Test Report No.	BC500159-1	Issue Date:	Mon 14/Mar/2005
Model No.	DS200		
Product Type	Security Key Fob		
Client	Inovonics Wireless Corp.		
Manufacturer	Inovonics Wireless Corp.		
License holder	Inovonics Wireless Corp.		
Address	315 CTC Boulevard		
	Louisville, CO 80027		
Test Criteria Applied Test Result	FCC CFR47 Part 15.247	7	
Test Project Number References	BC500159-1	Title 47 CFR DEVICES	15: RADIO FREQUENCY
Total Pages Including Appendices:	35		
Michael Staton		phet Crassic	

INTERNATIONAL APPROVALS LABORATORIES (IAL) reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. IAL have no liability for any deductions, inferences or generalizations drawn by the client or others from IAL issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval of IAL. This report shall not be used by the client to claim product endorsement by NVLAP (No. 200624-0) or any agency of the US government.

> International Approval Laboratories and its professional staff hold government and professional organization certifications and are members of IEEE, NVLAP, and VCCI.

INL INTERNATIONAL APPROVALS LABORATORIES

DIRECTORY

Documentation	Page(s)
Test report	1 - 35
Directory	2
Test Regulations	3
General Remarks	4 - 5
Test-setup Photographs	6 - 9
Appendix A	
Test Data Sheets and Test Equipment Used	10 - 22
Appendix B	
Test Plan/Constructional Data Form	23 - 30
Appendix C	
Measurement Protocol/Test Procedures	31 - 35

STATEMENT OF MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The measurement uncertainty for Conducted Emissions in the frequency range of 150 kHz - 30 MHz is calculated to be $\pm 2.30 \text{dB}$ and for Radiated Emissions is calculated to be $\pm 3.60 \text{dB}$ in the frequency range of 30 MHz - 200 MHz and $\pm 3.38 \text{dB}$ in the frequency range of 200 MHz - 1000 MHz.

EUT Received Date: 24-Feb-2005

Testing Start Date: 24-Feb-2005

Testing End Date: 9-Mar-2005

The tests were performed according to following regulations:

- 1. FCC CFR47 Part 15.205
- 2. FCC CFR47 Part 15.207
- 3. FCC CFR47 Part 15.209
- 4. FCC CFR47 Part 15.247
- 5. ICES-003

Emission Test Results:

Conducted Emissions, Powerline (15.207)	- Not Applicable	•	_	
Test Result				
Minimum limit margin	NA dB	at	NA MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks:				
Radiated Emissions (15.209) - PASS				
Test Result				
Minimum limit margin	<u>-14.5</u> dB	at	1.03 MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks:				
Radiated Emissions (15.205)/(15.247)(c)	- PASS			
Test Result				
Minimum limit margin	-7.38 dB	at	2744.40 MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks:				
1 7777	ASS			
Test Result				
A AP - P - Pr - Pr - Pr - Pr - Pr - Pr -	-14.9 dB	at	914.80 MHz	
Minimum limit margin				
Maximum limit exceeding	dB	at	MHz	

GENERAL REMARKS:

The following remarks are to be considered as "where applicable" and are taken into account while completing any FCC/IC/ETSI radio tests at International Approvals Laboratories, LLC.

Testing was performed in 3 different orthogonal axis to determine the worst case emissions from the device. The worst case emissions measurements are shown in this report.

FCC CFR47 Part 15.31: Measurement Standards: In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was varied per Part 15.31 to find worst case emissions.

FCC CFR47 Part 15.35: Measurement Detector Functions and Bandwidths: FCC Part 15.35 was utilized when performing the measurements within this report.

In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was verified per Part 15.31 to find worst case emissions.

The actual test distance for the FCC Part 15.209 testing was conducted at 10m for the fact that the device was being tested to EN55022 Class B from 30 MHz to 1000 MHz (meets/exceeds the FCC Part 15.209 & 109B limits) The data is automatically extrapolated back to the FCC 3m limits and measurements are corrected to better show the compliance to FCC requirements and reduce confusion. A correction factor of 10.54dB is used in cases of 30MHz and up for a difference between 10m and 3m measurement distances. All measurements that are lesser than 30MHz where applicable are accompanied with the fall of measurements and calculations to support the interpolation.

Modifications required to pass:

Test Specification Deviations: Additions to or Exclusions from

This test report is in-part, International Approvals Laboratories, LLC was asked to test only the field strength of the fundamental and harmonics as well as the unintentional radiated and conducted emissions when applicable.

Fax: 303 449 6160

Required Information In Accordance to FCC CFR 47 Part 2.1033:

Rule Part 11, 15 & 18 Devices	Other Rule Part Devices	Description	Comments
2.1033(b)(1)	2.1033(c)(1)	Manu. Contact	See Page 1 of this report
2.1033(b)(2)	2.1033(c)(2)	FCC Identifier	
2.1033(b)(3)	2.1033(c)(3)	Users Manual to include Operating, installation	Attached as Exhibit
	2.1033(c)(4)	Emissions Designator per 2.	
	2.1033(c)(5)	Frequency Range	Not Applicable to Part 15 Devcies
	2.1033(c)(6)	Power range and controls	Not Applicable to Part 15 Devcies
	2.1033(c)(7)	Maximum power ouput rating	Not Applicable to Part 15 Devcies
	2.1033(c)(8)	DC Voltage and Current suplying final RF stages	Not Applicable to Part 15 Devcies
2.1033(b)(3)	2.1033(c)(9)	Tune –up procedure	Please refer to the users manual for applicability
2.1033(b)(4&5)	2.1033(c)(10)	Complete Circuit Diagrams and circuit operation description	Attached as Exhibit
2.1033(b)(7)	2.1033(c)(11)	Photographs/drawings of the identification label & its location on the device	Attached as Exhibit
2.1033(b)(7)	2.1033(c)(12)	Photographs of the external and internal surfaces, and construction	Attached as Exhibit
	2.1033(c)(13)	Digital Modulation	Not Applicable
2.1033(b)(6)	2.1033(c)(14)	Report of Measurement Data Required by 2.1046 – 2.1057	See Data Below (This report consists of the testing required under Part 15.231)
2.1033(b)(8)		Description of publicly available support equipment used during test	Refer to Exhibit B of this report (Client Test Plan)
2.1033(b)(9)		Statement of Autorization to Part 15.37 of CFR47	The equipment herein is being authorized in accordance to 15.37 of the CFR47 Rules.
2.1033(b)(10)		Direct Sequence Spread Spectrum Devices (DSSS)	Exhibit of compliance to 15.247(e)
2.1033(b)(10)		Frequency Hopping Devices	Exhibit of compliance to 15.247(a)(1)
2.1033(b)(11)		Scanning receiver construction	Exhibit stating compliance to construction in accordance to 15.121.
15.31	15.31	Transmitter Supply Voltage	Testing herein was completed in accordance to FCC CFR47 Part 15.31

Exhibits Including (where applicable):

1.	Users	Manual

- 2. Operation Description
- 3. Block Diagram
- 4. Report of Measurement
- 5. External & Internal Photographs
- 6. Schematic

- Parts List
- 8. Tuning Procedure (if applicable)
- 9. Test Setup Photograph
- 10. Label Drawings and or Photograpghs
- 11. Description of Support Equipment (where Applicable)

Required Information in Accordance to Industry Canada Regulations (In addition to the above):

Information Required	Description	Comments
Modulation Type	(i.e. ASK, NON, FSK, DSSS, FHSS, etc.)	
Emissions Designator	Per TRC-49	
In Country Representative	Contact Information	
99% Bandwidth Measurement	Per RSS-210	

Project File: BC500159 Page 5 of 35

Fax: 303 449 6160

Test-setup photo(s): Radiated Unintentional Emissions

Fax: 303 449 6160

Test-setup photo(s): Radiated Unintentional Emissions

Fax: 303 449 6160

Test-setup photo(s): Radiated Intentional Emissions

Fax: 303 449 6160

Test-setup photo(s): Radiated Intentional Emissions

Fax: 303 449 6160

Appendix A	
Test Data Sheets and Test Equipment Used	

Test Report #:	Inovonics Run 2	Test Area:	Pinewood Site 1 (3m)	Temperature:	26.1	°C
Test Method:	FCC Part 15.209	Test Date:	24-Feb-2005	Relative Humidity:	84	%
EUT Model #:	DS200	EUT Power:	Battery Power 3VDC	Air Pressure:	<26	kPa
EUT Serial #:				Page: 1 of 6		
Manufacturer:	Inovonics			Leve	el Key	
EUT Description:	Security Key Fob			Pk – Peak	Nb – N	arrow Band
Notes:				Qp – QuasiPeak	Bb – B	road Band
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
0 degrees						
90 degrees						
180 degrees						
270 degrees						
No emissions	were detecte	d with 20dB of the limit				
The following	emissions are	e noise floor points				
30.00	23.8 Qp	0.5 / 12.9 / 28.4	8.8	H / 2.0 / 0.0	-31.2	N/A
60.57	28.7 Qp	0.7 / 8.4 / 28.3	9.4	H / 2.0 / 0.0	-30.6	N/A
110.00	23.0 Qp	1.1 / 10.7 / 28.2	6.7	H / 2.0 / 0.0	-36.8	N/A
140.00	19.4 Qp	1.3 / 11.9 / 28.0	4.6	H / 2.0 / 0.0	-38.9	N/A
160.00	22.9 Qp	1.4 / 11.9 / 27.9	8.3	H / 2.0 / 0.0	-35.2	N/A
190.00	19.3 Qp	1.4 / 12.8 / 27.7	5.9	H / 2.0 / 0.0	-37.6	N/A
Changing to v	/ertical					
90 degrees						
180 degrees						
No emissions	were detecte	d with in 20dB of the limit				
The following	emissions are	e noise floor points				
30.00	28.8 Qp	0.5 / 12.9 / 28.4	13.8	V / 1.0 / 0.0	-26.2	N/A
60.57	30.7 Qp	0.7 / 8.4 / 28.3	11.5	V / 1.0 / 0.0	-28.5	N/A
110.00	25.0 Qp	1.1 / 10.7 / 28.2	8.7	V / 1.0 / 0.0	-34.8	N/A
140.00	21.5 Qp	1.3 / 11.9 / 28.0	6.7	V / 1.0 / 0.0	-36.8	N/A
160.00	22.2 Qp	1.4 / 11.9 / 27.9	7.6	V / 1.0 / 0.0	-35.9	N/A
190.00	22.2 Qp	1.4 / 12.8 / 27.7	8.8	V / 1.0 / 0.0	-34.7	N/A
0 danaa						
0 degrees						
90 degrees						

Project File: BC500159 Page 12 of 35

Voice: 303 786 7999 Fax: 303 449 6160

Test Report #:	Inovonics Run 2	Test Area:	Pinewood Site 1 (3m)	Temperature:	26.1	°C
Test Method:	FCC Part 15.209	Test Date:	24-Feb-2005	Relative Humidity:	84	%
EUT Model #:	DS200	EUT Power:	Battery Power 3VDC	Air Pressure:	<26	kPa
EUT Serial #:				Page: 2 of 6		
Manufacturer:	Inovonics			Leve	el Key	
EUT Description:	Security Key Fob			Pk – Peak	Nb – N	arrow Band
Notes:				Qp – QuasiPeak	Bb – B	road Band
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
, ,	, ,	, , , , , ,	(ubuv/iii)	(III) (DLG)	1 CC Fait 15.209 Qp	1 CC Fait 15.209 AV
		e noise floor points			20.0	
200.00	19.7 Qp	1.5 / 10.9 / 27.6	4.5	H / 2.0 / 0.0	-39.0	N/A
330.00	18.3 Qp	2.0 / 13.9 / 27.3	6.9	H / 2.0 / 0.0	-39.1	N/A
440.00	19.0 Qp	2.4 / 15.7 / 28.3	8.8	H / 2.0 / 0.0	-37.2	N/A
660.00	19.3 Qp	3.0 / 19.9 / 28.5	13.7	H / 2.0 / 0.0	-32.3	N/A
889.12	18.7 Qp	3.5 / 22.3 / 28.1	16.4	H / 2.0 / 0.0	-29.6	N/A
990.00	18.5 Qp	3.7 / 22.9 / 27.6	17.5	H / 2.0 / 0.0	-36.5	N/A
0 degrees						
90 degrees						
180 degrees						
270 degrees						
No emissions	detected with	in 20dB of limit				
The following	emissions are	noise floor points				
200.00	20.9 Qp	1.5 / 10.9 / 27.6	5.7	V / 1.0 / 0.0	-37.8	N/A
330.00	18.8 Qp	2.0 / 13.9 / 27.3	7.4	V / 1.0 / 0.0	-38.6	N/A
440.00	19.0 Qp	2.4 / 15.7 / 28.3	8.7	V / 1.0 / 0.0	-37.3	N/A
660.00	19.3 Qp	3.0 / 19.9 / 28.5	13.7	V / 1.0 / 0.0	-32.3	N/A
889.12	18.7 Qp	3.5 / 22.3 / 28.1	16.4	V / 1.0 / 0.0	-29.6	N/A
990.00	18.6 Qp	3.7 / 22.9 / 27.6	17.5	V / 1.0 / 0.0	-36.5	N/A
No significant	emissions de	tected between 1-4GHz				
The following	readings are i	noise floor points				
1500.00	33.6 Av	2.9 / 25.1 / 37.0	24.7	V / 1.0 / 0.0	N/A	-49.3
2600.00	34.4 Av	4.1 / 28.9 / 37.7	29.7	V / 1.0 / 0.0	N/A	-44.3
3500.00	34.6 Av	4.8 / 31.5 / 37.8	33.1	V / 1.0 / 0.0	N/A	-40.9
Changing to I	Horizontal				<u></u>	
No significant	emissions de	tected with in 20dB of the limi	t			
Between 1-4	GHz					
The following	readings are i	noise floor points				
1500.00	33.9 Av	2.9 / 25.1 / 37.0	25.0	H / 2.0 / 0.0	N/A	-49.0
		!				

Project File: BC500159 Page 13 of 35

Fax: 303 449 6160

Voice: 303 786 7999

Test Report #:	Inovonics Run 2	Test Area:	Pinewood Site 1 (3m)	Temperature:	26.1	°C
Test Method:	FCC Part 15.209	Test Date:	24-Feb-2005	Relative Humidity:	84	%
EUT Model #:	DS200	EUT Power:	Battery Power 3VDC	Air Pressure:	<26	kPa
EUT Serial #:				Page: 3 of 6		
Manufacturer:	Inovonics			Leve	el Key	
EUT Description:	Security Key Fob			Pk – Peak	Nb – N	arrow Band
Notes:				Qp – QuasiPeak	Bb – B	road Band
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
2600.00	34.2 Av	4.1 / 28.9 / 37.7	29.5	H / 2.0 / 0.0	N/A	-44.5
3500.00	34.6 Av	4.8 / 31.5 / 37.8	33.1	H / 2.0 / 0.0	N/A	-40.9
	U.	1			1	
There were n	no significant er	missions detected between 4-	8GHz			
The following	readings are i	noise floor points				
4500.00	32.6 Av	6.6 / 32.3 / 39.6	31.9	H / 2.0 / 0.0	N/A	-42.1
5500.00	31.7 Av	6.7 / 34.3 / 38.7	34.0	H / 2.0 / 0.0	N/A	-40.0
7500.00	30.4 Av	8.2 / 36.8 / 39.6	35.8	H / 2.0 / 0.0	N/A	-38.2
There were n	no significant er	mission detected between 4-8	GHz			
The follwing	readings are no	oise floor points				
4500.00	33.0 Av	6.6 / 32.3 / 39.6	32.3	V / 1.0 / 0.0	N/A	-41.7
5500.00	32.1 Av	6.7 / 34.3 / 38.7	34.4	V / 1.0 / 0.0	N/A	-39.6
7500.00	30.7 Av	8.2 / 36.8 / 39.6	36.1	V / 1.0 / 0.0	N/A	-37.9
There were n	no significant er	missions detected between 8-	10GHz			
The following	readings are i	noise floor points				
9250.00	40.2 Av	8.9 / 37.6 / 47.3	39.5	V / 1.0 / 0.0	N/A	-34.5
8200.00	39.5 Av	8.4 / 37.0 / 45.3	39.6	V / 1.0 / 0.0	N/A	-34.4
9600.00	42.2 Av	9.4 / 38.0 / 47.9	41.7	V / 1.0 / 0.0	N/A	-32.3
There were n	no significant er	missions detected between 8-	10GHz			
The following	readings are i	noise floor points				
8200.00	39.6 Av	8.4 / 37.0 / 45.3	39.7	H / 2.0 / 0.0	N/A	-34.3
9250.00	40.1 Av	8.9 / 37.6 / 47.3	39.4	H / 2.0 / 0.0	N/A	-34.6
9600.00	42.1 Av	9.4 / 38.0 / 47.9	41.7	H / 2.0 / 0.0	N/A	-32.3
0,90,180,270	degrees					
There were n	no significant er	missions detected between 32	2kHz-30MHz			
The following	readings are i	noise floor points				
0.0400	47.8 Qp	0.0 / 11.5 / 0.0	59.3	H / 1.0 / 0.0	N/A	N/A
1.03	22.5 Qp	0.1 / 10.3 / 0.0	32.9	H / 1.0 / 0.0	-14.5	N/A
2.00	16.0 Qp	0.1 / 10.2 / 0.0	26.3	H / 1.0 / 0.0	-23.7	N/A
0.0320	44.6 Qp	0.0 / 11.9 / 0.0	56.5	H / 1.0 / 0.0	N/A	N/A

Project File: BC500159 Page 14 of 35

Voice: 303 786 7999 Fax: 303 449 6160

Test Report #:	Inovonics Run 2	Test Area:	Pinewood Site 1 (3m)	Temperature:	26.1	°C
Test Method:	FCC Part 15.209	Test Date:	24-Feb-2005	Relative Humidity:	84	%
EUT Model #:	DS200	EUT Power:	Battery Power 3VDC	Air Pressure:	<26	kPa
EUT Serial #:				Page: 4 of 6		
Manufacturer:	Inovonics			Leve	el Key	
EUT Description:	Security Key Fob			Pk – Peak	Nb – N	arrow Band
Notes:				Qp – QuasiPeak	Bb – Bı	road Band
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
5.20	7.7 Qp	0.2 / 10.0 / 0.0	17.9	H / 1.0 / 0.0	-32.1	N/A
12.39	4.2 Qp	0.3 / 10.3 / 0.0	14.8	H / 1.0 / 0.0	-35.2	N/A
24.00	1.4 Qp	0.5 / 9.4 / 0.0	11.3	H / 1.0 / 0.0	-38.7	N/A
29.00	2.9 Qp	0.5 / 8.4 / 0.0	11.8	H / 1.0 / 0.0	-38.2	N/A

Test Report #:	Inovonics Run 2	Test Area:	Pinewood Site 1 (3m)	Temperature:	26.1	°C
Test Method:	FCC Part 15.209	Test Date:	24-Feb-2005	Relative Humidity:	84	%
EUT Model #:	DS200	EUT Power:	Battery Power 3VDC	Air Pressure:	<26	kPa
EUT Serial #:				Page: 5 of 6		_
Manufacturer:	Inovonics			Lev	el Key	
EUT Description:	Security Key Fob			Pk – Peak	Nb – N	arrow Band
Notes:				Qp – QuasiPeak	Bb – B	road Band
				Av - Average		
				Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV/m)	(m) (DEG)	FCC Part 15.209 Qp	FCC Part 15.209 Av
		****** M	easurem	ent Summar	у *****	
1.03	22.5 Qp	0.1 / 10.3 / 0.0	32.9	H / 1.0 / 0.0	-14.5	N/A
2.00	16.0 Qp	0.1 / 10.2 / 0.0	26.3	H / 1.0 / 0.0	-23.7	N/A
30.00	28.8 Qp	0.5 / 12.9 / 28.4	13.8	V / 1.0 / 0.0	-26.2	N/A
60.57	30.7 Qp	0.7 / 8.4 / 28.3	11.5	V / 1.0 / 0.0	-28.5	N/A
889.12	18.7 Qp	3.5 / 22.3 / 28.1	16.4	V / 1.0 / 0.0	-29.6	N/A
5.20	7.7 Qp	0.2 / 10.0 / 0.0	17.9	H / 1.0 / 0.0	-32.1	N/A
660.00	19.3 Qp	3.0 / 19.9 / 28.5	13.7	V / 1.0 / 0.0	-32.3	N/A
9600.00	42.1 Av	9.4 / 38.0 / 47.9	41.7	H / 2.0 / 0.0	N/A	-32.3
8200.00	39.6 Av	8.4 / 37.0 / 45.3	39.7	H / 2.0 / 0.0	N/A	-34.3
9250.00	40.2 Av	8.9 / 37.6 / 47.3	39.5	V / 1.0 / 0.0	N/A	-34.5
190.00	22.2 Qp	1.4 / 12.8 / 27.7	8.8	V / 1.0 / 0.0	-34.7	N/A
110.00	25.0 Qp	1.1 / 10.7 / 28.2	8.7	V / 1.0 / 0.0	-34.8	N/A
12.39	4.2 Qp	0.3 / 10.3 / 0.0	14.8	H / 1.0 / 0.0	-35.2	N/A
160.00	22.9 Qp	1.4 / 11.9 / 27.9	8.3	H / 2.0 / 0.0	-35.2	N/A
990.00	18.6 Qp	3.7 / 22.9 / 27.6	17.5	V / 1.0 / 0.0	-36.5	N/A
140.00	21.5 Qp	1.3 / 11.9 / 28.0	6.7	V / 1.0 / 0.0	-36.8	N/A
440.00	19.0 Qp	2.4 / 15.7 / 28.3	8.8	H / 2.0 / 0.0	-37.2	N/A
200.00	20.9 Qp	1.5 / 10.9 / 27.6	5.7	V / 1.0 / 0.0	-37.8	N/A
7500.00	30.7 Av	8.2 / 36.8 / 39.6	36.1	V / 1.0 / 0.0	N/A	-37.9
29.00	2.9 Qp	0.5 / 8.4 / 0.0	11.8	H / 1.0 / 0.0	-38.2	N/A
330.00	18.8 Qp	2.0 / 13.9 / 27.3	7.4	V / 1.0 / 0.0	-38.6	N/A
24.00	1.4 Qp	0.5 / 9.4 / 0.0	11.3	H / 1.0 / 0.0	-38.7	N/A
5500.00	32.1 Av	6.7 / 34.3 / 38.7	34.4	V / 1.0 / 0.0	N/A	-39.6
3500.00	34.6 Av	4.8 / 31.5 / 37.8	33.1	H / 2.0 / 0.0	N/A	-40.9
4500.00	33.0 Av	6.6 / 32.3 / 39.6	32.3	V / 1.0 / 0.0	N/A	-41.7
2600.00	34.4 Av	4.1 / 28.9 / 37.7	29.7	V / 1.0 / 0.0	N/A	-44.3
0.0320	44.6 Qp	0.0 / 11.9 / 0.0	56.5	H / 1.0 / 0.0	N/A	N/A
0.0400	47.8 Qp	0.0 / 11.5 / 0.0	59.3	H / 1.0 / 0.0	N/A	N/A
1500.00	34.5 Av	2.9 / 25.1 / 37.0	25.5	V / 1.0 / 0.0	N/A	N/A

Voice: 303 786 7999 Fax: 303 449 6160

Test Report #:	BC500159	Test Area:	Pinewood Site 1 (3m)	Temperature:	22.6	°C
Test Method:	FCC CFR47 Part 15.247/205	Test Date:	24-Feb-2005	Relative Humidity:	39	%
EUT Model #:	DS200	EUT Power:	Battery Power 3 VDC	Air Pressure:	80	kPa
EUT Serial #:		_		Page:		
Manufacturer:	Inovonics Wireless Corp.			Lev	el Key	
EUT Description:	Security Key Fob			Pk – Peak	Nb – Na	arrow Band
Notes:				Qp – QuasiPeak	Bb – Br	oad Band
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

Fundamentals of the EUT

EUT is flat on the table

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated.

the D	TCF is calcula	ated as follows 20*log ₁	o(duty cycle	in 100mS) "not to exc	ceed 20dB"			
Part 15.247	7 and 15.205	Respectively						
EUT is flat	on the table							
Low chann	el							
902.40	73.9 Pk	3.6 / 22.4 / 0.0	99.9	V / 1.3 / 181.0	0	<mark>99.9</mark>	<mark>119</mark>	-19.1
902.40	77.1 Pk	3.6 / 22.4 / 0.0	<mark>103.1</mark>	H / 1.0 /309.4	0	103.1	<mark>119</mark>	<mark>-15.9</mark>
Mid Chan	nel							
914.80	73.1 Pk	3.6 / 22.5 / 0.0	<mark>99.2</mark>	V / 1.2 / 174.0	0	<mark>99.2</mark>	<mark>119</mark>	<mark>-19.8</mark>
914.80	76.3 Pk	3.6 / 22.5 / 0.0	<mark>102.5</mark>	H / 1.0 / 313.7	0	<mark>102.5</mark>	<mark>119</mark>	<mark>-16.5</mark>
High Chani	nel							•
927.60	72.3 Pk	3.6 / 22.6 / 0.0	<mark>98.5</mark>	V / 1.3 / 208.6	0	<mark>98.5</mark>	<mark>119</mark>	<mark>-20.5</mark>
<mark>927.45</mark>	75.6 Pk	3.6 / 22.6 / 0.0	<mark>101.8</mark>	H / 1.0 / 310.4	0	<mark>101.8</mark>	<mark>119</mark>	<mark>-17.2</mark>
EUT vertica	al on table.							
Low Chan	nnel							
<mark>902.40</mark>	75.0 Pk	3.6 / 22.4 / 0.0	<mark>101.0</mark>	H / 1.5 / 198.5	<mark>0</mark>	<mark>101.0</mark>	<mark>119</mark>	<mark>-18</mark>
902.26	91.5 Pk	3.6 / 22.4 / 0.0	<mark>101.0</mark>	V / 1.1 / 127.2	0	<mark>101.0</mark>	<mark>119</mark>	<mark>-18</mark>
Mid Chan	nel							
914.80	78.0 Pk	3.6 / 22.5 / 0.0	104.1	V / 1.0 / 149.7	0	<mark>104.1</mark>	<mark>119</mark>	<mark>-14.9</mark>
<mark>914.80</mark>	74.5 Pk	3.6 / 22.5 / 0.0	<mark>100.6</mark>	H / 1.0 / 41.8	0	<mark>100.6</mark>	<mark>119</mark>	<mark>-18.4</mark>
High Char	nnel	•						
927.60	74.4 Pk	3.6 / 22.6 / 0.0	<mark>100.7</mark>	H / 1.0 / 44.9	0	100.7	<mark>119</mark>	<mark>-18.3</mark>
<mark>927.60</mark>	77.7 Pk	3.6 / 22.6 / 0.0	<mark>103.9</mark>	V / 1.1 / 147.4	0	<mark>103.9</mark>	<mark>119</mark>	<mark>-15.1</mark>

Project File: BC500159 Page 18 of 35

Fax: 303 449 6160

Voice: 303 786 7999

Test Re	port #:	BC500159		Test Area:	Pinewoo	d Site 1 (3m)	Tempera	ature: 22.6	°C
Test M	ethod:	FCC CFR47 Part 15.247/2	05	Test Date:	24-Feb-2	2005	Relative Hum	nidity: 39	%
EUT Mo	odel #:	DS200		JT Power:	Battery F	Power 3 VDC	- Air Pres	sure: 80	kPa
EUT Se	erial #:						- Page:		
Manufa	cturer:	Inovonics Wireless Corp.					·	Level Key	
EUT Descr	intion.	Security Key Fob					Pk – Peak		- Narrow Band
							-		- Broad Band
Notes:							Qp – QuasiPe -	eak bu-	- Broad Barid
							Av - Average		
	ı			<u> </u>			1	1	1
FREQ	LEVI	EL CABLE / ANT / PREAMP	FINAL	POL / H	GT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBu	V) (dB) (dB\m) (dB)	(dBuV)	(m)	(DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
The following	ng duty	cycle was declared by the m	anufacture	r.			<u> </u>		
Duty Cycle	= active	e / 100ms. = 20%							
Averaging emissions		d for pulsed signals and ca	alculation i	n accorda	nce to FC	C CFR47 Part 15.3	5 utilized to calcu	late field stre	ength
		ned in accordance to FCC C	FR47 Part	15.205 (res	tricted ban	ds of operation) an	d 15.247 emissions	and delta lin	nits were
calculated a									
		ak Measurement – Duty Cyc ed Emission was then compa					and the emission/li	mit dalta waa	aalaulatad
		calculated as follows 20*log ₁					and the emissionin	iiii ueila was	calculateu.
Part 15.247	and 15	5.205 Respectively							
90 degree a									
Low Chan									
<mark>902.40</mark>	<mark>76.5</mark>		<mark>102.5</mark>	V / 1.1 /		0	<mark>102.5</mark>	<mark>119</mark>	
<mark>902.40</mark>	<mark>74.8</mark>	Pk 3.6 / 22.4 / 0.0	<mark>100.8</mark>	H / 1.0	<mark>/ 217.1</mark>	<u>0</u>	<mark>100.8</mark>	<mark>119</mark>	<mark>-18.2</mark>
Mid Chani									
914.80	73.2		99.3	H / 1.0		0	99.3	119	
914.80	77.1	Pk 3.6 / 22.5 / 0.0	<mark>103.3</mark>	V / 1.1	<mark>/ 131.1</mark>	<mark>0</mark>	103.3	<mark>119</mark>	<mark>-15.7</mark>
High Char		0.0.400.0.40.0	100.0		/ 400 O		400.0	110	10
927.60	76.8		103.0	V / 1.1		0	103.0	119	
927.60	73.6		<mark>99.9</mark>	H / 1.0	100.8	0	99.9	<mark>119</mark>	<mark>-19.1</mark>
		is vertical on table. ow Channel							
2-4 Ham 1804.80	65.0		00.0	N//40	/ 400 O	-13.98	46.32	1 00	E0 60
		0.17 20.07 01.0	60.3	V / 1.2				99	
2702.20 3609.60	61.6 52.4	1.2720.2701.0	58.1	V / 1.2		-13.98 -13.98	44.12 38.42	54 54	
3609.60	51.5	0.07 01.07 00.0	<u>52.4</u>	V / 1.2		-13.98	37.52	54	
2702.20	60.1		51.5	H / 1.8		-13.98	42.72	54	
1804.8	66.2	20:2: 0::0	56.7	H / 1.9		-13.98	47.52	99	
4512.00	48.5	0.17 20.07 01.0	61.5 47.8	H / 1.2 H / 1.8		-13.98	33.82	54	
5414.40	44.5	0.0702.0700.0	47.3	H / 1.7		-13.98	33.32	54	
6316.80	31.6	0.0704.2700.0	35.8	H / 1.1		-13.98	41.32	99	

Project File: BC500159 Page 19 of 35

Fax: 303 449 6160

-58.28

<mark>40.72</mark>

Voice: 303 786 7999

-13.98

5541 Central Avenue, Suite 110 Boulder, Colorado 80301

H / 1.5 / 64.0

8.1 / 36.1 / 40.7

45.5 Pk

7219.20

Test Rep	port #:	BC	500159		Test Area:	Pinewoo	d Site 1 (3m)	Tempera	ature: 22.6	°C
Test M	ethod:	FC	C CFR47 Part 15.247/2	205	Test Date: 24-Feb-2005		Relative Hum	nidity: 39	%	
EUT Mo	odel #:	DS2	200		EUT Power: Battery Power 3 VDC		- Air Pres	sure: 80	kPa	
EUT Se	erial #:							Page:		
Manufa	cturer:	Inov	vonics Wireless Corp.						Level Key	
EUT Descr	iption:	Sec	curity Key Fob					Pk – Peak	Nb –	Narrow Band
Notes:								Qp – QuasiPo	eak Bb –	Broad Band
								- Average		
FREQ	LEVI	ΞL	CABLE / ANT / PREAMP	FINAL	. POL / H	GT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBu	V)	(dB) (dB\m) (dB)	(dBuV) (m)	(DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)
The following	ng duty	cycle	was declared by the m	nanufactu	ırer.					
Duty Cycle	= active	e / 10	0ms. = 20%							
Averaging emissions		d for	pulsed signals and c	alculatio	n in accordai	nce to FC	C CFR47 Part 15.3	5 utilized to calcu	late field stre	ngth
calculated a Final Corre	as follov cted Pe	vs: ak M	n accordance to FCC C easurement – Duty Cyonission was then compa	cle Corre	ction Factor* =	= Final Cal	culated Emission			
			lated as follows 20*log	10(duty cy	cle in 100mS)	"not to ex	ceed 20dB"			
			Respectively	1				1 0-00		
7219.20 6316.80	45.5 44.3		8.1 / 36.1 / 40.7	49.0	V / 1.6		-13.98 -13.98	35.02 34.42	99	-63.98
5414.40	45.0	_	8.2 / 34.8 / 38.9	48.4	V / 1.4		-13.98	33.82	99 54	-64.58 -20.18
4512.00	49.7		6.9 / 34.2 / 38.3 6.6 / 32.3 / 39.6	47.8 49.1	V / 1.1 / V / 1.3 /		-13.98	38.82	54	-15.18
8121.60	53.3		8.3 / 37.0 / 45.4	53.2	V / 1.0 /		-13.98	39.22	54	-14.78
9024.00	42.1		8.5 / 37.4 / 46.8	41.3	V / 1.0		-13.98	27.32	54	-26.68
9024.00	41.5		8.5 / 37.4 / 46.8	40.6	H / 2.0		-13.98	39.22	54	-14.78
8121.00	45.0	Pk	8.3 / 37.0 / 45.4	44.9	H / 2.0		-13.98	30.92	54	-23.08
Mid Chani	nel								_	
1829.60	63.3	Pk	3.1 / 26.6 / 35.0	<mark>58.0</mark>	H / 1.8	<mark>/ 196.0</mark>	<mark>-13.98</mark>	44.02	99	<mark>-54.98</mark>
2744.40	63.3	Pk	4.3 / 29.4 / 37.0	60.0	H / 1.7	/ 158.7	<mark>-13.98</mark>	46.02	<mark>54</mark>	-7 .98
3659.20	50.9	Pk	5.1 / 31.9 / 36.8	51.2	H / 1.6	/ 343.8	-13.98	37.22	54	- 16.78
3659.20	52.1		5.1 / 31.9 / 36.8	52.3	V / 1.0		-13.98	38.32	<mark>54</mark>	-15.68
2744.40	63.9		4.3 / 29.4 / 37.0	60.6	V / 1.1	/ 153.9	-13.98	46.62	54	-7.38
<u>1829.60</u>	61.8		<u>3.1 / 26.6 / 35.0</u>	<mark>56.5</mark>	V / 1.1		<mark>-13.98</mark>	42.52	99	<mark>-56.48</mark>
4574.00	48.1		6.7 / 32.5 / 39.4	48.0	V / 1.0		-13.98	34.02	54	-19.98
5488.80	46.5		6.7 / 34.3 / 38.6	48.9	V / 1.0		-13.98	34.92 35.73	99	-64.08
6403.60	45.5		8.3 / 34.9 / 39.0	49.7	V / 1.1		-13.98	35.72 34.92	99 54	-63.28
7318.40	44.9		8.2 / 36.4 / 40.5	48.9	V / 1.6		-13.98 -13.98	33.42	54 54	-19.08
7318.40	43.4		8.2 / 36.4 / 40.5	47.4	H / 1.6		-13.98 -13.98	35.42 35.22	54 99	-20.58 -63.78
6403.60 5400.00	45.0		8.3 / 34.9 / 39.0	49.2	H / 1.7		-13.98	34.92	99	-64.08
5488.80 4574.00	46.6		6.7 / 34.3 / 38.6 6.7 / 32.5 / 39.4	48.9	H / 1.5		-13.98	30.72	54	-04.06 -23.28

Project File: BC500159 Page 20 of 35

Voice: 303 786 7999 Fax: 303 449 6160

Test Report #:	BC500159	Test Area:	Pinewood Site 1 (3m)	Temperature:	22.6	°C
Test Method:	FCC CFR47 Part 15.247/205	Test Date:	24-Feb-2005	Relative Humidity:	39	%
EUT Model #:	DS200	EUT Power:	Battery Power 3 VDC	Air Pressure:	80	kPa
EUT Serial #:		_		Page:		
Manufacturer:	Inovonics Wireless Corp.			Leve	el Key	
EUT Description:	Security Key Fob			Pk – Peak	Nb – N	arrow Band
Notes:				Qp – QuasiPeak	Bb – B	road Band
-				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

Duty Cycle = active / 100ms. = 20%

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated. The DTCF is calculated as follows $20*log_{10}(duty\ cycle\ in\ 100mS)$ "not to exceed 20dB"

			, , ,	,				
Part 15.247	and 15.205	Respectively					-	
8233.20	41.4 Pk	8.4 / 37.0 / 45.3	41.5	H / 2.0 / 360.0	- 13.98	<mark>27.52</mark>	<mark>54</mark>	-26.48
9148.00	39.0 Pk	8.8 / 37.5 / 47.1	38.2	H / 2.0 / 0.0	-13.98	<mark>24.22</mark>	<mark>54</mark>	-29.78
9148.00	39.9 Pk	8.8 / 37.5 / 47.1	39.2	V / 1.0 / 360.0	- 13.98	<mark>25.22</mark>	<mark>54</mark>	-28.78
8233.20	52.3 Pk	8.4 / 37.0 / 45.3	52.4	V / 1.0 / 207.6	-13.98	<mark>38.42</mark>	<mark>54</mark>	-15.58
High Char	nnel			_				
1855.20	59.4 Pk	3.1 / 26.7 / 35.1	<mark>54.2</mark>	V / 1.0 / 53.0	<mark>-13.98</mark>	<mark>40.22</mark>	<mark>99</mark>	<mark>-58.78</mark>
2782.80	60.7 Pk	4.3 / 29.5 / 36.9	57.6	V / 1.6 / 27.9	-13.98	43.62	<mark>54</mark>	-10.38
3710.40	46.8 Pk	5.2 / 32.0 / 36.7	47.3	V / 1.2 / 342.8	-13.98	33.32	54	-20.68
3710.40	46.5 Pk	5.2 / 32.0 / 36.7	46.9	H / 1.0 / 213.0	-13.98	32.92	<mark>54</mark>	-21.08
2782.80	60.6 Pk	4.3 / 29.5 / 36.9	57.5	H / 1.0 / 194.2	-13.98	43.52	<mark>54</mark>	-10.48
1855.20	56.8 Pk	3.1 / 26.7 / 35.1	<mark>51.6</mark>	H / 1.6 / 230.0	<mark>-13.98</mark>	<mark>37.62</mark>	<mark>99</mark>	<mark>-61.38</mark>
4638.00	45.6 Pk	6.9 / 32.6 / 39.2	46.0	H / 1.7 / 360.0	-13.98	<mark>32.02</mark>	<mark>54</mark>	-21.98
5565.60	44.5 Pk	6.8 / 34.4 / 38.4	<mark>47.3</mark>	H / 1.4 / 61.5	<mark>-13.98</mark>	<mark>33.32</mark>	<mark>99</mark>	<mark>-65.68</mark>
6493.20	34.5 Pk	8.5 / 34.9 / 39.1	<mark>38.8</mark>	H / 1.0 / 24.4	<mark>-13.98</mark>	<mark>24.82</mark>	<mark>99</mark>	<mark>-74.18</mark>
7420.80	33.6 Pk	8.2 / 36.6 / 40.0	38.4	H / 1.0 / 179.0	-13.98	24.42	<mark>54</mark>	-29.58
7420.80	30.8 Pk	8.2 / 36.6 / 40.0	35.6	V / 1.0 / 280.0	<mark>-13.98</mark>	21.62	<mark>54</mark>	-32.38
6493.20	34.4 Pk	8.5 / 34.9 / 39.1	<mark>38.7</mark>	V / 1.0 / 0.0	<mark>-13.98</mark>	<mark>24.72</mark>	<mark>99</mark>	<mark>-74.28</mark>
5565.60	35.4 Pk	6.8 / 34.4 / 38.4	38.2	V / 1.0 / 0.0	<mark>-13.98</mark>	<mark>24.22</mark>	<mark>99</mark>	<mark>-74.78</mark>
4637.85	45.0 Pk	6.9 / 32.6 / 39.2	45.4	V / 1.9 / 230.8	-13.98	31.42	<mark>54</mark>	-22.58
8348.40	40.8 Pk	8.4 / 37.1 / 45.2	41.2	V / 1.0 / 0.0	-13.98	27.22	<mark>54</mark>	-26.78
9276.00	41.8 Pk	9.0 / 37.7 / 47.4	<mark>41.1</mark>	V / 1.0 / 360.0	<mark>-13.98</mark>	<mark>27.12</mark>	<mark>99</mark>	<mark>-71.88</mark>
9276.00	40.3 Pk	9.0 / 37.7 / 47.4	<mark>39.6</mark>	H / 2.0 / 0.0	<mark>-13.98</mark>	<mark>25.62</mark>	<mark>99</mark>	<mark>-73.38</mark>
8348.40	40.6 Pk	8.4 / 37.1 / 45.2	41.0	H / 2.0 / 360.0	-13.98	<mark>27.02</mark>	<mark>54</mark>	-26.98

Project File: BC500159 Page 21 of 35

Fax: 303 449 6160

Voice: 303 786 7999

Project Report

Technician Alisha Bullock **Project:** BC500159

Capital Asset ID	Manufacturer	Model #	Serial #	Description	Test Performed	Service Type	Service Date	Service Due
6	Hewlett-Packard	8594E	3223A00145	Spectrum Analyzer	R Radiated Emissions	For Cal	1/6/2005	1/6/2006
106	TENSOR	4105	2020	Ridged Guide Antenna 1-18GHz	R Radiated Emissions	For Cal	6/28/2004	6/28/2005
135	EMCO	3146	9402-3775	Log Periodic Antenna (200-1000MHz)	R Radiated Emissions	For Cal	9/18/2004	9/18/2005
138	EMC TEST SYSTEMS	3109	3142	Biconical Antenna 30-300MHz	R Radiated Emissions	For Cal	9/30/2004	9/30/2005
195	EMCO	6502	9205-2738	Magnetic loop	R Radiated Emissions	For Cal	6/2/2004	6/2/2005
202	Avantek	AWT-18037	1002	RF Pre-Amplifier (8-18 GHz)	R Radiated Emissions	For Ver	4/7/2004	4/7/2005
203	Avantek	AFT97-8434-10F	1007	RF Pre-Amplifier (4-8 GHz)	R Radiated Emissions	For Ver	4/7/2004	4/7/2005
213	Mini-Circuits Lab	ZHL-42	N052792-2	Amplifier	R Radiated Emissions	For Ver	6/5/2004	6/5/2005
248	Hewlett-Packard	8447F	3113A05545	9 kHz- 1.3GHz Pre Amp	R Radiated Emissions	For Ver	6/22/2004	6/22/2005
259	Hewlett-Packard	E7405A	My44211889	Spectrum Analyzer	R Radiated Emissions	For Cal	10/11/2004	10/11/2005

Voice: 303 786 7999 Fax: 303 449 6160

Begin Date: 3/9/2005

End Date: 3/9/2005

Appendix B
Test Plan and Constructional Data Form

315 CTC Boulevard, Louisville, CO 80027 ph. 303.939.9336 fx. 303.939.8977 www.inovonicswireless.com

July 13, 2004

Todd Seeley IA Labs 5451 Central Ave. Boulder, CO 80301

Dear Todd,

Pursuant to section 15.247 of the FCC rules Inovonics transmitters are limited to 0.25 Watts maximum transmitted power. These devices contain integrated antennas and it is therefore impossible to measure the transmitted power in a conducted manner without significantly modifying the devices.

At the test lab the field strength is measured using an antenna located 3 meters from the device under test. The rules do not explicitly state the field strength at 3 meters corresponding to 0.25 Watts, so it must be calculated as follows:

The test facility measures the transmitted field strength, E, having units of Volts/meter, or the logarithmic equivalent. The transmitted power density as measured by the antenna is then $\frac{E^2}{\eta}$, where η is the intrinsic impedance of free space.

Assuming isotropic radiation from the product, the Effective Isotropic Radiated Power (EIRP) is found by multiplying the above power density by the area of a sphere having a radius of 3 meters,

$$P_{HRP} = \frac{E^2}{\eta} 4\pi R^2 \qquad (1)$$

Solving for E,

$$E = \frac{1}{2R} \left(\frac{\eta P_{IIRP}}{\pi} \right)^{\frac{N}{2}}$$
 (2)

Given that $P_{\text{EIRP}}=0.25$ Watts (FCC limit), R=3 meters, and $\eta=377$ Ohms, $E=0.913~V/m=119.2~dB~\mu V/m.$

Remember the above assumption of isotropic radiation- all real antennas have non-isotropic radiation patterns. Using the 119.2 dB μ V/m limit guarantees that the total RF power transmitted by the device is below the 0.25 Watt limit.

Also, according the part 15.35 we are allowed a relaxation of the general radiation limits found in 15.209 while using a peak detector, as applied to the harmonics of the fundamental. Inovonics EchoStream security transmitters have a transmission pulse duration of 20 ms, which corresponds to a duty cycle of 0.2 per 15.35(c). This duty cycle allows for a 14 dB relaxation of the general radiation limits from 54 dB μ V/m (500 μ V/m, per 15.209(a)) to 68 dB μ V/m for peak measurements.

Sincerely,

Steven Dunbar RF Engineer

> Project File: BC400278 Page 25 of 35 Voice: 303 786 7999 Fax: 303 449 6160

Request for	Estimate:
-------------	------------------

Agent/Test Lab: International Approvals Laboratories, LLC

5541 Central Avenue Suite 110 Boulder, CO 80301 Address:

Contact: Todd Seelev

Principal Engineer (Services Development Focus) Title:

Phone Number: (303) 402-5272 **Cell Number:** (303) 503-2491 (303) 449-6160 Fax Number: **Email Address:** todd@ialabs.com

License Holder:

Inovonics

Address: Contact: Title:

Phone Number: Fax Number:

Please provide all pertinent information below and email this Form to Todd Seeley at todd@ialabs.com for a quotation:

General Product Information: **Product/Model Number:** DS200/ES1255 **Description of product: Transmitter Household** \boxtimes Commercial **Intended Use: Industrial** Hospital **Life Supporting** \overline{\overl Wet **Intended Location: Damp Hazardous Location Prototype** Production Sample **Product Type:** Manufacturing Design Change: Please Describe If more than one product, what are the differences? **Plastic** Is the Product Enclosure: Metal Both Length: 3" Width: 1.5" Height: .75" Weight: 2 oz Size: Rated Voltage: 3V What Rated Current: 50mA Voltages/Current does the EUT # of Phases/Conductors: run at? # of Power Cords:N/A Are there Multiple Modes of No No Yes **Operation?** If Yes Please Describe: Can all modes of operation ☐ Yes No No **Explain:** be operated simultaneously? In which countries will you USA, CANADA

Fax: 303 449 6160

Voice: 303 786 7999

be selling the product?

EMC Information:	
What EMC certifications are desired?	 ☐ FCC/ICES (US & Canada) ☐ CE / EMC / MMD ☐ BSMI (Taiwan) ☐ VCCI (Japan) ☐ SII (Israel) ☐ AS/NZS (Australia/New Zealand) ☐ Other: Please Specify
Highest frequency utilized for device operation:	928 MHz
List of Clock Frequencies:	6MHz
What is the time that it takes for the device to complete a full cycle of operation? (time required to identify any degradation in performance)	
Total Number of I/O Cables: # Greater than 3m (9.75 feet) in Length # Greater than 30m (97.5 feet) in Length # of cables at a longer length (specify)	NONE
Number of Dedicated Earth Equalization Ports	
Number of Ethernet and/or Telecommunications Ports	
Radio Information:	
What Radio certifications are desired?	 ☐ FCC (USA) ☐ Industry Canada ☐ ETSI (R&TTE) ☐ Other: Please Specify
Operating Frequency:	902MHz to 928MHz
RF Output Power:	< 50mW
Number of Antennas & Description: (Internal, External, etc.)	1 internal
Modulation Technique:	FSK
Number of Channels:	25
Can the device be operated in CW Mode?	

Safety Information:							
What safety certifications are desired?			 NRTL Listing CE / LVD / MDD CB Certification Other: Please Specify 				
Has the device been tested and certified for product safety before?			s 🔲 No				
A. If it has been previously tes which standard and by whi		Standa	rd tested to:				
organization?	icii	Organi	zation tested by:				
B. Can you provide the test re	☐ Ye	s No					
Is the power supply			☐ An approved off the shelf power supply OR ☐ A Custom Model that will need evaluation/ certification				
Does the device contain batteries?			☐ Yes ☐ No What Type? How Many?				
What technology is used? (i.e., lasers, X Ray, etc.)							
If Class: Output Power:		Beam Divergence Angle: Wavelength:					
Is the product a Medical Device?		Yes	S No				
Is it an In Vitro Diagnostic Device	e?	Yes	s No				
Testing location: (to be filled in b	v IALahs)						

Additional Information:

This information is required to be filled in to act as a test plan and constructional data form required to be supplied as part of the test report in accordance to the required standards. This information is not required to obtain a quote.

α	4		•	4
NIII	port	HAI	III	nent·
$\mathcal{S}_{\mathbf{u}}$	ρυιι	Dy	итри	ucnt.

IALabs requires our customers provide all support equipment necessary to fully operate the EUT.

Item	Description	Manufacturer	Model No.
1			
2			
3			
4			

Cabling Information:

abiling in	iioi iiiatioii.				
Cable	Function*	Type of Shield	Length	Connectors	Connection**
1					
2					
3					
4					
5					
6					

^{*} Function examples (Ethernet, RS232, USB, Analog, physiological parameter, etc.)

Monitoring the EUT:

Please provide instructions below on how to observe the EUT to verify proper operation in all modes. (including software revision)

Any other information required: (Notes, Photos, Block Diagrams, Drawings, etc.)

A minimum of a block diagram showing the equipment under test and its support equipment.

Note: To insert files and photos within this document please fill in the information above and then unlock the FORM by:

- 1. Right click on the tool bar above and select "Form"
- 2. Select the Lock Button within the "form" toolbar

Fax: 303 449 6160

^{**} Connection examples (Outside Plant, Patient Coupled, Ring Voltage, etc.)

For International Approvals Laboratories, Use Only. Please do not fill in the following Information.

Emissions Testing Paguired

Emissions Testing Required		
FCC Part 15	☐ ICES-003	□ VCCI
FCC Part 18	□ BSMI	CISPR 22/EN 55022
CISPR 11/EN 55011	IEC/EN 61326	IEC/EN61000-6-3
☐ IEC/EN61000-6-4	CNS13438	☐ AS/NZS 3548
☐ IEC/EN61000-3-2	☐ IEC/EN61000-3-3	☐ ETSI/EN 301 489
Other:		
OATS Testing Voltages		
☐ 100VAC/50 Hz	☐ 120VAC/60Hz	☐ 230VAC/50Hz
☐ 110VAC/60Hz	☐ 220VAC/60Hz	☐ 240VAC/50Hz
Other:		
Immunity Product Family Standa	ırd	
☐ CISPR24/EN 55024	☐ <i>IEC/EN 61000-6-1</i>	☐ <i>IEC/EN 61000-6-2</i>
☐ IEC/EN 60601-1-2	☐ <i>IEC/EN 61326</i>	☐ CISPR14/ EN 55014-2
ETSI/EN 401 489		
Other:		
Immunity Methods		
☐ EN61000-4-2	☐ 4kV/8kV ☐ 6kV/8kV ☐ 8kV ☐ 12kV ☐ 15kV	Other:
☐ EN61000-4-3	☐ 3V/m ☐ 10V/m ☐ 1 kHz Modulation ☐ 400 Hz Modulation ☐ 2 Hz Modulation	Other:
☐ EN61000-4-4	□ 0.5 kV □ 1.0 kV □ 2.0 kV	Other:
☐ EN61000-4-5	☐ 0.5 kV ☐ 1.0 kV ☐ 2.0 kV ☐ 4.0 kV	Other:
□ EN61000-4-6	☐ 3Vrms ☐ 10Vrms ☐ 1 kHz Modulation ☐ 400 Hz Modulation ☐ 2 Hz Modulation	Other:
☐ EN61000-4-8	☐ 1A/m ☐ 30A/m ☐ 400A/m	Other:
☐ EN61000-4-11	>95% 0.5 Cycles 60% 5 Cycles 30% 25 Cycles >95% 250 Cycles	Other:
Other/special notes:		

Voice: 303 786 7999 Fax: 303 449 6160

Appendix C
Measurement Protocol
And Test Procedures

MEASUREMENT PROTOCOL

GENERAL INFORMATION

Test Methodology

Conducted and radiated emission testing is performed according to the procedures in ANSI C63.4 & CNS13438.

Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into it's characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

CONDUCTED EMISSIONS

The final level, expressed in $dB_{\mu}V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the applicable limit.

To convert between $dB\mu V$ and μV , the following conversions apply:

- $dB\mu V = 20(log \mu V)$
- $\mu V = Inverse \log(dB\mu V/20)$

RADIATED EMISSIONS

The final level, expressed in $dB_{\mu}V/m$, is arrived at by taking the reading from the spectrum analyzer (Level $dB_{\mu}V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has the applicable limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets in Attachment B. The amplifier gain is automatically accounted for by using an analyzer offset.

Example: At a Test Frequency of 30 MHz, with a peak reading on the spectrum analyzer or measuring receiver of 14 dB μ V:

Measured Level	+	Transducer & Cable Loss factor	II	Corrected Reading	Specification Limit	-	Corrected Reading	II	Delta Specification
(dBµV)		(dB)		(dB _µ V/m)	(dBμV/m)		(dB _µ V/m)		
14.0		14.9		28.9	40.0		28.9		-11.1

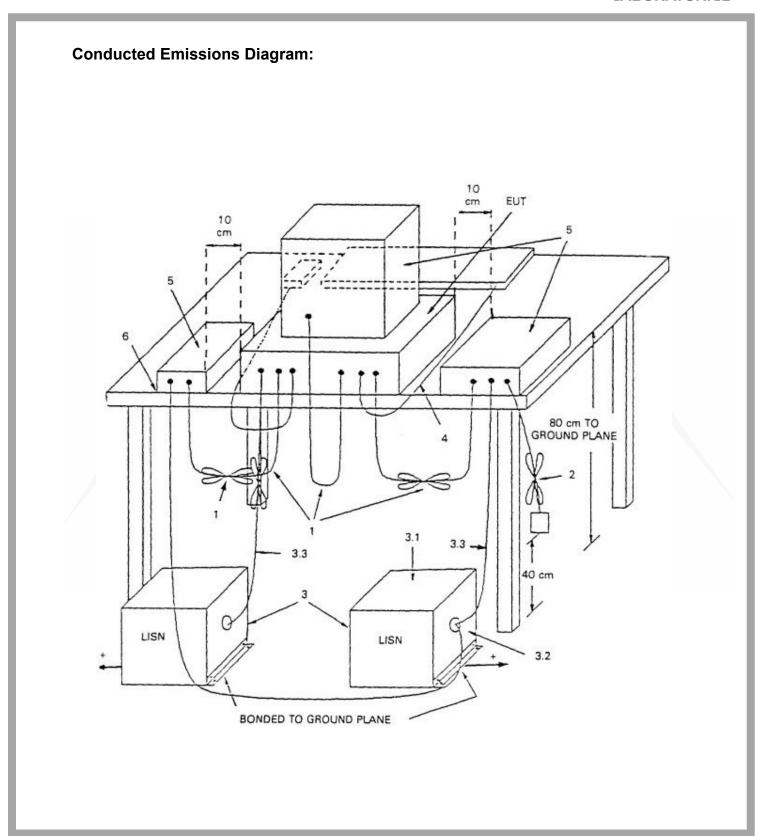
Fax: 303 449 6160

DETAILS OF TEST PROCEDURES

General Standard Information

The test methods used comply with ANSI C63.4-1992 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

Conducted Emissions


Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with $50~\Omega/50~\mu H$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. In some cases, a pre-scan using a spectrum analyzer is initially performed on the units comprising the system under test to locate the highest emissions. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver or spectrum analyzer with quasi-peak and average detection and recorded on the data sheets.

Radiated Emissions

Radiated emissions from the EUT are measured in the frequency range of 30 to 22GHz using a spectrum analyzer and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection and measurements above 1000 MHz are made with a 1 MHz/6 dB bandwidth and peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimeters above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna is positioned 3, 10 or 30 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are rotated 360 degrees.


Fax: 303 449 6160

Fax: 303 449 6160

Fax: 303 449 6160