

Test Report No.	BC400296-1	Issue Date:	August 5, 2004
Model / Serial No.	ES1723 / proto #1		
Product Type	Intentional Transmitter		
Client	Inovonics Wireless Corp.		
Manufacturer	Inovonics Wireless Corp.		
License holder	Inovonics Wireless Corp.		
Address	315 CTC Blvd		
	Louisville, CO 80027		
Test Criteria Applied Test Result	FCC CFR47 Part 15.247 PASS		
Test Project Number References	BC400296-1	Title 47 CFR 15 DEVICES	RADIO FREQUENCY
Total Pages Including Appendices:	30		
Tortal Juley	Rot	bert Cresser	

Reviewed By :

Approved By :

INTERNATIONAL APPROVALS LABORATORIES (IAL) reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. IAL have no liability for any deductions, inferences or generalizations drawn by the client or others from IAL issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval of IAL. This report shall not be used by the client to claim product endorsement by NVLAP (No. 200624-0) or any agency of the US government.

International Approval Laboratories and its professional staff hold government and professional organization certifications and are members of IEEE, NVLAP, and VCCI.

Documentation	Page(s)
Test report	1-30
Directory	2
Test Regulations	3
General Remarks	4-5
Test-setup Photographs	6-10
Appendix A	
Test Data Sheets and Test Equipment Used	11-22
Appendix B	
Test Plan/Constructional Data Form	23-25
Appendix C	
Measurement Protocol/Test Procedures	26-30

STATEMENT OF MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The measurement uncertainty for Conducted Emissions in the frequency range of 150kHz – 30MHz is calculated to be ± 2.30 dB and for Radiated Emissions is calculated to be ± 3.60 dB in the frequency range of 30MHz – 200MHz and ± 3.38 dB in the frequency range of 200MHz – 1000MHz.

EUT Received Date: 19-July-2004

Testing Start Date: 19-July-2004

Testing End Date: 30-July-2004

Rev.No 1

 FCC CFR47 Part 15.205 FCC CFR47 Part 15.207 FCC CFR47 Part 15.209 FCC CFR47 Part 15.247 ICES-003 						
Emission Test Results:						
Conducted Emissions, Powerline (15.207) -	Not App	olica	ble		
Test Result						
Minimum limit margin		NA	_dB		at	<u>NA</u> MHz
Maximum limit exceeding			_dB		at	MHz
Remarks:						
Radiated Emissions (15.209) -	PASS					
Test Result	FA33					
Minimum limit margin		-11.0	dB		at	9000.0 MHz
Maximum limit exceeding			dB		at	MHz
Remarks:			_00		u.	11112
Radiated Emissions (15.205)/(15.24	- (c) -	PASS				
Test Result						
Minimum limit margin		-1.28	_dB		at	<u>3710.09</u> MHz
Maximum limit exceeding			dB		at	MHz
Remarks:						
Peak Output Power 15.247 (b)(2) Test Result	- PASS)				
		04.00	d٦		ot	
Minimum limit margin		-24.88	_		at	<u>914.61</u> MHz
Maximum limit exceeding			_dB		at	MHz
Remarks:						

GENERAL REMARKS:

The following remarks are to be considered as "where applicable" and are taken into account while completing any FCC/IC/ETSI radio tests at International Approvals Laboratories, LLC.

Testing was performed in 3 different orthogonal axis to determine the worst case emissions from the device. The worst case emissions measurements are shown in this report.

FCC CFR47 Part 15.31: Measurement Standards: In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was varied per Part 15.31 to find worst case emissions.

FCC CFR47 Part 15.35: Measurement Detector Functions and Bandwidths: FCC Part 15.35 was utilized when performing the measurements within this report.

In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was verified per Part 15.31 to find worst case emissions.

The actual test distance for the FCC Part 15.209 testing was conducted at 10m for the fact that the device was being tested to EN55022 Class B from 30 MHz to 1000 MHz (meets/exceeds the FCC Part 15.209 & 109B limits) The data is automatically extrapolated back to the FCC 3m limits and measurements are corrected to better show the compliance to FCC requirements and reduce confusion. A correction factor of 10.54dB is used in cases of 30MHz and up for a difference between 10m and 3m measurement distances. All measurements that are lesser than 30MHz where applicable are accompanied with the fall of measurements and calculations to support the interpolation.

Modifications required to pass:

Test Specification Deviations: Additions to or Exclusions from

This test report is in-part, International Approvals Laboratories, LLC was asked to test only the field strength of the fundamental and harmonics as well as the unintentional radiated and conducted emissions when applicable.

Rule Part 11, 15	Other Rule	Description	Comments
& 18 Devices	Part Devices	Description	Comments
2.1033(b)(1)	2.1033(c)(1)	Manu. Contact	See Page 1 of this report
2.1033(b)(2)	2.1033(c)(2)	FCC Identifier	
2.1033(b)(3)	2.1033(c)(3)	Users Manual to include Operating, installation	Attached as Exhibit
	2.1033(c)(4)	Emissions Designator per 2.	
	2.1033(c)(5)	Frequency Range	Not Applicable to Part 15 Devcies
	2.1033(c)(6)	Power range and controls	Not Applicable to Part 15 Devcies
	2.1033(c)(7)	Maximum power ouput rating	Not Applicable to Part 15 Devcies
	2.1033(c)(8)	DC Voltage and Current suplying final RF stages	Not Applicable to Part 15 Devcies
2.1033(b)(3)	2.1033(c)(9)	Tune –up procedure	Please refer to the users manual for applicability
2.1033(b)(4&5)	2.1033(c)(10)	Complete Circuit Diagrams and circuit operation description	Attached as Exhibit
2.1033(b)(7)	2.1033(c)(11)	Photographs/drawings of the identification label & its location on the device	Attached as Exhibit
2.1033(b)(7)	2.1033(c)(12)	Photographs of the external and internal surfaces, and construction	Attached as Exhibit
	2.1033(c)(13)	Digital Modulation	Not Applicable
2.1033(b)(6)	2.1033(c)(14)	Report of Measurement Data Required by 2.1046 – 2.1057	See Data Below (This report consists of the testing required under Part 15.231)
2.1033(b)(8)		Description of publicly available support equipment used during test	Refer to Exhibit B of this report (Client Test Plan)
2.1033(b)(9)		Statement of Autorization to Part 15.37 of CFR47	The equipment herein is being authorized in accordance to 15.37 of the CFR47 Rules.
2.1033(b)(10)		Direct Sequence Spread Spectrum Devices (DSSS)	Exhibit of compliance to 15.247(e)
2.1033(b)(10)		Frequency Hopping Devices	Exhibit of compliance to 15.247(a)(1)
2.1033(b)(11)		Scanning receiver construction	Exhibit stating compliance to construction in accordance to 15.121.
15.31	15.31	Transmitter Supply Voltage	Testing herein was completed in accordance to FCC CFR47 Part 15.31

Exhibits Including (where applicable):

- 1. Users Manual
- 2. Operation Description
- 3. Block Diagram
- 4. Report of Measurement
- 5. External & Internal Photographs
- 6. Schematic

- 7. Parts List
- 8. Tuning Procedure (if applicable)
- 9. Test Setup Photograph
- 10. Label Drawings and or Photograpghs
- 11. Description of Support Equipment (where Applicable)

Required Information in Accordance to Industry Canada Regulations (In addition to the above):

Information Required	Description	Comments
Modulation Type	(i.e. ASK, NON, FSK, DSSS, FHSS, etc.)	
Emissions Designator	Per TRC-49	
In Country Representative	Contact Information	
99% Bandwidth Measurement	Per RSS-210	

Test-setup photo(s): Conducted Emissions

Not Applicable

Test-setup photo(s): Radiated Intentional Emissions

Test-setup photo(s): Radiated Intentional Emissions

Rev.No 1

Test-setup photo(s): Radiated Unintentional Emissions

Test-setup photo(s): Radiated Unintentional Emissions

Appendix A

Test Data Sheets

and

Test Equipment Used

15.209 Test Data

Rev.No 1

Test Report #:	BC400296 Run 04	Test Area:	Pinewood Site 1 (3m)	Temperature:	22	°C
Test Method:	FCC pt. 15.209 below 30	Test Date:	30-Jul-2004	- Relative Humidity:	48	%
EUT Model #:	EN1723	EUT Power:	DC	Air Pressure:	81	kPa
EUT Serial #:	1			-		
Manufacturer:	Inovonics			Lev	el Key	
EUT Description:	Temperature Transmitter			Pk – Peak	Pk – Pe	eak
Notes:				Qp – QuasiPeak	Qp – Q	uasiPeak
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
Started scan a 30Mhz-200Ml		ing found from the unit betwee	en 33KHz and	30MHz		
0 degrees						
No Emissions	found					
90 degrees						
No Emissions	found					
180 degrees						
No Emissions	found					
270 degrees						
No Emissions						
Changing to H	Horizontal					
0 degrees						
No Emissions	found					
90 degrees						
No Emissions	found					
180 degrees						
No Emissions	found					
270 degrees						
No Emissions	found					
0 degrees						
No Emissions	found					

Test Report #:	BC400296 Run 04	Test Area:	Pinewood Site 1 (3m)	Temperature:	22	°C
Test Method:	FCC pt. 15.209 below 30	Test Date:	30-Jul-2004	Relative Humidity:	48	%
EUT Model #:	EN1723	EUT Power:	DC	Air Pressure:	81	kPa
EUT Serial #:	1			-		_
Manufacturer:	Inovonics			Leve	el Key	
EUT Description:	Temperature Transmitter			Pk – Peak	Pk – Pea	ak
Notes:				Qp – QuasiPeak	Qp – Qu	asiPeak
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
90 degrees						
No Emissions	found					
180 degrees						
No Emissions	found					
270 degrees						
No Emissions	found					
Noise Floor p	1					
200.00	35.5 Qp	1.4 / 11.9 / 27.6	21.2	H / 1.0 / 0.0	-22.3	N/A
1000.00	18.7 Qp	2.2 / 23.9 / 27.4	17.4	H / 1.0 / 0.0	-36.6	N/A
500.00	19.2 Qp	2.4 / 18.6 / 28.6	11.7	H / 1.0 / 0.0	-34.3	N/A
0 degrees						
No Emissions	found					
90 degrees						
No Emissions	found					
180 degrees						
No Emissions	found					
270 degrees						
No Emissions	Found					
740.451						
713.45 bumpe	ed the space l	oar				
NI · · · ·	• .					
Noise floor po	oints					

•	ort #: BC4	00296 Run 04	Test Area:	Pinewood Site 1 (3m)		Tempera	ature:	22	°C
Test Met	hod: FCC	pt. 15.209 below 30	Test Date:	Test Date: 30-Jul-2004		Relative Hum	nidity:	48	%
EUT Mode	el #: EN1	723	EUT Power:	DC		Air Pres	sure:	81	 kPa
EUT Seri	T Serial #: 1								
Manufactu	urer: Inov	onics					Leve	el Key	
EUT Descript	tion: Tem	perature Transmitter				Pk – Peak		Pk – P	eak
Notes:						Qp – QuasiPe	⊳ak	0n – 0	QuasiPea
								ap a	cuuon cu
						Av - Average			
FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA	1 (dB)		DELTA2	(dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)		15.209 Qp		C Part 15	
200.00	30.5 Qp	1.4 / 11.9 / 27.6	16.3	V / 1.0 / 0.0	-27	7.2		N/A	
500.00	19.4 Qp	2.4 / 18.6 / 28.6	11.8	V / 1.0 / 0.0	-34	4.2		N/A	
1000.00	18.7 Qp	2.2 / 23.9 / 27.4	17.5	V / 1.0 / 0.0	-30	6.5		N/A	
No emissions	found betw	een 1 and 10 GHz							
These are nois	se floor poir	nts							
9000.00	40.9 Pk								
5555.00	40.31 K	8.5 / 40.0 / 46.8	42.6	V / 1.0 / 0.0	N	/A		-11.4	1
9000.00	40.9 F k 41.2 Pk	8.5 / 40.0 / 46.8 8.5 / 40.0 / 46.8	42.6 43.0	V / 1.0 / 0.0 H / 2.0 / 0.0		/A /A		-11.4 -11.0	
	41.2 Pk	8.5 / 40.0 / 46.8							
9000.00	41.2 Pk	8.5 / 40.0 / 46.8			N)
9000.00 These are nois	41.2 Pk se floor poir	8.5 / 40.0 / 46.8	43.0	H / 2.0 / 0.0	N	/A		-11.0)
9000.00 These are nois 6750.00	41.2 Pk se floor poir 33.5 Pk	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9	43.0 39.6	H/2.0/0.0 H/2.0/0.0	N. N.	/A /A		-11.0) 4 5
9000.00 These are nois 6750.00 7500.00	41.2 Pk se floor poir 33.5 Pk 33.9 Pk	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9 8.2 / 38.0 / 39.6	43.0 39.6 40.5	H/2.0/0.0 H/2.0/0.0 H/2.0/0.0	N N N N	/A //A //A		-11.0 -14.4 -13.5) 4 5 3
9000.00 These are nois 6750.00 7500.00 5500.00	41.2 Pk se floor poir 33.5 Pk 33.9 Pk 31.5 Pk	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9 8.2 / 38.0 / 39.6 6.7 / 35.7 / 38.7	43.0 39.6 40.5 35.2	H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 H/2.0/0.0	N N N N	/A //A //A //A //A		-11.0 -14.4 -13.5 -18.8) 4 5 3 4
9000.00 These are nois 6750.00 7500.00 5500.00 7500.00	41.2 Pk se floor poir 33.5 Pk 33.9 Pk 31.5 Pk 33.0 Pk	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9 8.2 / 38.0 / 39.6 6.7 / 35.7 / 38.7 8.2 / 38.0 / 39.6	43.0 39.6 40.5 35.2 39.6	H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 V/1.0/0.0	N N N N N	/A //A //A //A //A		-11.0 -14.4 -13.5 -18.8 -14.4) 5 3 4 3
9000.00 These are nois 6750.00 7500.00 5500.00 7500.00 6750.00	41.2 Pk se floor poir 33.5 Pk 33.9 Pk 31.5 Pk 33.0 Pk 34.1 Pk	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9 8.2 / 38.0 / 39.6 6.7 / 35.7 / 38.7 8.2 / 38.0 / 39.6 8.3 / 36.7 / 38.9	43.0 39.6 40.5 35.2 39.6 40.2	H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 V/1.0/0.0 V/1.0/0.0	N N N N N	/A //A //A //A //A //A //A //A //A //A		-11.0 -14.4 -13.5 -18.8 -14.4 -13.8) 5 3 4 3
9000.00 These are nois 6750.00 7500.00 5500.00 7500.00 6750.00	41.2 Pk se floor poir 33.5 Pk 33.9 Pk 31.5 Pk 33.0 Pk 34.1 Pk 32.4 Pk	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9 8.2 / 38.0 / 39.6 6.7 / 35.7 / 38.7 8.2 / 38.0 / 39.6 8.3 / 36.7 / 38.9 6.7 / 35.7 / 38.7	43.0 39.6 40.5 35.2 39.6 40.2	H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 V/1.0/0.0 V/1.0/0.0	N N N N N	/A //A //A //A //A //A //A //A //A //A		-11.0 -14.4 -13.5 -18.8 -14.4 -13.8) 5 3 4 3
9000.00 These are nois 6750.00 5500.00 7500.00 6750.00 5500.00	41.2 Pk se floor poir 33.5 Pk 33.9 Pk 31.5 Pk 33.0 Pk 34.1 Pk 32.4 Pk	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9 8.2 / 38.0 / 39.6 6.7 / 35.7 / 38.7 8.2 / 38.0 / 39.6 8.3 / 36.7 / 38.9 6.7 / 35.7 / 38.7	43.0 39.6 40.5 35.2 39.6 40.2	H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 V/1.0/0.0 V/1.0/0.0	N N N N N N	/A //A //A //A //A //A //A //A //A //A		-11.0 -14.4 -13.5 -18.8 -14.4 -13.8) 5 3 4 3 9
9000.00 These are nois 6750.00 7500.00 5500.00 6750.00 5500.00 These are nois	41.2 Pk se floor poir 33.5 Pk 33.9 Pk 31.5 Pk 33.0 Pk 34.1 Pk 32.4 Pk se floor poir	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9 8.2 / 38.0 / 39.6 6.7 / 35.7 / 38.7 8.2 / 38.0 / 39.6 8.3 / 36.7 / 38.9 6.7 / 35.7 / 38.7	43.0 39.6 40.5 35.2 39.6 40.2 36.1	H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	N N N N N N N	/A //A //A //A //A //A //A //A //A //A		-11.0 -14.4 -13.5 -18.8 -14.4 -13.8 -17.9) 4 5 3 4 3 9 3 3
9000.00 These are nois 6750.00 5500.00 7500.00 6750.00 5500.00 These are nois 1500.00	41.2 Pk se floor poir 33.5 Pk 33.9 Pk 31.5 Pk 33.0 Pk 34.1 Pk 32.4 Pk se floor poir 13.9 Pk	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9 8.2 / 38.0 / 39.6 6.7 / 35.7 / 38.7 8.2 / 38.0 / 39.6 8.3 / 36.7 / 38.9 6.7 / 35.7 / 38.9 6.7 / 35.7 / 38.7 state 2.9 / 26.9 / 37.0	43.0 39.6 40.5 35.2 39.6 40.2 36.1 6.7	H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	N N N N N N N N N	/A //A //A //A //A //A //A //A //A //A		-11.0 -14.4 -13.5 -18.8 -14.4 -13.8 -17.9 -47.3) 4 5 3 4 3 3 9 9 3 3 5
9000.00 These are nois 6750.00 5500.00 7500.00 6750.00 5500.00 These are nois 1500.00 2500.00	41.2 Pk se floor poir 33.5 Pk 33.9 Pk 31.5 Pk 33.0 Pk 34.1 Pk 32.4 Pk se floor poir 13.9 Pk 33.7 Pk	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9 8.2 / 38.0 / 39.6 6.7 / 35.7 / 38.7 8.2 / 38.0 / 39.6 8.3 / 36.7 / 38.9 6.7 / 35.7 / 38.7 8.3 / 36.7 / 38.9 6.7 / 35.7 / 38.7 9 6.7 / 35.7 / 38.7 9 4.0 / 30.6 / 37.9	43.0 39.6 40.5 35.2 39.6 40.2 36.1 6.7 30.4	H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	N N N N N N N N N N	/A //A //A //A //A //A //A //A //A //A		-11.0 -14.4 -13.5 -18.8 -14.4 -13.8 -17.9 -47.3 -23.6) 4 5 3 4 4 3 9 9 3 5 5 5
9000.00 These are nois 6750.00 7500.00 5500.00 6750.00 5500.00 These are nois 1500.00 2500.00 3500.00	41.2 Pk se floor poir 33.5 Pk 33.9 Pk 31.5 Pk 33.0 Pk 34.1 Pk 32.4 Pk se floor poir 13.9 Pk 33.7 Pk 32.6 Pk	8.5 / 40.0 / 46.8 hts 8.3 / 36.7 / 38.9 8.2 / 38.0 / 39.6 6.7 / 35.7 / 38.7 8.2 / 38.0 / 39.6 8.3 / 36.7 / 38.9 6.7 / 35.7 / 38.7 8.3 / 36.7 / 38.9 6.7 / 35.7 / 38.7 9 9 10 10 11 12 12 13 14 14 13 14 13 14 14 14 14 14 14 14 14 14 14 15 16 17 18 19 14 10 10 11 12 12 13 14 14 15 16 17 16	43.0 39.6 40.5 35.2 39.6 40.2 36.1 6.7 30.4 32.4	H/2.0/0.0 H/2.0/0.0 H/2.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0 V/1.0/0.0	N N N N N N N N N N N N	/A //A //A //A //A //A //A //A //A //A		-11.0 -14.4 -13.5 -18.8 -14.4 -13.8 -17.9 -47.3 -23.6 -23.6) 4 5 3 4 3 9 3 6 6 6 6

Rev.No 1

Test Report #:	BC400296 Run 04	Test Area:	Pinewood Site 1 (3m)	Temperature:	22	°C
Test Method:	FCC pt. 15.209 below 30	Test Date:	30-Jul-2004	Relative Humidity:	48	%
EUT Model #:	EN1723	EUT Power:	DC	Air Pressure:	81	kPa
EUT Serial #:	1			_		-
Manufacturer:	Inovonics			Leve	el Key	
EUT Description:	Temperature Transmitter			Pk – Peak	Pk – Pea	ak
Notes:				 Qp – QuasiPeak	Qp – Qu	asiPeak
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
		******** M e	easurem	ent Summar	У ******	
9000.00	41.2 Pk	8.5 / 40.0 / 46.8	43.0	H / 2.0 / 0.0	N/A	-11.0
7500.00	33.9 Pk	8.2 / 38.0 / 39.6	40.5	H / 2.0 / 0.0	N/A	-13.5
6750.00	34.1 Pk	8.3 / 36.7 / 38.9	40.2	V / 1.0 / 0.0	N/A	-13.8
5500.00	32.4 Pk	6.7 / 35.7 / 38.7	36.1	V / 1.0 / 0.0	N/A	-17.9
3500.00	32.6 Pk	4.8 / 32.8 / 37.8	32.4	V / 1.0 / 0.0	N/A	-21.6
200.00	35.5 Qp	1.4 / 11.9 / 27.6	21.2	H / 1.0 / 0.0	-22.3	N/A
2500.00	33.7 Pk	4.0 / 30.6 / 37.9	30.4	V / 1.0 / 0.0	N/A	-23.6
500.00	19.4 Qp	2.4 / 18.6 / 28.6	11.8	V / 1.0 / 0.0	-34.2	N/A
1000.00	18.7 Qp	2.2 / 23.9 / 27.4	17.5	V / 1.0 / 0.0	-36.5	N/A
1500.00	13.9 Pk	2.9 / 26.9 / 37.0	6.7	V / 1.0 / 0.0	N/A	-47.3

15.247 (b)(2), (c)/15.205 Test Data

Field Strength Measurements

Test Report #:	BC400296	Test Area:	Pinewood Site 1 (3m)	Temperature:	22.6	°C	
Test Method:	FCC CFR47 Part 15.247/205	Test Date:	19-Jul-2004	- Relative Humidity:	39	%	
EUT Model #:	EN1723	EUT Power:	DC	Air Pressure:	80	kPa	
EUT Serial #:	1			Page:			
Manufacturer:	Inovonics Wireless Corp.			Level Key			
EUT Description:				Pk – Peak	Nb – N	arrow Band	
Notes:				Qp – QuasiPeak	Bb – Bi	road Band	
				Av - Average			

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
The follow	I ing duty cycle	e was declared by the m	nanufacture	r.				
Duty Cycle	e = active / 10	00ms. = 20%						
Averaging		pulsed signals and c	alculation i	n accordance to FCC	CFR47 Part 15.3	35 utilized to calcul	ate field stren	gth
	g performed in as follows:	n accordance to FCC C	FR47 Part	15.205 (restricted ban	ds of operation) a	nd 15.247 emissions	and delta limit	s were
Final Corre	ected Peak M	leasurement – Duty Cy	cle Correctio	on Factor* = Final Cal	culated Emission			
The Final (Calculated Er	mission was then comp	ared to the I	imits in CFR47 Part 1	5.209 and 15.247	and the emission/lin	mit delta was c	alculated.
the D	TCF is calcul	ated as follows 20*log1	duty cycle	in 100mS) "not to exc	eed 20dB"			
		Respectively		,				
	s flat on the ta							
Low chanr		able			/			
	77.5 Qp	0.0/00.0/0.0	103	H / 1.0 / 310.4	40.00	00.00		
902.17		2.2 / 23.3 / 0.0	105	H/1.0/310.4	<mark>-13.98</mark>	<mark>89.02</mark>	<mark>119</mark>	-29.9
902.17 902.17	75.8 Pk	2.2 / 23.3 / 0.0 2.2 / 23.3 / 0.0	103 101.3	V / 1.0 / 23.0	- <u>13.98</u> - <u>13.98</u>	89.02 87.32	<mark>119</mark> 119	
	<mark>75.8 Pk</mark>							
902.17	<mark>75.8 Pk</mark>							<mark>-31.0</mark>
902.17 Mid Char 914.59 914.59	75.8 Pk nel 80.0 Pk 81.7 Pk	2.2 / 23.3 / 0.0	/ <mark>101.3</mark>	<mark>V / 1.0 / 23.0</mark>	<mark>-13.98</mark>	87.32	<mark>119</mark>	-31.0 -27.1
902.17 Mid Char 914.59 914.59 High Chan	75.8 Pk nel 80.0 Pk 81.7 Pk nel	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0	101.3 105.2 106.9	V / 1.0 / 23.0 V / 1.1 / 360.0 H / 1.0 / 316.0	-13.98 -13.98 -13.98	87.32 91.22 92.92	119 119 119 119	-29.(-31.(-27.7 -26.(
902.17 Mid Char 914.59 914.59 High Chan 927.37	75.8 Pk nel 80.0 Pk 81.7 Pk nel 79.2 Qp	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.3 / 0.0	101.3 105.2 106.9 104.8	V / 1.0 / 23.0 V / 1.1 / 360.0 H / 1.0 / 316.0 H / 1.0 / 312.0	-13.98 -13.98 -13.98 -13.98	87.32 91.22 92.92 90.82	119 119 119 119 119	-31.6 -27.7 -26.0 -28.1
902.17 Mid Char 914.59 914.59 High Chan 927.37 927.37	75.8 Pk nel 80.0 Pk 81.7 Pk nel 79.2 Qp 76.9 Pk	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.3 / 0.0 2.2 / 23.3 / 0.0	101.3 105.2 106.9	V / 1.0 / 23.0 V / 1.1 / 360.0 H / 1.0 / 316.0	-13.98 -13.98 -13.98	87.32 91.22 92.92	119 119 119 119	-31.0 -27. -26.0 -28.1
902.17 Mid Char 914.59 914.59 High Chan 927.37 927.37 EUT is ver	75.8 Pk nel 80.0 Pk 81.7 Pk nel 79.2 Qp 76.9 Pk tical on the ta	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.3 / 0.0 2.2 / 23.3 / 0.0	101.3 105.2 106.9 104.8	V / 1.0 / 23.0 V / 1.1 / 360.0 H / 1.0 / 316.0 H / 1.0 / 312.0	-13.98 -13.98 -13.98 -13.98	87.32 91.22 92.92 90.82	119 119 119 119 119	-31.0 -27. -26.0 -28.
902.17 Mid Chan 914.59 914.59 High Chan 927.37 927.37 EUT is ver Low Chan	75.8 Pk nel 80.0 Pk 81.7 Pk nel 79.2 Qp 76.9 Pk tical on the ta	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.3 / 0.0 2.2 / 23.3 / 0.0 able	101.3 105.2 106.9 104.8 102.4	V / 1.0 / 23.0 V / 1.1 / 360.0 H / 1.0 / 316.0 H / 1.0 / 312.0 V / 1.0 / 248.5	-13.98 -13.98 -13.98 -13.98 -13.98 -13.98	87.32 91.22 92.92 90.82 88.42	119 119 119 119 119 119	-31. -27. -26.0 -28. -30.0
902.17 Mid Chan 914.59 914.59 High Chan 927.37 927.37 EUT is ver Low Chan 902.19	75.8 Pk nel 80.0 Pk 81.7 Pk nel 79.2 Qp 76.9 Pk tical on the ta nnel 77.0 Pk	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.3 / 0.0 2.2 / 23.3 / 0.0 able 2.2 / 23.3 / 0.0	101.3 105.2 106.9 104.8 102.4 102.5	V / 1.0 / 23.0 V / 1.1 / 360.0 H / 1.0 / 316.0 H / 1.0 / 312.0 V / 1.0 / 248.5	-13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98	87.32 91.22 92.92 90.82 88.42 88.52	119 119 119 119 119 119 119	-31.0 -27. -26.0 -28. -30.3
902.17 Mid Char 914.59 914.59 High Chan 927.37 927.37 EUT is ver Low Char 902.19 902.19	75.8 Pk nel 80.0 Pk 81.7 Pk nel 79.2 Qp 76.9 Pk tical on the ta nnel 77.0 Pk 79.0 Pk	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.3 / 0.0 2.2 / 23.3 / 0.0 able	101.3 105.2 106.9 104.8 102.4	V / 1.0 / 23.0 V / 1.1 / 360.0 H / 1.0 / 316.0 H / 1.0 / 312.0 V / 1.0 / 248.5	-13.98 -13.98 -13.98 -13.98 -13.98 -13.98	87.32 91.22 92.92 90.82 88.42	119 119 119 119 119 119	-31.0 -27.1 -26.0
902.17 Mid Char 914.59 914.59 High Chan 927.37 927.37 EUT is ver Low Char 902.19 902.19 Mid Char	75.8 Pk 80.0 Pk 81.7 Pk nel 79.2 Qp 76.9 Pk tical on the ta nnel 77.0 Pk 79.0 Pk	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.3 / 0.0 2.2 / 23.3 / 0.0 able 2.2 / 23.3 / 0.0 2.2 / 23.3 / 0.0	101.3 105.2 106.9 104.8 102.4 102.5 104.5	V/1.0/23.0 V/1.1/360.0 H/1.0/316.0 H/1.0/312.0 V/1.0/248.5 V/1.1/356.0 H/1.0/313.6	-13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98	87.32 91.22 92.92 90.82 88.42 88.52 90.52	119 119 119 119 119 119 119 119 119	-31.0 -27. -26.0 -28. -30.3 -30.4 -30.4 -28.4
902.17 Mid Char 914.59 914.59 High Chan 927.37 927.37 EUT is ver Low Char 902.19 902.19 Mid Char 914.61	75.8 Pk nel 80.0 Pk 81.7 Pk nel 79.2 Qp 76.9 Pk tical on the ta nel 77.0 Pk 79.0 Pk nel 82.8 Pk	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0	101.3 105.2 106.9 104.8 102.4 102.5 104.5 104.5	V/1.0/23.0 V/1.1/360.0 H/1.0/316.0 H/1.0/312.0 V/1.0/248.5 V/1.1/356.0 H/1.0/313.6 H/1.0/307.5	-13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98	87.32 91.22 92.92 90.82 88.42 88.52 90.52 94.12	119 119 119 119 119 119 119 119 119	-31.0 -27. -26.0 -28. -30.3 -30.4 -30.4 -28.4
902.17 Mid Char 914.59 914.59 High Chan 927.37 927.37 EUT is ver Low Char 902.19 902.19 902.19 Mid Char 914.61 914.61	75.8 Pk 80.0 Pk 81.7 Pk nel 79.2 Qp 76.9 Pk tical on the ta nel 77.0 Pk 79.0 Pk nel 82.8 Pk 77.8 Pk	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.3 / 0.0 2.2 / 23.3 / 0.0 able 2.2 / 23.3 / 0.0 2.2 / 23.3 / 0.0	101.3 105.2 106.9 104.8 102.4 102.5 104.5	V/1.0/23.0 V/1.1/360.0 H/1.0/316.0 H/1.0/312.0 V/1.0/248.5 V/1.1/356.0 H/1.0/313.6	-13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98	87.32 91.22 92.92 90.82 88.42 88.52 90.52	119 119 119 119 119 119 119 119 119	-31.1 -27. -26.1 -28. -30.3 -30.3 -30.3 -28.3
902.17 Mid Char 914.59 914.59 High Chan 927.37 927.37 EUT is ver Low Char 902.19 902.19 Mid Char 914.61	75.8 Pk 80.0 Pk 81.7 Pk nel 79.2 Qp 76.9 Pk tical on the ta nel 77.0 Pk 79.0 Pk nel 82.8 Pk 77.8 Pk	2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.1 / 0.0 2.2 / 23.3 / 0.0 2.2 / 23.1 / 0.0	101.3 105.2 106.9 104.8 102.4 102.5 104.5 104.5	V/1.0/23.0 V/1.1/360.0 H/1.0/316.0 H/1.0/312.0 V/1.0/248.5 V/1.1/356.0 H/1.0/313.6 H/1.0/307.5	-13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98 -13.98	87.32 91.22 92.92 90.82 88.42 88.52 90.52 94.12	119 119 119 119 119 119 119 119 119	-31. -27. -26. -28. -30. -30. -28. -24.

Field Strength Measurements LABOR Fundamental and Spurious of the Transmitter

Test Report #:	BC400296	Test Area:	Pinewood Site 1 (3m)	Temperature:	22.6	°C
Test Method:	FCC CFR47 Part 15.247/205	Test Date:	19-Jul-2004	Relative Humidity:	39	%
EUT Model #:	EN1723	EUT Power:	DC	Air Pressure:	80	kPa
EUT Serial #:	1	-		-		-
Manufacturer:	Inovonics Wireless Corp.					
EUT Description:					Nb – Nar	row Band
Notes:				Qp – QuasiPeak	Bb – Bro	ad Band
				Av – Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
The followi	ng duty cycle	was declared by the n	nanufacture	r.				
Duty Cycle	= active / 10	0ms. = 20%						
Averaging emissions	method for	pulsed signals and c	alculation i	n accordance to FCC	CFR47 Part 15.	35 utilized to calcul	ate field stren	gth
The testing calculated		n accordance to FCC C	FR47 Part ?	15.205 (restricted band	ds of operation) a	nd 15.247 emissions	and delta limit	s were
Final Corre	cted Peak M	easurement – Duty Cy	cle Correctio	on Factor* = Final Calo	culated Emission			
The Final (Calculated Er	nission was then comp	ared to the I	_imits in CFR47 Part 1	5.209 and 15.247	and the emission/lir	nit delta was c	alculated.
		lated as follows 20*log						
		Respectively	10()					
EUT is still	vertical, rota	ted 90 degrees						
Low Char	nnel	, and the second s						
<mark>902.16</mark>	<mark>79.8 Pk</mark>	<mark>2.2 / 23.3 / 0.0</mark>	<mark>105.3</mark>	<mark>H / 1.0 / 314.6</mark>	<mark>-13.98</mark>	<mark>91.32</mark>	<mark>119</mark>	<mark>-27.6</mark>
<mark>902.17</mark>	<mark>74.7 Pk</mark>	<mark>2.2 / 23.3 / 0.0</mark>	<mark>100.2</mark>	<mark>V / 1.3 / 306.6</mark>	<mark>-13.98</mark>	<mark>86.22</mark>	<mark>119</mark>	<mark>-32.7</mark>
Mid Chan								
<mark>914.57</mark>	<mark>74.5 Pk</mark>	<mark>2.2 / 23.1 / 0.0</mark>	<mark>99.8</mark>	<mark>V / 1.3 / 334.0</mark>	<mark>-13.98</mark>	<mark>85.82</mark>	<mark>119</mark>	<mark>-33.1</mark>
914.57	<mark>81.5 Pk</mark>	<mark>2.2 / 23.1 / 0.0</mark>	<mark>106.8</mark>	<mark>H / 1.0 / 37.0</mark>	<mark>-13.98</mark>	<mark>92.82</mark>	<mark>119</mark>	<mark>-26.1</mark>
High Cha					10.00			
927.37	76.0 Pk	2.2 / 23.3 / 0.0	101.5	H / 1.0 / 46.0	- <u>13.98</u>	87.52	119	-31.4
927.35	74.5 Pk	2.2 / 23.3 / 0.0	100	<mark>V / 1.2 / 309.0</mark>	<mark>-13.98</mark>	<mark>86.02</mark>	<mark>119</mark>	<mark>-32.98</mark>
Low Char		placed in its worst ca	ase positio	n.				
1804.58	34.2 Pk	3.1 / 28.2 / 0.0	<mark>65.6</mark>	V / 1.0 / 283.3	<mark>-13.98</mark>	<mark>51.62</mark>	<mark>99</mark>	<mark>-47.3</mark>
1804.58	31.6 Pk	3.1/28.2/0.0	63 63	H / 1.4 / 353.7	-13.98 -13.98	49.02	99 99	-47.3 -49.9
2706.87	55.2 Pk	4.2/31.1/37.5	53	H / 2.1 / 214.1	-13.98	39.02	54	-14.9
2706.93	60.3 Pk	4.2 / 31.1 / 37.5	58.1	V / 1.5 / 25.7	-13.98	44.12	54 54	-9.8
3609.23	57.2 Pk	5.0 / 33.1 / 37.8	57.6	V / 1.0 / 106.0	-13.98	43.62	54	-10.3
3609.25	61.3 Pk	5.0 / 33.1 / 37.8	<mark>61.6</mark>	H / 1.5 / 125.1	<mark>-13.98</mark>	<mark>47.62</mark>	<mark>54</mark>	<mark>-6.3</mark>
<mark>4511.53</mark>	<mark>58.5 Pk</mark>	6.6 / 33.5 / 39.6	<mark>59</mark>	H / 1.2 / 131.3	<mark>-13.98</mark>	<mark>45.02</mark>	<mark>54</mark>	<mark>-8.9</mark>
<mark>4511.53</mark>	<mark>55.7 Pk</mark>	6.6 / 33.5 / 39.6	<mark>56.3</mark>	<mark>V / 1.0 / 127.</mark> 9	<mark>-13.98</mark>	<mark>42.32</mark>	<mark>54</mark>	<mark>-11.6</mark>
5413.53	<mark>43.9 Pk</mark>	6.9 / 35.5 / 38.3	<mark>48</mark>	H / 1.0 / 0.0	<mark>-13.98</mark>	34.02	<mark>54</mark>	<mark>-19.9</mark>
5413.53	42.2 Pk	6.9 / 35.5 / 38.3	46.3	V / 1.0 / 0.0	-13.98	32.32	54	-21.6

Field Strength Measurements LABOR Fundamental and Spurious of the Transmitter

Test Report #:	BC400296	Test Area:	Pinewood Site 1 (3m)	Temperature:	22.6	°C
Test Method:	FCC CFR47 Part 15.247/205	Test Date:	19-Jul-2004	Relative Humidity:	39	%
EUT Model #:	EN1723	EUT Power:	DC	Air Pressure:	80	kPa
EUT Serial #:	1					_
Manufacturer:	Inovonics Wireless Corp.					
EUT Description:				Pk – Peak	Nb – Na	arrow Band
Notes:				Qp – QuasiPeak	Bb – Br	oad Band
				Av – Average		

FREQ	LEVEL	CABLE / ANT /	FINAL	POL / HGT / AZ	Duty Cycle	Final Corrected	Limit	DELTA
		PREAMP			Correction			
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
The followi	ng duty cycle	was declared by the n	l nanufacture	r.				
Duty Cycle	= active / 10	$0 ms_{*} = 20\%$						
		pulsed signals and c	alculation i	n accordance to ECC	CER47 Part 15	35 utilized to calcul	ate field stren	ath
emissions		pulsed signals and c	alculation		01 R47 1 art 15.			gui
The testing calculated		n accordance to FCC C	CFR47 Part	15.205 (restricted band	ds of operation) a	nd 15.247 emissions	and delta limit	s were
Final Corre	cted Peak M	easurement – Duty Cy	cle Correcti	on Factor* = Final Calo	culated Emission			
The Final C	Calculated Er	nission was then comp	ared to the	Limits in CFR47 Part 1	5.209 and 15.247	and the emission/lin	mit delta was c	alculated.
		lated as follows 20*log						
		Respectively						
6315.53	44.2 Pk	8.2 / 36.5 / 38.9	<mark>50</mark>	H / 1.0 / 0.0	-13.98	36.02	99	<mark>-62.9</mark>
6315.53 6315.53	44.2 PK 43.5 Pk	8.2/36.5/38.9	49.2	V / 1.0 / 0.0	-13.98 -13.98	35.02	99 99	-62.8 -63.7
7217.53	43.3 PK 44.0 Pk	8.1 / 37.4 / 40.7	49.2	H / 1.0 / 0.0	- <u>13.98</u> - <u>13.98</u>	34.82	99 99	-03.7 -64.1
7217.53	44.3 Pk	8.1/37.4/40.7	49.1	V / 1.0 / 0.0	- <u>13.98</u>	35.12	99	-04. -63.8
8119.53	52.5 Pk	8.3 / 38.0 / 45.4	53.5	H / 1.0 / 0.0	-13.98	39.52	54	-14.4
8119.53	52.1 Pk	8.3 / 38.0 / 45.4	53.1	V / 1.0 / 0.0	-13.98	39.12	54 54	-14.8
9021.53	45.8 Pk	8.5 / 39.9 / 46.8	47.4	H / 1.0 / 0.0	-13.98	33.42	54	-20.5
9021.53	52.1 Pk	8.5 / 39.9 / 46.8	53.7	V / 1.0 / 0.0	-13.98	39.72	54	-14.2
Mid Chan	-							
1829.37	32.2 Pk	3.1 / 28.3 / 0.0	<mark>63.6</mark>	H / 1.2 / 353.9	<mark>-13.98</mark>	<mark>49.62</mark>	<mark>99</mark>	<mark>-49.3</mark>
1829.32	28.1 Pk	3.1 / 28.3 / 0.0	<mark>59.5</mark>	V / 1.0 / 278.3	<mark>-13.98</mark>	45.52	99	-53.4
2744.12	56.1 Pk	4.3 / 31.1 / 37.5	<mark>54.1</mark>	V / 1.1 / 118.4	<mark>-13.98</mark>	<mark>40.12</mark>	<mark>54</mark>	-13.8
2744.13	60.2 Pk	4.3 / 31.1 / 37.5	<mark>58.2</mark>	H / 1.0 / 134.2	<mark>-13.98</mark>	<mark>44.22</mark>	<mark>54</mark>	<mark>-9.7</mark>
3658.88	61.7 Pk	5.1 / 33.3 / 37.9	62.2	H / 1.5 / 121.9	<mark>-13.98</mark>	<mark>48.22</mark>	<mark>54</mark>	<mark>-5.7</mark>
3658.91	55.9 Pk	5.1 / 33.3 / 37.9	<mark>56.4</mark>	V / 1.2 / 224.9	<mark>-13.98</mark>	<mark>42.42</mark>	<mark>54</mark>	<mark>-11.</mark> {
<mark>4573.54</mark>	52.1 Pk	6.7 / 33.7 / 39.4	<mark>53.2</mark>	V / 1.0 / 125.6	<mark>-13.98</mark>	<mark>39.22</mark>	<mark>54</mark>	<mark>-14.7</mark>
<mark>4573.54</mark>	<mark>57.0 Pk</mark>	6.7 / 33.7 / 39.4	<mark>58.1</mark>	H / 1.9 / 28.8	<mark>-13.98</mark>	<mark>44.12</mark>	<mark>54</mark>	<mark>-9.8</mark>
<mark>5488.49</mark>	<mark>44.4 Pk</mark>	<mark>6.7 / 35.7 / 38.6</mark>	<mark>48.2</mark>	<mark>V / 1.0 / 138.0</mark>	<mark>-13.98</mark>	<mark>34.22</mark>	<mark>99</mark>	<mark>-64.7</mark>
<mark>5488.49</mark>	<mark>44.8 Pk</mark>	<mark>6.7 / 35.7 / 38.6</mark>	<mark>48.6</mark>	<mark>H / 1.1 / 0.0</mark>	<mark>-13.98</mark>	<mark>34.62</mark>	<mark>99</mark>	<mark>-64.3</mark>
<mark>6402.49</mark>	<mark>43.4 Pk</mark>	<mark>8.3 / 36.4 / 39.0</mark>	<mark>49.2</mark>	<mark>V / 1.0 / 0.0</mark>	<mark>-13.98</mark>	<mark>35.22</mark>	<mark>99</mark>	<mark>-63.7</mark>
<mark>6402.49</mark>	<mark>42.9 Pk</mark>	<mark>8.3 / 36.4 / 39.0</mark>	<mark>48.7</mark>	<mark>H / 1.0 / 0.0</mark>	<mark>-13.98</mark>	<mark>34.72</mark>	<mark>99</mark>	<mark>-64.2</mark>
<mark>7316.49</mark>	<mark>42.4 Pk</mark>	8.2 / 37.6 / 40.5	<mark>47.6</mark>	V / 1.0 / 0.0	<mark>-13.98</mark>	<mark>33.62</mark>	<mark>54</mark>	<mark>-20.3</mark>
7316.49	42.4 Pk	8.2 / 37.6 / 40.5	47.7	H / 1.0 / 0.0	<mark>-13.98</mark>	33.72	<mark>54</mark>	-20.2

Field Strength Measurements Fundamental and Spurious of the Transmitter

Test Report #:	BC400296	Test Area:	Pinewood Site 1 (3m)	Temperature:	22.6	°C
Test Method:	FCC CFR47 Part 15.247/205	Test Date:	19-Jul-2004	Relative Humidity:	39	%
EUT Model #:	EN1723	EUT Power:	DC	Air Pressure:	80	kPa
EUT Serial #:	1	_				_
Manufacturer:	Inovonics Wireless Corp.					
EUT Description:				Pk – Peak	Nb – Na	arrow Band
Notes:				Qp – QuasiPeak	Bb – Br	oad Band
				Av – Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
The followi	ng duty cycle	was declared by the m	nanufacture	r.		1		
Duty Cycle	= active / 10	0ms. = 20%						
Averaging emissions		pulsed signals and c	alculation i	n accordance to FCC	CFR47 Part 15.	35 utilized to calcul	ate field stren	gth
The testing calculated		n accordance to FCC C	FR47 Part	15.205 (restricted band	ds of operation) a	nd 15.247 emissions	and delta limit	s were
Final Corre	cted Peak M	easurement – Duty Cy	cle Correctio	on Factor* = Final Calo	culated Emission			
The Final (Calculated En	nission was then comp	ared to the l	Limits in CFR47 Part 1	5.209 and 15.247	and the emission/lin	mit delta was c	alculated.
The D	TCF is calcu	lated as follows 20*log	10(duty cvcle	e in 100mS) "not to exc	ceed 20dB"			
		Respectively	10(11)					
8226.57	53.4 Pk	8.4 / 38.2 / 45.3	54.8	V / 1.0 / 0.0	-13.98	40.82	54	<mark>-13.1</mark>
8226.57	52.1 Pk	8.4 / 38.2 / 45.3	53.5	H / 1.0 / 0.0	-13.98	39.52	54	-14.4
9140.57	50.9 Pk	8.8 / 39.6 / 47.1	52.2	V / 1.0 / 0.0	-13.98	38.22	54	-15.7
9140.57	49.8 Pk	8.8 / 39.6 / 47.1	51.1	H/1.0/0.0	-13.98	37.12	54	-16.8
High Cha								
1854.88	30.1 Pk	<mark>3.1 / 28.5 / 0.0</mark>	<mark>61.7</mark>	<mark>H / 1.2 / 184.4</mark>	<mark>-13.98</mark>	<mark>47.72</mark>	<mark>99</mark>	<mark>-51.</mark> 2
<mark>1854.95</mark>	<mark>30.8 Pk</mark>	<mark>3.1 / 28.5 / 0.0</mark>	<mark>62.4</mark>	<mark>V / 1.1 / 137.8</mark>	<mark>-13.98</mark>	<mark>48.42</mark>	<mark>99</mark>	<mark>-50.5</mark>
<mark>2782.49</mark>	59.2 Pk	4.3 / 31.2 / 37.5	<mark>57.3</mark>	V / 1.4 / 23.5	<mark>-13.98</mark>	<mark>43.32</mark>	<mark>54</mark>	<mark>-10.6</mark>
2782.55	55.3 Pk	4.3 / 31.2 / 37.5	<mark>53.4</mark>	H / 1.3 / 206.7	<mark>-13.98</mark>	<mark>39.42</mark>	<mark>54</mark>	<mark>-14.5</mark>
<mark>3710.06</mark>	<mark>59.8 Pk</mark>	5.2 / 33.5 / 37.9	<mark>60.6</mark>	V / 1.0 / 205.2	<mark>-13.98</mark>	<mark>46.62</mark>	<mark>54</mark>	<mark>-7.3</mark>
<mark>3710.09</mark>	<mark>65.9 Pk</mark>	5.2 / 33.5 / 37.9	<mark>66.7</mark>	<mark>H / 1.2 / 120.5</mark>	<mark>-13.98</mark>	<mark>52.72</mark>	<mark>54</mark>	<mark>-1.2</mark>
<mark>4637.49</mark>	<mark>54.2 Pk</mark>	6.9 / 33.9 / 39.2	<mark>55.8</mark>	V / 1.0 / 129.9	<mark>-13.98</mark>	<mark>41.82</mark>	<mark>54</mark>	<mark>-12.</mark> 1
<mark>4637.66</mark>	58.4 Qp	6.9 / 33.9 / 39.2	<mark>60</mark>	<mark>H / 1.8 / 360.0</mark>	<mark>-13.98</mark>	<mark>46.02</mark>	<mark>54</mark>	<mark>-7.9</mark>
<mark>5564.65</mark>	<mark>43.9 Pk</mark>	<mark>6.8 / 35.8 / 38.4</mark>	<mark>48.1</mark>	<mark>V / 1.0 / 0.0</mark>	<mark>-13.98</mark>	<mark>34.12</mark>	<mark>99</mark>	<mark>-64.8</mark>
<u>5565.24</u>	46.1 Pk	6.8 / 35.8 / 38.4	<mark>50.4</mark>	<mark>H / 1.6 / 0.0</mark>	<mark>-13.98</mark>	<mark>36.42</mark>	<mark>99</mark>	<mark>-62.5</mark>
<mark>6488.78</mark>	43.1 Pk	8.5 / 36.4 / 39.1	<mark>48.9</mark>	<mark>H / 1.0 / 0.0</mark>	<mark>-13.98</mark>	<mark>34.92</mark>	<mark>99</mark>	<mark>-64.(</mark>
<u>6491.42</u>	43.8 Pk	8.5 / 36.4 / 39.1	<mark>49.5</mark>	V / 1.0 / 0.0	<mark>-13.98</mark>	<mark>35.52</mark>	<mark>99</mark>	<mark>-63.4</mark>
7419.98	44.1 Pk	8.2 / 37.8 / 40.0	<u>50.2</u>	H / 1.0 / 0.0	-13.98	36.22	54	-17.7
7420.43	44.5 Pk	8.2 / 37.8 / 40.0	50.5	V / 1.0 / 0.0	-13.98	36.52	54	-17.4
8343.37	52.8 Pk	8.4 / 38.5 / 45.2	54.6	H / 1.0 / 0.0	-13.98	40.62	54	-13.3
8343.37	51.7 Pk	8.4 / 38.5 / 45.2	53.5	V / 1.0 / 0.0	- <u>13.98</u>	39.52	54 00	-14.4
9270.37 9270.37	50.1 Pk	9.0 / 39.2 / 47.3	51	H / 1.0 / 0.0	-13.98	37.02	99 99	-61.9
	50.9 Pk	9.0 / 39.2 / 47.3	51.7	V / 1.0 / 0.0	<mark>-13.98</mark>	37.72		<mark>-61.2</mark>

Project Report

End Date: 7/30/04

Technician Karen Parker

Project: BC400296

Capital Asset I	DManufacturer	Model #	Serial #	Description	Test Performed	Service Type	Service Date	Service Due
6	Hewlett-Packard	8594E	3223A00145	Spectrum Analyzer	R Radiated Emissions	For Cal	1/16/2004	1/16/2005
138	EMC TEST SYSTEMS	3109	3142	Biconical Antenna 30-300MHz	R Radiated Emissions	For Cal	10/3/2003	10/3/2004
171	Hewlett-Packard	85662A	1928A01169	Spectrum Analyzer - Display Section	R Radiated Emissions	For Cal	1/21/2004	1/21/2005
172	Hewlett-Packard	8566B	2430A00759	Spectrum Analyzer	R Radiated Emissions	For Cal	1/21/2004	1/21/2005
187	EMCO	3115	9205-3886	Horn Antenna 1-18GHz	R Radiated Emissions	For Cal	10/6/2003	10/6/2004
202	Avantek	AWT-18037	1002	RF Pre-Amplifier (8-18 GHz)	R Radiated Emissions	For Ver	4/7/2004	4/7/2005
203	Avantek	AFT97-8434-10F	1007	RF Pre-Amplifier (4-8 GHz)	R Radiated Emissions	For Ver	4/7/2004	4/7/2005
213	Mini-Circuits Lab	ZHL-42	N052792-2	Amplifier	R Radiated Emissions	For Ver	6/5/2004	6/5/2005
217	EMCO	3146	9203-3376	Log Periodic Antenna	R Radiated Emissions	For Cal	10/3/2003	10/3/2004
248	Hewlett-Packard	8447F	3113A05545	9 kHz- 1.3GHz Pre Amp	R Radiated Emissions	For Ver	6/22/2004	6/22/2005

International Approvals Laboratories, LLC

Project File: BC400296 Page 22 of 30

Appendix B

Test Plan

and

Constructional Data Form

To be supplied by the customer

Rev.No 1

315 CTC Boulevard, Louisville, CO 80027 ph. 303.939.9336 fx. 303.939.8977 www.inovonicswireless.com

July 13, 2004

Todd Seeley IA Labs 5451 Central Ave. Boulder, CO 80301

Dear Todd,

Pursuant to section 15.247 of the FCC rules Inovonics transmitters are limited to 0.25 Watts maximum transmitted power. These devices contain integrated antennas and it is therefore impossible to measure the transmitted power in a conducted manner without significantly modifying the devices.

At the test lab the field strength is measured using an antenna located 3 meters from the device under test. The rules do not explicitly state the field strength at 3 meters corresponding to 0.25 Watts, so it must be calculated as follows:

The test facility measures the transmitted field strength, E, having units of Volts/meter, or the logarithmic equivalent. The transmitted power density as measured by the antenna is then $\frac{E^2}{\eta}$, where η is the intrinsic impedance of free space.

Assuming isotropic radiation from the product, the Effective Isotropic Radiated Power (EIRP) is found by multiplying the above power density by the area of a sphere having a radius of 3 meters,

$$P_{HRP} = \frac{E^2}{\eta} 4\pi R^2 \qquad (1)$$

Solving for E,

$$E = \frac{1}{2R} \left(\frac{\eta P_{ERP}}{\pi} \right)^{V_1}$$
(2)

Given that $P_{EIRP} = 0.25$ Watts (FCC limit), R = 3 meters, and $\eta = 377$ Ohms, E = 0.913 V/m = 119.2 dB µV/m.

Remember the above assumption of isotropic radiation- all real antennas have nonisotropic radiation patterns. Using the 119.2 dB µV/m limit guarantees that the total RF power transmitted by the device is below the 0.25 Watt limit.

Also, according the part 15.35 we are allowed a relaxation of the general radiation limits found in 15.209 while using a peak detector, as applied to the harmonics of the fundamental. Inovonics EchoStream security transmitters have a transmission pulse duration of 20 ms, which corresponds to a duty cycle of 0.2 per 15.35(c). This duty cycle allows for a 14 dB relaxation of the general radiation limits from 54 dB µV/m (500 µV/m, per 15.209(a)) to 68 dB µV/m for peak measurements.

Sincerely,

Steven Dunbar **RF Engineer**

Appendix C

Measurement Protocol

And

Test Procedures

MEASUREMENT PROTOCOL

GENERAL INFORMATION

Test Methodology

Conducted and radiated emission testing is performed according to the procedures in ANSI C63.4 & CNS13438.

Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into it's characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

CONDUCTED EMISSIONS

The final level, expressed in $dB\mu V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the applicable limit.

To convert between $dB\mu V$ and μV , the following conversions apply:

- dBμV = 20(log μV)
- $\mu V = Inverse \log(dB\mu V/20)$

RADIATED EMISSIONS

The final level, expressed in $dB\mu V/m$, is arrived at by taking the reading from the spectrum analyzer (Level $dB\mu V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has the applicable limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets in Attachment B. The amplifier gain is automatically accounted for by using an analyzer offset.

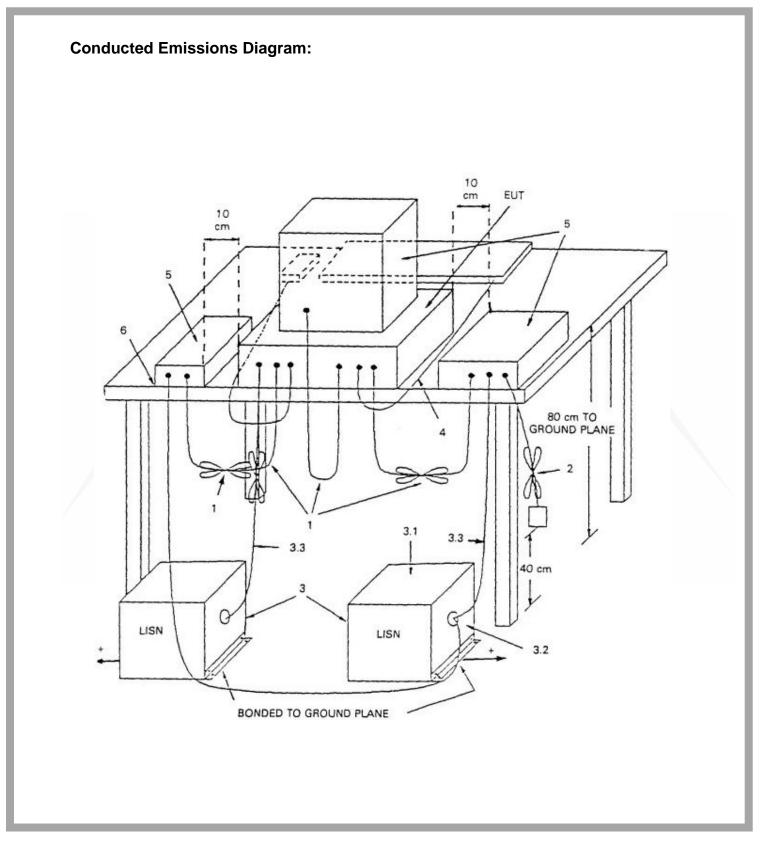
Example: At a Test Frequency of 30 MHz, with a peak reading on the spectrum analyzer or measuring receiver of 14 dB μ V:

Measured Level	+	Transducer & Cable Loss factor	=	Reading Limit		Corrected Reading	=	Delta Specification	
(dBµV)		(dB)		(dBµV/m)	(dBµV/m)		(dBµV/m)		
14.0		14.9		28.9	40.0		28.9		-11.1

DETAILS OF TEST PROCEDURES

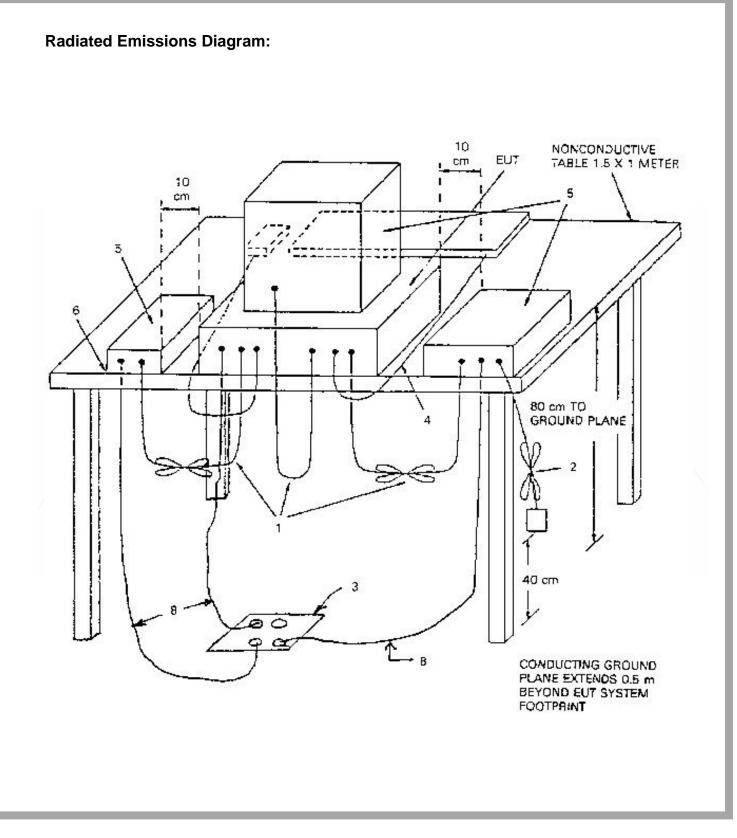
General Standard Information

The test methods used comply with ANSI C63.4-1992 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."


Conducted Emissions

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with $50 \Omega/50 \mu$ H (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. In some cases, a pre-scan using a spectrum analyzer is initially performed on the units comprising the system under test to locate the highest emissions. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver or spectrum analyzer with quasi-peak and average detection and recorded on the data sheets.

Radiated Emissions


Radiated emissions from the EUT are measured in the frequency range of 30 to 22GHz using a spectrum analyzer and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection and measurements above 1000 MHz are made with a 1 MHz/6 dB bandwidth and peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimeters above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna is positioned 3, 10 or 30 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are rotated 360 degrees.

5541 Central Avenue, Suite 110 Boulder, Colorado 80301 Project File: BC400296 Page 29 of 30 Voice: 303 786 7999 Fax: 303 449 6160

Rev.No 1