.2 H/1.1		-13.98	36.22	54	-17.78
3649.14	51.5		51.6 H/1.3/		-13.98	37.62	54	-16.38
3649.91	57.2	Pk 5.1 / 32.1 / 37.0 5	7.4 V / 1.5 /	288.0	-13.98	43.42	54	-10.58
4561.79	53.0		55.3 H / 2.0 /		-13.98	41.32	54	-12.68
4561.81	55.3	Pk 6.7 / 33.1 / 37.5	7.6 V / 1.3 /	312.0	-13.98	43.62	54	-10.38
5474.46	<mark>51.9</mark>		55.6 H / 1.6 /	<mark>350.0</mark>	<mark>-13.98</mark>	<mark>41.62</mark>	<mark>99</mark>	<mark>-57.38</mark>
<mark>5475.16</mark>	52.5		6.3 V / 1.5	<mark>/ 59.0</mark>	<mark>-13.98</mark>	<mark>42.32</mark>	<mark>99</mark>	<mark>-56.68</mark>
<mark>6385.6</mark>	<mark>52.0</mark>		58.3 H / 1.4 /		<mark>-13.98</mark>	<mark>44.32</mark>	<mark>99</mark>	<mark>-54.68</mark>
6386.62	51.4		57.6 V / 1.7	<mark>/ 0.0</mark>	<mark>-13.98</mark>	<mark>43.62</mark>	<mark>99</mark>	<mark>-55.38</mark>
		cs not found Vertical or Horiz	ontal					
High Cha								
1836.4	52.4		17.5 V / 1.1		-13.98	33.52	99	<u>-65.48</u>
1836.66	52.5 54.9		17.6 H / 1.0		-13.98 -13.98	33.62	99 54	-65.38 -15.98
2754.33 2754.35	54.8 62.1		52 H / 1.1 59.4 V / 1.1		-13.98 -13.98	38.02 45.42	54 54	-15.98 -8.58
3672.96	49.0		9.4 V / 1.1 19.6 H / 1.7		-13.98	35.62	54 54	-8.58 -18.38
3672.96	54.5		55.2 V / 1.9		-13.98	41.22	54 54	-18.38
4590.99	55.3		57.9 V / 1.6 /		-13.98	43.92	54	-10.08
4501.30			37.3 V/1.07		13.00	44.32	54	0.68

Project File: BC400231 Page 23 of 33 Voice: 303 786 7999 Fax: 303 449 6160

5541 Central Avenue, Suite 110 Boulder, Colorado 80301

Field Strength Measurements Fundamental and Spurious of the Transmitter

Test Report #:		BC400231	Test Area	: Pinewood	I Site 1 (3m)	Tempera	iture: 2	22 °(°C		
Test M	lethod:	FCC CFR47 Part 15.247/20	D5 Test Date	e: 3-Jun-200	04	- Relative Hum	nidity: 3	35 %	%		
EUT M	lodel #:	FA575X	EUT Pow e	r: DC		- Air Press	sure: 8	0	kPa		
EUT S	erial #:	02304 109				_			<u> </u>		
Manufacturer:		Inovonics				Level Key					
EUT Desc	ription:	Frequency Agile Repeater				Pk – Peak		1 – dV	Narrow Band		
Notes:						Qp – QuasiPe	ak	3b – E	Broad Band		
				_		- Average					
FREQ	LEVE	EL CABLE / ANT / PREAMP	FINAL POL/	HGT / AZ	Duty Cycle Correction	Final Corrected	Limi	t	DELTA		
(MHz)	(dBu	V) (dB) (dB\m) (dB)	(dBuV) (r	n) (DEG)	(dB)	(dBuV/m)	(dBuV/	m)	(dB)		
The followi	ing duty	cycle was declared by the ma	anufacturer.								
Duty Cycle	e = active	e / 100ms. = 20%									
Averaging		d for pulsed signals and ca	culation in accord	ance to FCC	CFR47 Part 15.3	35 utilized to calcul	ate field	strer	ngth		
The testing calculated		ned in accordance to FCC CF	FR47 Part 15.205 (r	estricted band	ds of operation) a	nd 15.247 emissions	and del	a limi	ts were		
Final Corre	ected Pe	ak Measurement – Duty Cycl	e Correction Factor	* = Final Calc	ulated Emission						
The Final (Calculate	ed Emission was then compa	red to the Limits in (CFR47 Part 1	5.209 and 15.247	and the emission/lin	mit delta	was c	alculated.		
The D	TCF is	calculated as follows 20*log ₁₀	duty cycle in 100m	S) "not to exc	eed 20dB"						
Part 15.247	7 and 15	5.205 Respectively									
5509.66	51.0			<mark>6 / 313.0</mark>	<mark>-13.98</mark>	<mark>40.62</mark>	99		-58.38		
<u>5510.3</u>	50.5			6 / 287.0	<mark>-13.98</mark>	40.22	99		<u>-58.78</u>		
6427.86	54.4	Pk 8.4 / 35.4 / 37.5	60.7 H/1	.4 / 32.0	-13.98	46.72	99	99	-52.28		

8th-10th Harmonics not found Vertical or Horizontal

Project Report

Begin Date: **End Date:** 7/2/20047/2/2004

Technician Karen Parker Project: BC400278

Capital Asset	IDManufacturer	Model #	Serial #	Description	Test Performed	Service Type	Service Date	Service Due
6	Hewlett-Packard	8594E	3223A00145	Spectrum Analyzer	R Radiated Emissions	For Cal	1/16/2004	1/16/2005
138	EMC TEST SYSTEMS	3109	3142	Biconical Antenna 30-300MHz	R Radiated Emissions	For Cal	10/3/2003	10/3/2004
171	Hewlett-Packard	85662A	1928A01169	Spectrum Analyzer - Display Section	R Radiated Emissions	For Cal	1/21/2004	1/21/2005
172	Hewlett-Packard	8566B	2430A00759	Spectrum Analyzer	R Radiated Emissions	For Cal	1/21/2004	1/21/2005
187	EMCO	3115	9205-3886	Horn Antenna 1-18GHz	R Radiated Emissions	For Cal	10/6/2003	10/6/2004
202	Avantek	AWT-18037	1002	RF Pre-Amplifier (8-18 GHz)	R Radiated Emissions	For Ver	4/7/2004	4/7/2005
203	Avantek	AFT97-8434-10F	1007	RF Pre-Amplifier (4-8 GHz)	R Radiated Emissions	For Ver	4/7/2004	4/7/2005
213	Mini-Circuits Lab	ZHL-42	N052792-2	Amplifier	R Radiated Emissions	For Ver	6/5/2004	6/5/2005
217	EMCO	3146	9203-3376	Log Periodic Antenna	R Radiated Emissions	For Cal	10/3/2003	10/3/2004
248	Hewlett-Packard	8447F	3113A05545	9 kHz- 1.3GHz Pre Amp	R Radiated Emissions	For Ver	6/22/2004	6/22/2005

Voice: 303 786 7999

Fax: 303 449 6160

Test Plan
and
Constructional Data Form
To be supplied by the customer
To do cappillou ay inc cucionio.

315 CTC Boulevard, Louisville, CO 80027 ph. 303.939.9336 fx. 303.939.8977 www.inovonicswireless.com

July 13, 2004

Todd Seeley IA Labs 5451 Central Ave. Boulder, CO 80301

Dear Todd,

Pursuant to section 15.247 of the FCC rules Inovonics transmitters are limited to 0.25 Watts maximum transmitted power. These devices contain integrated antennas and it is therefore impossible to measure the transmitted power in a conducted manner without significantly modifying the devices.

At the test lab the field strength is measured using an antenna located 3 meters from the device under test. The rules do not explicitly state the field strength at 3 meters corresponding to 0.25 Watts, so it must be calculated as follows:

The test facility measures the transmitted field strength, E, having units of Volts/meter, or the logarithmic equivalent. The transmitted power density as measured by the antenna is then $\frac{E^2}{\eta}$, where η is the intrinsic impedance of free space.

Assuming isotropic radiation from the product, the Effective Isotropic Radiated Power (EIRP) is found by multiplying the above power density by the area of a sphere having a radius of 3 meters,

$$P_{HRP} = \frac{E^2}{\eta} 4\pi R^2 \qquad (1)$$

Solving for E,

$$E = \frac{1}{2R} \left(\frac{\eta P_{IJRP}}{\pi} \right)^{\frac{N}{2}}$$
 (2)

Given that $P_{\text{EIRP}}=0.25$ Watts (FCC limit), R=3 meters, and $\eta=377$ Ohms, E=0.913 V/m = 119.2 dB μ V/m.

Remember the above assumption of isotropic radiation- all real antennas have non-isotropic radiation patterns. Using the 119.2 dB μ V/m limit guarantees that the total RF power transmitted by the device is below the 0.25 Watt limit.

Also, according the part 15.35 we are allowed a relaxation of the general radiation limits found in 15.209 while using a peak detector, as applied to the harmonics of the fundamental. Inovonics EchoStream security transmitters have a transmission pulse duration of 20 ms, which corresponds to a duty cycle of 0.2 per 15.35(c). This duty cycle allows for a 14 dB relaxation of the general radiation limits from 54 dB $\mu\text{V/m}$ (500 $\mu\text{V/m}$, per 15.209(a)) to 68 dB $\mu\text{V/m}$ for peak measurements.

Sincerely

Steven Dunbar RF Engineer

Appendix C
Measurement Protocol
And
Test Procedures

MEASUREMENT PROTOCOL

GENERAL INFORMATION

Test Methodology

Conducted and radiated emission testing is performed according to the procedures in ANSI C63.4 & CNS13438.

Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into it's characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

CONDUCTED EMISSIONS

The final level, expressed in $dB\mu V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the applicable limit.

To convert between $dB \mu V$ and μV , the following conversions apply:

- $dB\mu V = 20(log \mu V)$
- $\mu V = Inverse \log(dB\mu V/20)$

RADIATED EMISSIONS

The final level, expressed in $dB\mu V/m$, is arrived at by taking the reading from the spectrum analyzer (Level $dB\mu V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has the applicable limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets in Attachment B. The amplifier gain is automatically accounted for by using an analyzer offset.

Example: At a Test Frequency of 30 MHz, with a peak reading on the spectrum analyzer or measuring receiver of 14 dB mV:

Measured Level	+	Transducer & Cable Loss factor	=	Corrected Reading	Specification Limit	_	Corrected Reading	=	Delta Specification
(dBµV)		(dB)		(dBµV/m)	(dBµV/m)		(dBμV/m)		
14.0		14.9		28.9	40.0		28.9		-11.1

DETAILS OF TEST PROCEDURES

General Standard Information

The test methods used comply with ANSI C63.4-1992 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

Conducted Emissions

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with 50 Ω /50 μ H (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. In some cases, a pre-scan using a spectrum analyzer is initially performed on the units comprising the system under test to locate the highest emissions. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver or spectrum analyzer with quasi-peak and average detection and recorded on the data sheets.

Radiated Emissions

Radiated emissions from the EUT are measured in the frequency range of 30 to 22GHz using a spectrum analyzer and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection and measurements above 1000 MHz are made with a 1 MHz/6 dB bandwidth and peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimeters above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna is positioned 3, 10 or 30 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are rotated 360 degrees.

