

EMC EMISSIONS - TEST REPORT (In Part)

Test Report No.	3153191DEN-003	Issue Date:	Thursday	22/May/2008
Model / Serial No.	MN: EN1249 /SN: 3566058			
Product Type	Bill trap			_
Client	Inovonics Wireless Corporation	on		
Manufacturer	Inovonics Wireless Corporation	on		
License holder	Inovonics Wireless Corporation	on		
Address	315 CTC Blvd.			
	LOUISVILLE, CO 80027			
Test Criteria Applied Test Result	FCC 47 CFR Part 15.24 PASS		R 15: RADIO FI	DECHENCY
Test Project Number References	3153191	DEVICES	K 15. KADIO FI	KEQUEINCY

Tested By: Ty Orosco Reviewed By: Michael S

REVISION SUMMARY - The following changes have been made to this Report:

Rev.	Revision Statement	Author	Revision Date
	Initial Release of Document	See above	See above

This report is for the exclusive use of Intertek's Client and is provided pursuant to the agreement between Intertek and its Client. Intertek's responsibility and liability are limited to the terms and conditions of the agreement. Intertek assumes no liability to any party, other than to the Client in accordance with the agreement, for any loss, expense or damage occasioned by the use of this report. Only the Client is authorized to copy or distribute this report and then only in its entirety. Any use of the Intertek name or one of its marks for the sale or advertisement of the tested material, product or service must first be approved in writing by Intertek. The observations and test results in this report are relevant only to the sample tested. This report by itself does not imply that the material, product, or service is or has ever been under an Intertek certification program.

Including Appendices:

DIRECTORY

Documentation	Page(s)
Test report	1 - 19
Directory	2
Test Regulations	3
General Remarks	3 - 4
Test-setup Photographs	5 - 7
Appendix A	
Test Data Sheets and Test Equipment Used	8 - 13
Appendix B	
Test Plan/Constructional Data Form	14
Appendix C	
Measurement Protocol/Test Procedures	15 - 19

STATEMENT OF MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The measurement uncertainty for Conducted Emissions in the frequency range of 150 kHz - 30 MHz is calculated to be $\pm 2.30 \text{dB}$ and for Radiated Emissions is calculated to be $\pm 3.60 \text{dB}$ in the frequency range of 30 MHz - 200 MHz and $\pm 3.38 \text{dB}$ in the frequency range of 200 MHz - 1000 MHz.

EUT Received Date: 16-May-2008

Testing Start Date: 16-May-2008

Testing End Date: 16-May-2008

Voice: 303 786 7999 Fax: 303 449 6160

The tests were performed according to following regulations:

1. FCC CFR47 Part 15 subpart C

Emission Test Results:

Peak Output Power 15.247 (b)(2)	-	PASS				
Test Result						
Minimum limit margin			-2.4	dB	at	902.43 MHz
Remarks: Low Channel						

Radiated Emissions 15.205/15.247(d) -	PASS	
Test Result		
Minimum limit margin	-0.4 dB at 2785.8 MHz	
Remarks: High Channel		

Project File: 3153191 Page 3 of 19 Voice: 303 786 7999 Fax: 303 449 6160

GENERAL REMARKS:

The following remarks are to be considered as "where applicable" and are taken into account while completing any FCC/IC/ETSI radio tests at Intertek.

Testing was performed in 3 different orthogonal axis to determine the worst case emissions from the device. The worst case emissions measurements are shown in this report.

FCC CFR47 Part 15.31: Measurement Standards: In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was varied per Part 15.31 to find worst case emissions.

FCC CFR47 Part 15.35: Measurement Detector Functions and Bandwidths: FCC Part 15.35 was utilized when performing the measurements within this report.

Whenever possible the approved test procedures specified in FCC KDB 558074 for DTS devices was used for testing.

Limit Calculation:

At the time of testing, Intertek ETL Semko was unable to obtain the gain of the antenna for the EUT from the manufacture of the EUT or from the manufacture of the antenna. Therefore, the following calculation was used to determine the field strength limit for a test distance of 3m. This calculation assumes ideal isotropic radiation from the source.

P = 20*log(E)-95.2289

P is power in dBm E is uV/m

EUT is battery powered.

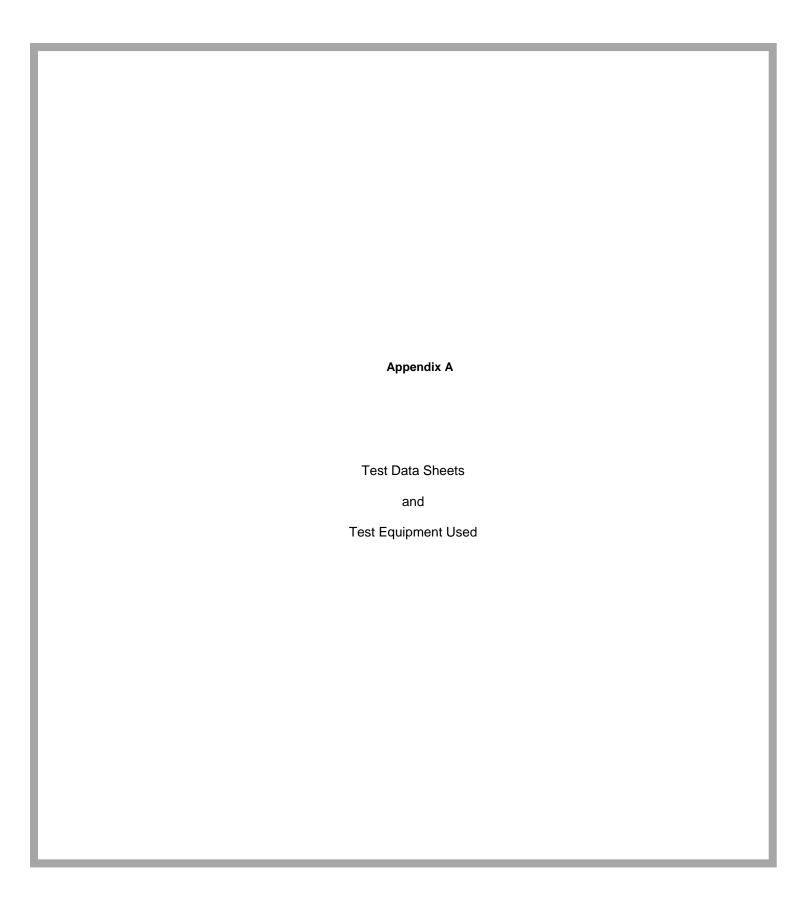
Sample:

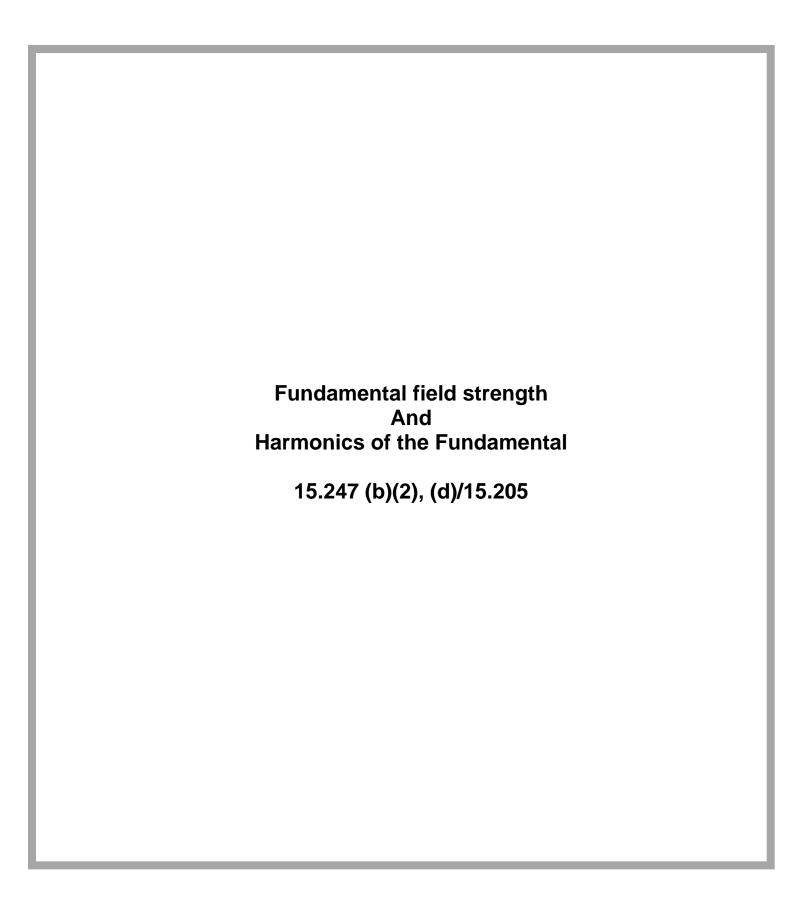
Only the fundamental and harmonics of the fundamental are covered in this report, as requested by the customer.

⊠Production	□Prototype	□See RFQ	
Modifications re	quired to pass:	None	
Test Specification	on Deviations: A	dditions to or Exclusions from: Non	e

Project File: 3153191 Page 4 of 19

Fax: 303 449 6160


Fax: 303 449 6160



Voice: 303 786 7999 Fax: 303 449 6160

Test-setup photo(s): Radiated Emissions:

Field Strength Measurements Fundamental and Spurious of the Transmitter

Test Report #	t: 3153191	Test Area:	PW 1 (3M)	Temperature: 22.2 Relative Humidity: 27		2 °C
Test Method	f: FCC 47 CFR part 15 subpar	rt C Test Date:	16-May-20	008			%
EUT Model #	t: EN1249	EUT Power:	3VDC		Air Pressure: 101		kPa
EUT Serial #	±: 3566058						
Manufacture	r: Inovonics					Level Key	/
EUT Description	n: Bill trap				Pk – Peak Nb – Narrow Band		
Notes:		Qp – QuasiPeak Bb – Broa		- Broad Band			
					Av - Average		
FREQ LE	EVEL CABLE / ANT /	FINAL POL/F	HGT / AZ	Duty Cycle	Final Corrected	Limit	DELTA

				Correction			PREAMP		
(MHz) (dBuV) (dB) (dB\m) (dB) (dBuV) (m) (DEG) (dB) (dBuV/m) (dBuV/m) (dBuV/m)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	(m) (DEG)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(MHz)

The following duty cycle was declared by the manufacturer.

14mS

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

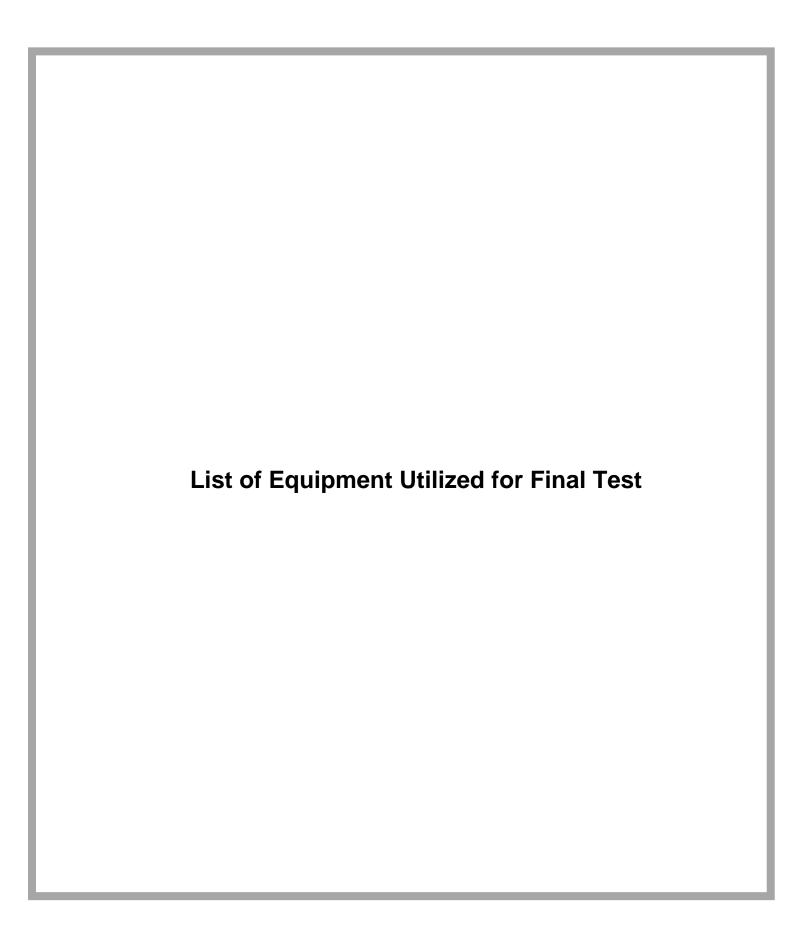
Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated.

the DTCF is calculated as follows 20*log ₁₀ (duty cycle in 100mS) "not to exceed 20dB"								
Part 15.247 and 15.205 Respectively								
Low Chann	iel							
Axis 1 EUT	is flat on the	table.						
902.38	78.7 Pk	3.6 / 22.7 / 0.0	104.9	V / 1.7 / 8.1	0.0	104.9	119.0	-14.1
902.42	88.1 Pk	3.6 / 22.7 / 0.0	114.4	H / 1.0 / 93.5	0.0	114.4	119.0	-4.6
Axis 2 EUT	is vertical or	the table.						
902.43	90.3 Pk	3.6 / 22.7 / 0.0	116.6	V / 1.0 / 238.3	0.0	116.6	119.0	-2.4
902.38	80.9 Pk	3.6 / 22.7 / 0.0	107.2	H / 1.0 / 299.3	0.0	107.2	119.0	-11.8
Axis 3 EUT	is laying on	its side.						
902.39	85.3 Pk	3.6 / 22.7 / 0.0	111.6	V / 1.8 / 222.0	0.0	111.6	119.0	-7.4
902.42	87.0 Pk	3.6 / 22.7 / 0.0	113.3	H / 1.0 / 332.3	0.0	113.3	119.0	-5.7
Mid Chann	el							
Axis 1								
914.83	88.0 Pk	3.6 / 22.7 / 0.0	114.4	H / 1.0 / 103.1	0.0	114.4	119.0	-4.6
914.79	80.8 Pk	3.6 / 22.7 / 0.0	107.2	V / 1.7 / 118.1	0.0	107.2	119.0	-11.8
Axis 2								
914.79	80.2 Pk	3.6 / 22.7 / 0.0	106.5	H / 1.0 / 300.8	0.0	106.5	119.0	-12.5
914.83	89.1 Pk	3.6 / 22.7 / 0.0	115.5	V / 1.0 / 236.3	0.0	115.5	119.0	-3.5
Axis 3								
914.79	85.2 Pk	3.6 / 22.7 / 0.0	111.5	H / 1.0 / 328.4	0.0	111.5	119.0	-7.5
914.79	85.5 Pk	3.6 / 22.7 / 0.0	111.9	V / 1.0 / 181.4	0.0	111.9	119.0	-7.1
High Chan	nel							
Axis 1								
927.59	79.2 Pk	3.6 / 22.8 / 0.0	105.6	V / 1.6 / 114.9	0.0	105.6	119.0	-13.4
927.63	87.2 Pk	3.6 / 22.8 / 0.0	113.7	H / 1.0 / 108.2	0.0	113.7	119.0	-5.3
Axis 2	•			•	•	•		
927.59	87.7 Pk	3.6 / 22.8 / 0.0	114.2	V / 1.0 / 266.1	0.0	114.2	119.0	-4.8
927.59	78.7 Pk	3.6 / 22.8 / 0.0	105.2	H / 1.0 / 302.6	0.0	105.2	119.0	-13.8
Axis 3				+	t	t		
927.59	86.7 Pk	3.6 / 22.8 / 0.0	113.2	V / 1.1 / 187.4	0.0	113.2	119.0	-5.8

Project File: 3153191 Page 10 of 19

Voice: 303 786 7999


5541 Central Avenue, Suite 110 Boulder, Colorado 80301

Intertek

Fax: 303 449 6160

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
927.59	86.5 Pk	3.6 / 22.8 / 0.0	112.9	H / 1.0 / 152.3	0.0	112.9	119.0	-6.1
Axis 2 was	measured to	be worst case.						-
All harmoni	ics will be me	asured with the EUT in	axis 2.					
Low Chann								
1804.79	97.2 Pk	2.8 / 26.3 / 37.1	89.2	V / 1.8 / 7.9	-14	75.2	96.6	-21.4
1804.83	88.0 Pk	2.8 / 26.3 / 37.1	80	H / 1.0 / 124.1	-14	66	96.6	-30.6
2707.19	64.4 Pk	3.5 / 29.7 / 37.6	60	V / 1.0 / 172.5	-14	46	54	-8.0
2707.2	70.0 Pk	3.5 / 29.7 / 37.6	65.5	H / 1.7 / 0.0	-14	51.5	54	-2.5
3609.6	60.1 Pk	4.5 / 31.7 / 38.4	57.9	V / 1.4 / 118.9	-14	43.9	54	-10.1
3609.61 4512	60.1 Pk 66.9 Pk	4.5 / 31.7 / 38.4 5.3 / 32.3 / 40.7	57.9 63.8	H / 1.3 / 326.3 H / 1.3 / 30.1	-14 -14	43.9 49.8	54 54	-10.1 -4.2
4512	60.5 Pk	5.3 / 32.3 / 40.7	57.4	V / 1.0 / 355.3	-14	43.4	54	-4.2 -10.6
5414.4	66.0 Pk	6.0 / 34.3 / 39.9	66.5	V / 1.1 / 17.4	-14	52.5	54	-1.5
5414.41	64.0 Pk	6.0 / 34.3 / 39.9	64.5	H / 1.0 / 329.9	-14	50.5	54	-3.5
6316.85	65.4 Pk	6.6 / 35.2 / 40.4	66.8	V / 1.1 / 29.4	-14	52.8	96.6	-43.8
6316.86	61.3 Pk	6.6 / 35.2 / 40.4	62.7	H / 1.1 / 291.8	-14	48.7	96.6	-47.9
7219.23	49.1 Pk	7.3 / 36.2 / 39.9	52.7	V / 1.1 / 6.2	-14	38.7	96.6	-57.9
7219.27	54.8 Pk	7.3 / 36.2 / 39.9	58.4	H / 1.1 / 319.9	-14	44.4	96.6	-52.2
		re not seen above the	noise floor.					
Mid Channe								
1829.67	89.2 Pk	2.8 / 26.4 / 37.1	81.4	H / 1.0 / 110.4	-14	67.4	94.4	-27.0
1829.68	100.1 Pk	2.8 / 26.4 / 37.1	92.3	V / 1.4 / 8.1	-14	78.3	94.4	-16.1
2744.45	68.6 Pk	3.5 / 29.8 / 37.6	64.3	H / 1.2 / 0.0	-14	50.3	54	-3.7
2744.46	64.2 Pk	3.5 / 29.8 / 37.6	60	V / 1.1 / 172.9	-14	46	54	-8.0
3659.29 3659.29	62.1 Pk	4.5 / 31.8 / 38.4	60 58.2	H / 1.0 / 350.5 V / 1.3 / 113.3	-14 -14	46 44.2	54 54	-8.0 -9.8
4574.11	60.2 Pk 56.6 Pk	4.5 / 31.8 / 38.4 5.3 / 32.4 / 40.7	53.6	V / 2.5 / 23.1	-14 -14	39.6	54	-9.6 -14.4
4574.11	63.8 Pk	5.3 / 32.4 / 40.7	60.8	H / 1.4 / 32.9	-14	46.8	54	-14.4 -7.2
5488.94	57.9 Pk	6.1 / 34.5 / 40.1	58.4	V / 1.2 / 14.9	-14	44.4	94.4	-50.0
5488.94	56.3 Pk	6.1 / 34.5 / 40.1	56.8	H / 1.0 / 29.4	-14	42.8	94.4	-51.6
6403.81	60.2 Pk	6.7 / 35.2 / 40.5	61.7	V / 1.2 / 354.3	-14	47.7	94.4	-46.7
6403.82	60.3 Pk	6.7 / 35.2 / 40.5	61.8	H / 1.1 / 326.9	-14	47.8	94.4	-46.6
7318.63	49.5 Pk	7.4 / 36.4 / 40.3	52.9	H / 1.3 / 14.5	-14	38.9	54	-15.1
7318.64	51.6 Pk	7.4 / 36.4 / 40.3	55	V / 1.0 / 27.5	-14	41	54	-13.0
8233.26	53.8 Pk	7.9 / 37.1 / 47.7	51.1	V / 1.4 / 0.0	-14	37.1	54	-16.9
8233.27	53.2 Pk	7.9 / 37.1 / 47.7	50.6	H / 1.0 / 39.5	-14	36.6	54	-17.4
9148.08	52.9 Pk	8.5 / 38.1 / 48.6	50.8	H / 1.0 / 320.6	-14	36.8	54	-17.2
9148.09	53.3 Pk	8.5 / 38.1 / 48.6	51.3	V / 1.7 / 47.6	-14	37.3	54	-16.7
High Chanr 1855.24	t	20/265/271	02.1	H / 1.0 / 227.3	1.1	60.1	04.2	25.1
1855.29	90.8 Pk 100.3 Pk	2.9 / 26.5 / 37.1 2.9 / 26.5 / 37.1	83.1 92.6	V / 1.0 / 354.6	-14 -14	69.1 78.6	94.2 94.2	-25.1 -15.6
2782.8	71.7 Pk	3.5 / 30.0 / 37.6	67.6	H / 1.8 / 177.4	-14	53.6	54	-0.4
2782.86	66.8 Pk	3.5 / 30.0 / 37.6	62.8	V / 1.0 / 174.8	-14	48.8	54	-5.2
3710.41	65.0 Pk	4.5 / 31.9 / 38.2	63.3	H / 1.0 / 343.3	-14	49.3	54	-4.7
3710.49	64.2 Pk	4.5 / 31.9 / 38.2	62.4	V / 1.2 / 133.5	-14	48.4	54	-5.6
4638.02	63.2 Pk	5.4 / 32.6 / 40.5	60.7	H / 1.5 / 32.7	-14	46.7	54	-7.3
4638.02	55.1 Pk	5.4 / 32.6 / 40.5	52.5	V / 1.1 / 269.0	-14	38.5	54	-15.5
5565.63	57.1 Pk	6.1 / 34.6 / 39.8	58	H / 1.0 / 36.4	-14	44	94.2	-50.2
5565.63	58.8 Pk	6.1 / 34.6 / 39.8	59.7	V / 1.3 / 0.0	-14	45.7	94.2	-48.5
6493.29	59.1 Pk	6.8 / 35.3 / 40.2	61	H / 1.1 / 322.5	-14	47	94.2	-47.2
6493.3	59.6 Pk	6.8 / 35.3 / 40.2	61.4	V / 1.2 / 11.2	-14	47.4	94.2	-46.8
7420.84	53.8 Pk	7.4 / 36.5 / 39.8	57.8	V / 1.0 / 350.0	-14	43.8	54	-10.2
7420.9	53.1 Pk	7.4 / 36.5 / 39.8	57.2	H / 1.1 / 303.9	-14	43.2	54	-10.8
8348.48	52.9 Pk	8.0 / 37.1 / 47.9	50.1	H / 1.0 / 41.0	-14 14	36.1	54 54	-17.9 16.2
8348.49 Harmonics	54.6 Pk	8.0 / 37.1 / 47.9 re not seen above the	51.8	V / 1.0 / 353.1	-14	37.8	54	-16.2
TIATHIUTIUS	HOLHSIEG WE	ie not seen above the	noise nool.					

Voice: 303 786 7999 Fax: 303 449 6160

Project Report

Technician Ty Orosco **Project** 3153191

Capital Asset	DManufacturer	Model #	Serial #	Description	Test Performed	Service Type	Service Date	Service Due
18808	EMCO	3146	9203-3376	Log Periodic Antenna	R Radiated Emissions	For Cal	10/12/2007	10/12/2008
18880	Hewlett-Packard	85650A	2811A01300	Q.P Adapter	R Radiated Emissions	For Cal	11/15/2007	11/15/2008
18882	Hewlett-Packard	8566B	2410A00154	Spectrum Analyzer (dc-22 GHz)	R Radiated Emissions	For Cal	11/13/2007	11/13/2008
18887	EMCO	3115	9205-3886	Horn Antenna 1-18GHz	R Radiated Emissions	For Cal	3/6/2008	3/6/2009
18900	Avantek	AFT97-8434-10F	1007	RF Pre-Amplifier (4-8 GHz)	R Radiated Emissions	For Ver	5/2/2008	5/2/2009
18901	Avantek	AWT-18037	1002	RF Pre-Amplifier (8-18 GHz)	R Radiated Emissions	For Ver	5/2/2008	5/2/2009
18906	Mini-Circuits Lab	ZHL-42	N052792-2	Amplifier	R Radiated Emissions	For Ver	5/2/2008	5/2/2009

Begin Date: 5/16/2008

End Date: 5/16/2008

Appendix B
Test Plan
and
Constructional Data Form
To be supplied by the customer

Appendix C
Measurement Protocol
And
Allu
Test Procedures

MEASUREMENT PROTOCOL

GENERAL INFORMATION

Test Methodology

Conducted and radiated emission testing is performed according to the procedures in ANSI C63.4 & CNS13438.

Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into it's characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

CONDUCTED EMISSIONS

The final level, expressed in $dB_{\mu}V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the applicable limit.

To convert between $dB\mu V$ and μV , the following conversions apply:

- $dB\mu V = 20(log \mu V)$
- $\mu V = Inverse log(dB\mu V/20)$

RADIATED EMISSIONS

The final level, expressed in $dB\mu V/m$, is arrived at by taking the reading from the spectrum analyzer (Level $dB\mu V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has the applicable limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets in Attachment B. The amplifier gain is automatically accounted for by using an analyzer offset.

Example: At a Test Frequency of 30 MHz, with a peak reading on the spectrum analyzer or measuring receiver of 14 dB μ V:

Measured Level	+	Transducer & Cable Loss factor	=	Corrected Reading	Specification Limit	-	Corrected Reading	=	Delta Specification
(dBµV)		(dB) 14.9		(dBµV/m)	(dBµV/m)		(dB _µ V/m)		
14.0			28.9	40.0		28.9		-11.1	

Project File: 3153191 Page 16 of 19

Voice: 303 786 7999 Fax: 303 449 6160

Intertek

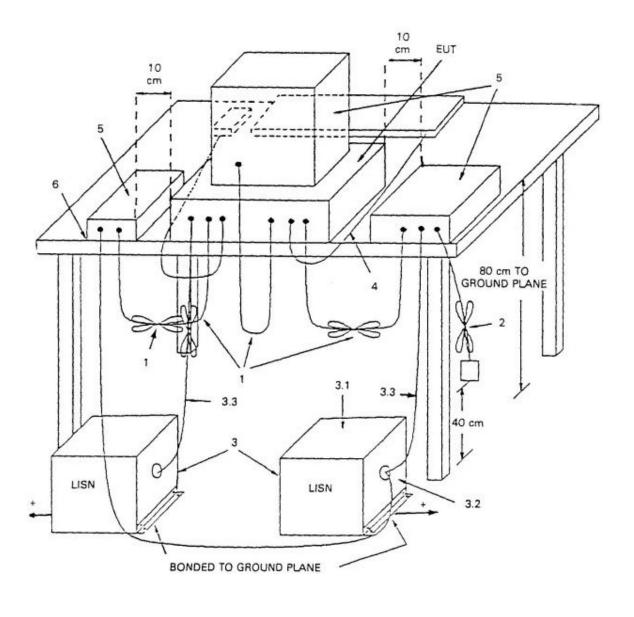
DETAILS OF TEST PROCEDURES

General Standard Information

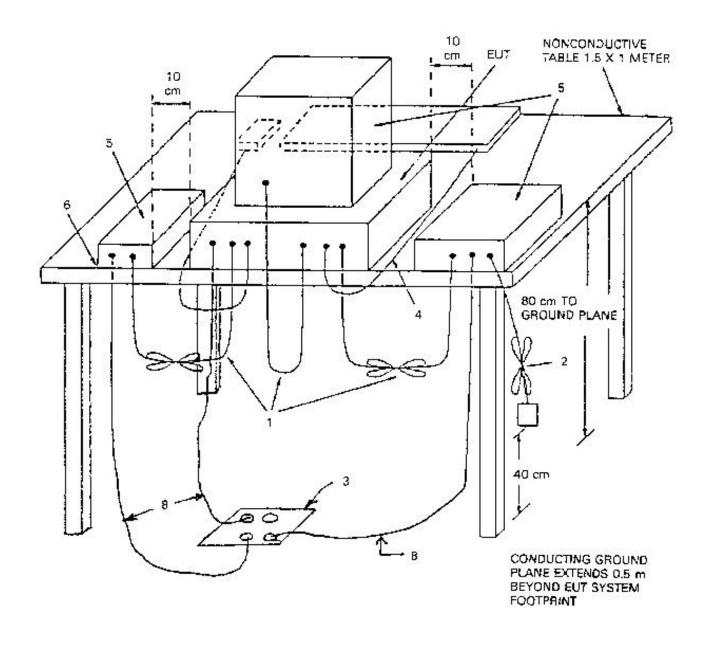
The test methods used comply with ANSI C63.4-2003 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

Conducted Emissions

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with $50~\Omega/50~\mu H$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. In some cases, a pre-scan using a spectrum analyzer is initially performed on the units comprising the system under test to locate the highest emissions. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver or spectrum analyzer with quasi-peak and average detection and recorded on the data sheets.


Radiated Emissions

Radiated emissions from the EUT are measured in the frequency range of 30 to 22GHz using a spectrum analyzer and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection and measurements above 1000 MHz are made with a 1 MHz/6 dB bandwidth and peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimeters above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna is positioned 3, 10 or 30 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are rotated 360 degrees.


Project File: 3153191 Page 17 of 19

Fax: 303 449 6160

Conducted Emissions Diagram:

Radiated Emissions Diagram:

Project File: 3153191 Page 19 of 19 Voice: 303 786 7999 Fax: 303 449 6160