

Successor in interest to International Approval Laboratories

EMC EMISSIONS - TEST REPORT (In-Part)

Test Report No.	3090365-1	Issue Date: _	Tues. Jan. 31, 2006
Model / Serial No.	ES1501, ES1501-XL/ 01564224	, 01564072	
Product Type	Water Meter Transmitters.		
Client	Inovonics Wireless Corp.		
Manufacturer	Inovonics Wireless Corp.		
License holder	Inovonics Wireless Corp.		
Address	315 CTC Blvd		
	Louisville, CO 80027		
Test Criteria Applied Test Result	FCC CFR47 Part 15.247		
Test Project Number References	3090365	Title 47 CFI DEVICES	R 15: RADIO FREQUENCY
Total Pages Including Appendices:	45		
Michael Staton		let Crassi	rll
Reviewed By: Mike S	Spataro Ap	proved By:	

INTERNATIONAL APPROVALS LABORATORIES (IAL) reports apply only to the specific samples tested under stated test conditions. It is the manufacturer's responsibility to assure that additional production units of this model are manufactured with identical electrical and mechanical components. IAL have no liability for any deductions, inferences or generalizations drawn by the client or others from IAL issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and ourselves, extracts from the test report shall not be reproduced except in full without our written approval of IAL. This report shall not be used by the client to claim product endorsement by NVLAP (No. 200624-0) or any agency of the US government.

> International Approval Laboratories and its professional staff hold government and professional organization certifications and are members of IEEE, NVLAP, and VCCI.

DIRECTORY

Documentation Pa	Page(s)		
Test report	1 - 45		
Directory	2		
Test Regulations	3		
General Remarks	4-5		
Test-setup Photographs	6 - 10		
Appendix A			
Test Data Sheets and Test Equipment Used	11 - 30		
Appendix B			
Test Plan/Constructional Data Form	31 - 40		
Appendix C			
Measurement Protocol/Test Procedures	41 - 45		

STATEMENT OF MEASUREMENT UNCERTAINTY

The data and results referenced in this document are true and accurate. The measurement uncertainty for Conducted Emissions in the frequency range of 150 kHz - 30 MHz is calculated to be $\pm 2.30 \text{dB}$ and for Radiated Emissions is calculated to be $\pm 3.60 \text{dB}$ in the frequency range of 30 MHz - 200 MHz and $\pm 3.38 \text{dB}$ in the frequency range of 200 MHz - 1000 MHz.

EUT Received Date: 5-Jan-2006

Testing Start Date: 5-Jan-2006

Testing End Date: 7-Jan-2006

Fax: 303 449 6160

Voice: 303 786 7999

The tests were performed according to following regulations:

- 1. FCC CFR47 Part 15.205
- 2. FCC CFR47 Part 15.207
- 3. FCC CFR47 Part 15.209
- 4. FCC CFR47 Part 15.247
- 5. ICES-003

Emission Test Results:

Conducted Emissions, Powerline (15.207) -	Not Applicable	е		
Test Result				
Minimum limit margin	NA dB	at	NA MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks:				
Radiated Emissions (15.209) - PASS				
Test Result				
Minimum limit margin	5.4dB	at	1159.61 MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks:				
Radiated Emissions (15.205)/(15.247) (c)	- PASS			
Test Result				
Minimum limit margin	3.92_dB	at	2744.28 MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks: Emissions is from model: ES1501 on the m	id channel			
Peak Output Power 15.247 (b)(2) - PAS	<u> </u>			
Test Result				
Minimum limit margin	-1.7 dB	at	902.37 MHz	
Maximum limit exceeding	dB	at	MHz	
Remarks: Emissions is from model: ES1501-XL on the	e low channel			

Project File: 3090365 Page 3 of 45

GENERAL REMARKS:

The following remarks are to be considered as "where applicable" and are taken into account while completing any FCC/IC/ETSI radio tests at Intertek, ETL Semko.

Testing was performed in 3 different orthogonal axis to determine the worst case emissions from the device. The worst case emissions measurements are shown in this report.

FCC CFR47 Part 15.31: Measurement Standards: In any case where the device is powered off a battery, a fresh battery was used during test. In cases where the device is powered off an AC supply, voltage was varied per Part 15.31 to find worst case emissions.

FCC CFR47 Part 15.35: Measurement Detector Functions and Bandwidths: FCC Part 15.35 was utilized when performing the measurements within this report.

This test report is in-part, Intertek, ETL Semko was asked to test only the field strength of the fundamental and harmonics as well as the unintentional radiated emissions and conducted emissions when applicable.

This report covers two models of the same family of products. Intentional emissions, fundamental and harmonics, was completed on each unit separately. Unintentional emissions were completed on the two units at the same time.

Modifications required to pass: None

Test Specification Deviations: Additions to or Exclusions from: None

Project File: 3090365 Page 4 of 45

Voice: 303 786 7999

Required Information In Accordance to FCC CFR 47 Part 2.1033:

Rule Part 11, 15 & 18 Devices	Other Rule Part Devices	Description	Comments
2.1033(b)(1)	2.1033(c)(1)	Manu. Contact	See Page 1 of this report
2.1033(b)(2)	2.1033(c)(2)	FCC Identifier	-
2.1033(b)(3)	2.1033(c)(3)	Users Manual to include Operating, installation	Attached as Exhibit
	2.1033(c)(4)	Emissions Designator per 2.	
	2.1033(c)(5)	Frequency Range	Not Applicable to Part 15 Devcies
	2.1033(c)(6)	Power range and controls	Not Applicable to Part 15 Devcies
	2.1033(c)(7)	Maximum power ouput rating	Not Applicable to Part 15 Devcies
	2.1033(c)(8)	DC Voltage and Current suplying final RF stages	Not Applicable to Part 15 Devcies
2.1033(b)(3)	2.1033(c)(9)	Tune –up procedure	Please refer to the users manual for applicability
2.1033(b)(4&5)	2.1033(c)(10)	Complete Circuit Diagrams and circuit operation description	Attached as Exhibit
2.1033(b)(7)	2.1033(c)(11)	Photographs/drawings of the identification label & its location on the device	Attached as Exhibit
2.1033(b)(7)	2.1033(c)(12)	Photographs of the external and internal surfaces, and construction	Attached as Exhibit
	2.1033(c)(13)	Digital Modulation	Not Applicable
2.1033(b)(6)	2.1033(c)(14)	Report of Measurement Data Required by 2.1046 – 2.1057	See Data Below (This report consists of the testing required under Part 15.231)
2.1033(b)(8)		Description of publicly available support equipment used during test	Refer to Exhibit B of this report (Client Test Plan)
2.1033(b)(9)		Statement of Autorization to Part 15.37 of CFR47	The equipment herein is being authorized in accordance to 15.37 of the CFR47 Rules.
2.1033(b)(10)		Direct Sequence Spread Spectrum Devices (DSSS)	Exhibit of compliance to 15.247(e)
2.1033(b)(10)	/	Frequency Hopping Devices	Exhibit of compliance to 15.247(a)(1)
2.1033(b)(11)		Scanning receiver construction	Exhibit stating compliance to construction in accordance to 15.121.
15.31	15.31	Transmitter Supply Voltage	Testing herein was completed in accordance to FCC CFR47 Part 15.31

Exhibits Including (where applicable):

1. (Users N	lanual

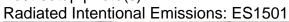
- 2. **Operation Description**
- 3. Block Diagram
- Report of Measurement 4.
- External & Internal Photographs 5.
- Schematic 6.

- 7. Parts List
- 8. Tuning Procedure (if applicable)
- Test Setup Photograph 9.
- Label Drawings and or Photograpghs 10.
- Description of Support Equipment (where 11. Applicable)

Required Information in Accordance to Industry Canada Regulations (In addition to the above):

Information Required	Description	Comments
Modulation Type	(i.e. ASK, NON, FSK, DSSS, FHSS, etc.)	
Emissions Designator	Per TRC-49	
In Country Representative	Contact Information	
99% Bandwidth Measurement	Per RSS-210	

Project File: 3090365 Page 5 of 45


Test-setup photo(s): Conducted Emissions

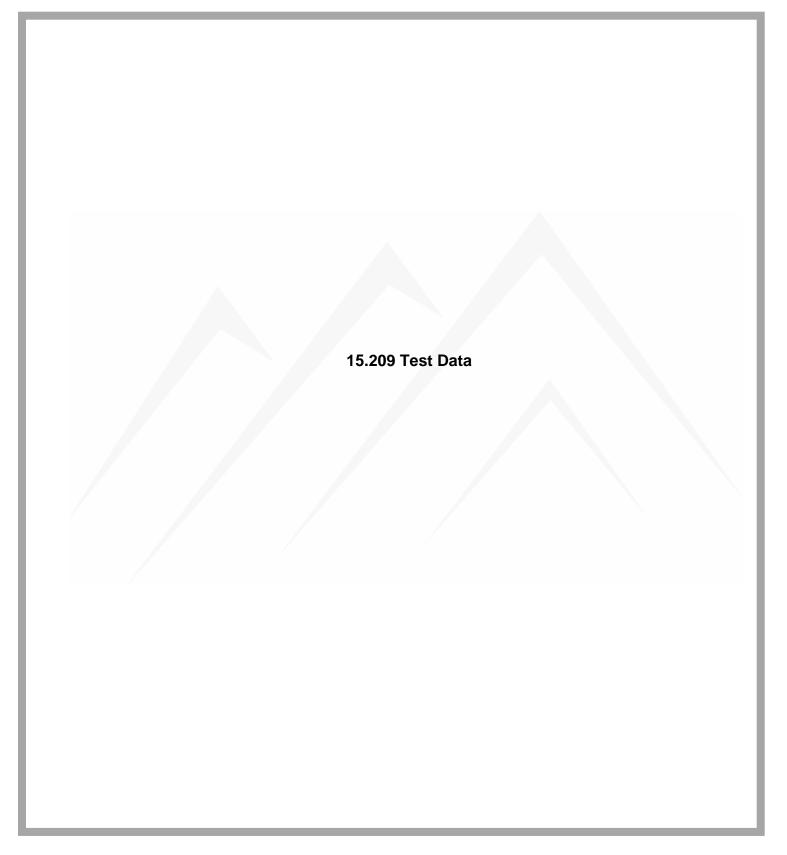
Not Applicable

Project File: 3090365 Page 6 of 45 Voice: 303 786 7999 Fax: 303 449 6160

Test-setup photo(s):

Fax: 303 449 6160

Voice: 303 786 7999



Appendix A
дрених д
Test Data Chasta
Test Data Sheets
and Test Equipment Used
rest Equipment Osed

Test F	Report #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C	
Test	Method:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26		
EUT	Model #:	ES1501, ES1501-XL	EUT Power:	3 VDC	Air Pressure:	81	– kPa	
EUT	Serial #:	01564224, 01564072	_		Page:			
Manu	facturer:	Inovonics			Lev	el Key		
EUT Des	scription:	Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band	
Notes:	Two unit	s tested in field simultaneously.			Qp – QuasiPeak	Bb – Bı	road Band	
•	Remova	Removable Battery(ES1501)				Av - Average		
•	Fixed Ba	attery(ES1501-XL)						

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
Loop antenna	ı is perpendicı	ılar to EUT.				
No significant	emissions de	tected between 10 kHz and 30) MHz.			
The following	are noise floo	r points.				
0.0100	66.1 Qp	0.0 / 18.5 / 0.0	84.6	V / 1.0 / 0.0	-43.0	N/A
0.254	43.1 Qp	0.1 / 10.5 / 0.0	53.7	V / 1.0 / 0.0	-45.8	N/A
0.446	38.2 Qp	0.1 / 10.4 / 0.0	48.7	V / 1.0 / 0.0	-45.9	N/A
4.80	28.9 Qp	0.2 / 10.2 / 0.0	39.2	V / 1.0 / 0.0	-30.3	N/A
19.45	25.4 Qp	0.4 / 10.3 / 0.0	36.2	V / 1.0 / 0.0	-33.3	N/A
11.16	23.7 Qp	0.2 / 10.5 / 0.0	34.5	V / 1.0 / 0.0	-35.0	N/A
Loop is parall	el to EUT.					
0.103	60.6 Qp	0.1 / 11.0 / 0.0	71.7	H / 1.0 / 0.0	-35.6	N/A
0.184	43.2 Qp	0.1 / 10.7 / 0.0	54.0	H / 1.0 / 0.0	-48.3	N/A
0.369	40.8 Qp	0.1 / 10.4 / 0.0	51.2	H / 1.0 / 0.0	-45.1	N/A
2.26	25.4 Qp	0.1 / 10.2 / 0.0	35.7	H / 1.0 / 0.0	-33.8	N/A
11.16	30.6 Qp	0.2 / 10.5 / 0.0	41.3	H / 1.0 / 0.0	-28.2	N/A
29.75	29.8 Qp	0.5 / 8.5 / 0.0	38.9	H / 1.0 / 0.0	-30.6	N/A
	•					
Bicon Antenn	a					
No significant	emissions de	tected between 30 - 200 MHz				
The following	are noise floo	or points.				
30.00	28.7 Qp	0.5 / 13.1 / 28.2	14.1	V / 1.0 / 0.0	-25.9	N/A
108.84	36.4 Qp	1.1 / 10.4 / 28.0	19.9	V / 1.0 / 0.0	-23.6	N/A
173.49	30.9 Qp	1.4 / 12.5 / 27.6	17.3	V / 1.0 / 0.0	-26.2	N/A
Horizontal	/					
50.12	35.9 Qp	0.7 / 10.3 / 28.2	18.6	H / 2.0 / 0.0	-21.4	N/A
120.20	26.9 Qp	1.2 / 11.7 / 27.9	11.8	H/2.0/0.0	-31.7	N/A
		1 4 / 12 5 / 27 5	14.8	H / 2.0 / 0.0	-28.7	N/A
190.20	27.4 Qp	1.4 / 13.5 / 27.5	14.0	117 2.07 0.0	20	14//

Project File: 3090365 Page 13 of 45 Voice: 303 786 7999 Fax: 303 449 6160

Test F	Report #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C	
Test	Method:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26		
EUT	Model #:	ES1501, ES1501-XL	EUT Power:	3 VDC	Air Pressure:	81	– kPa	
EUT	Serial #:	01564224, 01564072	_		Page:			
Manu	facturer:	Inovonics			Lev	el Key		
EUT Des	scription:	Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band	
Notes:	Two unit	s tested in field simultaneously.			Qp – QuasiPeak	Bb – Bı	road Band	
•	Remova	Removable Battery(ES1501)				Av - Average		
•	Fixed Ba	attery(ES1501-XL)						

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
The following	are noise floo	or points.				
200.00	21.9 Qp	1.5 / 11.5 / 27.4	7.5	V / 1.0 / 0.0	-36.0	N/A
275.00	18.2 Qp	1.8 / 13.4 / 27.0	6.4	V / 1.0 / 0.0	-39.6	N/A
350.00	17.8 Qp	2.1 / 15.2 / 27.3	7.7	V / 1.0 / 0.0	-38.3	N/A
425.00	19.4 Qp	2.3 / 16.6 / 28.0	10.3	V / 1.0 / 0.0	-35.7	N/A
500.00	20.1 Qp	2.6 / 18.8 / 28.4	13.1	V / 1.0 / 0.0	-32.9	N/A
575.00	19.9 Qp	2.8 / 19.4 / 28.4	13.7	V / 1.0 / 0.0	-32.3	N/A
650.00	19.4 Qp	3.0 / 20.2 / 28.4	14.2	V / 1.0 / 0.0	-31.8	N/A
725.00	19.2 Qp	3.2 / 21.4 / 28.2	15.6	V / 1.0 / 0.0	-30.4	N/A
800.00	18.3 Qp	3.3 / 21.7 / 28.0	15.3	V / 1.0 / 0.0	-30.7	N/A
875.00	19.1 Qp	3.5 / 23.0 / 27.7	17.8	V / 1.0 / 0.0	-28.2	N/A
975.01	18.6 Qp	3.7 / 23.8 / 27.4	18.7	V / 1.0 / 0.0	-35.3	N/A
Horizontal						
225.00	25.1 Qp	1.6 / 11.1 / 27.2	10.6	H/2.0/0.0	-35.4	N/A
300.00	19.9 Qp	1.9 / 14.4 / 27.1	9.1	H/2.0/0.0	-36.9	N/A
374.86	19.8 Qp	2.1 / 15.7 / 27.5	10.0	H/2.0/0.0	-36.0	N/A
450.00	19.2 Qp	2.4 / 17.2 / 28.1	10.7	H/2.0/0.0	-35.3	N/A
524.91	19.2 Qp	2.6 / 19.0 / 28.4	12.5	H/2.0/0.0	-33.5	N/A
600.01	25.1 Qp	2.9 / 19.5 / 28.4	19.1	H/2.0/0.0	-26.9	N/A
675.01	19.9 Qp	3.1 / 21.2 / 28.3	15.9	H / 2.0 / 0.0	-30.1	N/A
750.01	18.9 Qp	3.2 / 21.3 / 28.2	15.2	H / 2.0 / 0.0	-30.8	N/A
825.01	18.4 Qp	3.3 / 22.0 / 28.0	15.8	H / 2.0 / 0.0	-30.2	N/A
900.01	19.1 Qp	3.6 / 23.2 / 27.7	18.2	H / 2.0 / 0.0	-27.8	N/A
975.01	18.6 Qp	3.7 / 23.8 / 27.4	18.6	H/2.0/0.0	-35.4	N/A
602.65	19.4 Qp	2.9 / 19.5 / 28.4	13.4	H/2.0/0.0	-32.6	N/A
-4 GHz						
1159.61	38.5 Av	2.4 / 22.5 / 16.7	46.8	V / 1.0 / 0.0	N/A	-7.2
Maximizing e	emission	/				
1159.61	40.3 Av	2.4 / 22.5 / 16.7	48.6	V / 1.0 / 115.0	N/A	-5.4

Project File: 3090365 Page 14 of 45 Voice: 303 786 7999 Fax: 303 449 6160

5541 Central Avenue, Suite 110 Boulder, Colorado 80301

Test F	Report #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test	Method:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	 %
EUT I	Model #:	ES1501, ES1501-XL	EUT Power:	3 VDC	Air Pressure:	81	 kPa
EUT	Serial #:	01564224, 01564072	_		Page:		
Manu	facturer:	Inovonics			Leve	el Key	
EUT Des	scription:	Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band
Notes:	Two unit	s tested in field simultaneously.			Qp – QuasiPeak	Bb – Bı	road Band
-	Remova	ble Battery(ES1501)			Av - Average		
-	Fixed Ba	attery(ES1501-XL)					

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
Horizontal						
he following	emission was	maximized				
1159.61	39.0 Av	2.4 / 22.5 / 16.7	47.3	H / 1.2 / 326.0	N/A	-6.7
No other sign	ificant emission	ons detected the following are	noise floor po	oints.		
1250.00	35.0 Av	2.5 / 22.8 / 19.2	41.2	H / 1.0 / 0.0	N/A	-12.8
2000.00	33.0 Av	3.2 / 25.9 / 36.4	25.7	H / 1.0 / 0.0	N/A	-28.3
2750.00	35.4 Av	4.3 / 27.0 / 37.7	29.0	H / 1.0 / 0.0	N/A	-25.0
3500.00	34.3 Av	4.8 / 28.6 / 36.7	31.0	H / 1.0 / 0.0	N/A	-23.0
Vertical						
1000.00	33.2 Av	3.7 / 22.0 / 12.0	46.9	V / 1.0 / 0.0	N/A	-7.1
1750.00	35.2 Av	3.1 / 24.8 / 33.4	29.6	V / 1.0 / 0.0	N/A	-24.4
2500.00	33.7 Av	4.0 / 26.3 / 37.4	26.5	V / 1.0 / 0.0	N/A	-27.5
3250.00	34.2 Av	4.7 / 28.2 / 36.7	30.4	V / 1.0 / 0.0	N/A	-23.6
4000.00	35.2 Av	5.7 / 29.7 / 36.3	34.3	V / 1.0 / 0.0	N/A	-19.7
No significant	emissions de	tected between 4 - 8 GHz.				
The following	are noise floo	or points.				
4500.00	24.1 Av	6.6 / 30.1 / 40.5	20.3	H / 1.0 / 0.0	N/A	-33.7
5500.00	33.0 Av	6.7 / 32.0 / 40.3	31.4	H / 1.0 / 0.0	N/A	-22.6
6500.00	32.6 Av	8.5 / 32.0 / 40.3	32.8	H / 1.0 / 0.0	N/A	-21.2
7500.00	32.2 Av	8.2 / 34.2 / 39.9	34.7	H / 1.0 / 0.0	N/A	-19.3
/ertical						
5000.00	33.6 Av	7.6 / 31.4 / 40.4	32.2	V / 1.0 / 0.0	N/A	-21.8
6000.00	32.3 Av	7.7 / 32.2 / 39.6	32.6	V / 1.0 / 0.0	N/A	-21.4
7000.00	32.6 Av	8.1 / 33.1 / 40.5	33.3	V / 1.0 / 0.0	N/A	-20.7
8000.00	31.8 Av	8.3 / 34.3 / 40.6	33.8	V / 1.0 / 0.0	N/A	-20.2

Project File: 3090365 Page 15 of 45 Voice: 303 786 7999 Fax: 303 449 6160

Rev.No 1

Test F	Report #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test	Method:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	 %
EUT	Model #:	ES1501, ES1501-XL	EUT Power:	3 VDC	Air Pressure:	e: 81 kPa	
EUT	Serial #:	01564224, 01564072			Page:		
Manufacturer: Inovonics				Lev	Level Key		
EUT Des	scription:	Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band
Notes: T	Two unit	s tested in field simultaneously.	Qp – QuasiPeak	Bb – B	road Band		
,	Remova	ble Battery(ES1501)	Av - Average				
,	Fixed Ba	attery(ES1501-XL)					

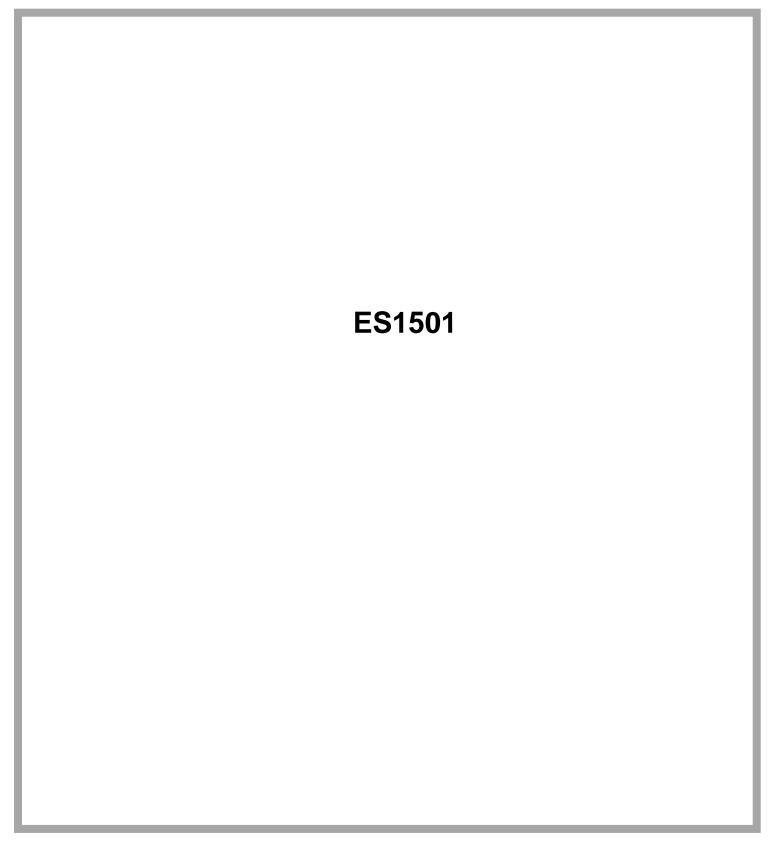
FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	DELTA1 (dB)	DELTA2 (dB)			
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz			
The following are noise floor points.									
8500.00	42.5 Av	8.5 / 34.6 / 48.0	37.6	V / 1.0 / 0.0	N/A	-16.4			
9500.00	40.1 Av	9.4 / 35.6 / 48.9	36.3	V / 1.0 / 0.0	N/A	-17.7			
Horizontal									
10000.0	43.2 Av	9.5 / 35.4 / 48.6	39.6	H / 1.0 / 0.0	N/A	-14.4			
9000.00	41.6 Av	8.5 / 35.1 / 48.6	36.6	H / 1.0 / 0.0	N/A	-17.4			
End of Run			•			_			

Project File: 3090365 Page 16 of 45

Test F	Report #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test	Method:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	 %
EUT	Model #:	ES1501, ES1501-XL	EUT Power:	3 VDC	Air Pressure:	81	 kPa
EUT	Serial #:	01564224, 01564072			Page:		
Manufacturer: Inovonics				Lev	Level Key		
EUT Des	scription:	Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band
Notes:	otes: Two units tested in field simultaneously.				Qp – QuasiPeak	Bb – Br	road Band
•	Remova	ble Battery(ES1501)	Av - Average	Av - Average			
•	Fixed Ba	attery(ES1501-XL)					

		0.515/.015/.555.005		501 /1107 / 47	55154445	551.546 (15)
FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
		****** M	easurem	ent Summar	y ******	
1159.61	40.3 Av	2.4 / 22.5 / 16.7	48.6	V / 1.0 / 115.0	N/A	-5.4
1000.00	33.2 Av	3.7 / 22.0 / 12.0	46.9	V / 1.0 / 0.0	N/A	-7.1
1250.00	35.0 Av	2.5 / 22.8 / 19.2	41.2	H / 1.0 / 0.0	N/A	-12.8
10000.0	43.2 Av	9.5 / 35.4 / 48.6	39.6	H / 1.0 / 0.0	N/A	-14.4
8500.00	42.5 Av	8.5 / 34.6 / 48.0	37.6	V / 1.0 / 0.0	N/A	-16.4
9000.00	41.6 Av	8.5 / 35.1 / 48.6	36.6	H / 1.0 / 0.0	N/A	-17.4
9500.00	40.1 Av	9.4 / 35.6 / 48.9	36.3	V / 1.0 / 0.0	N/A	-17.7
7500.00	32.2 Av	8.2 / 34.2 / 39.9	34.7	H / 1.0 / 0.0	N/A	-19.3
4000.00	35.2 Av	5.7 / 29.7 / 36.3	34.3	V / 1.0 / 0.0	N/A	-19.7
8000.00	31.8 Av	8.3 / 34.3 / 40.6	33.8	V / 1.0 / 0.0	N/A	-20.2
7000.00	32.6 Av	8.1 / 33.1 / 40.5	33.3	V / 1.0 / 0.0	N/A	-20.7
6500.00	32.6 Av	8.5 / 32.0 / 40.3	32.8	H / 1.0 / 0.0	N/A	-21.2
50.12	35.9 Qp	0.7 / 10.3 / 28.2	18.6	H/2.0/0.0	-21.4	N/A
6000.00	32.3 Av	7.7 / 32.2 / 39.6	32.6	V / 1.0 / 0.0	N/A	-21.4
5000.00	33.6 Av	7.6 / 31.4 / 40.4	32.2	V / 1.0 / 0.0	N/A	-21.8
5500.00	33.0 Av	6.7 / 32.0 / 40.3	31.4	H / 1.0 / 0.0	N/A	-22.6
3500.00	34.3 Av	4.8 / 28.6 / 36.7	31.0	H / 1.0 / 0.0	N/A	-23.0
108.84	36.4 Qp	1.1 / 10.4 / 28.0	19.9	V / 1.0 / 0.0	-23.6	N/A
3250.00	34.2 Av	4.7 / 28.2 / 36.7	30.4	V / 1.0 / 0.0	N/A	-23.6
1750.00	35.2 Av	3.1 / 24.8 / 33.4	29.6	V / 1.0 / 0.0	N/A	-24.4
2750.00	35.4 Av	4.3 / 27.0 / 37.7	29.0	H / 1.0 / 0.0	N/A	-25.0
30.00	28.7 Qp	0.5 / 13.1 / 28.2	14.1	V / 1.0 / 0.0	-25.9	N/A
173.49	30.9 Qp	1.4 / 12.5 / 27.6	17.3	V / 1.0 / 0.0	-26.2	N/A
2500.00	33.7 Av	4.0 / 26.3 / 37.4	26.5	V / 1.0 / 0.0	N/A	-27.5
900.01	19.1 Qp	3.6 / 23.2 / 27.7	18.2	H / 2.0 / 0.0	-27.8	N/A
11.16	30.6 Qp	0.2 / 10.5 / 0.0	41.3	H / 1.0 / 0.0	-28.2	N/A
875.00	19.1 Qp	3.5 / 23.0 / 27.7	17.8	V / 1.0 / 0.0	-28.2	N/A
2000.00	33.0 Av	3.2 / 25.9 / 36.4	25.7	H / 1.0 / 0.0	N/A	-28.3
190.20	27.4 Qp	1.4 / 13.5 / 27.5	14.8	H / 2.0 / 0.0	-28.7	N/A
675.01	19.9 Qp	3.1 / 21.2 / 28.3	15.9	H / 2.0 / 0.0	-30.1	N/A

Intertek ETL Semko


Test F	Report #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test	Method:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	 %
EUT	Model #:	ES1501, ES1501-XL	EUT Power:	3 VDC	Air Pressure:	81	 kPa
EUT	Serial #:	01564224, 01564072			Page:		
Manufacturer: Inovonics				Lev	Level Key		
EUT Des	scription:	Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band
Notes:	otes: Two units tested in field simultaneously.				Qp – QuasiPeak	Bb – Br	road Band
•	Remova	ble Battery(ES1501)	Av - Average	Av - Average			
•	Fixed Ba	attery(ES1501-XL)					

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL/HGT/AZ	DELTA1 (dB)	DELTA2 (dB)
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	15.209 <1GHz	15.209 >1GHz
825.01	18.4 Qp	3.3 / 22.0 / 28.0	15.8	H / 2.0 / 0.0	-30.2	N/A
4.80	28.9 Qp	0.2 / 10.2 / 0.0	39.2	V / 1.0 / 0.0	-30.3	N/A
725.00	19.2 Qp	3.2 / 21.4 / 28.2	15.6	V / 1.0 / 0.0	-30.4	N/A
29.75	29.8 Qp	0.5 / 8.5 / 0.0	38.9	H / 1.0 / 0.0	-30.6	N/A
800.00	18.3 Qp	3.3 / 21.7 / 28.0	15.3	V / 1.0 / 0.0	-30.7	N/A
750.01	18.9 Qp	3.2 / 21.3 / 28.2	15.2	H / 2.0 / 0.0	-30.8	N/A
120.20	26.9 Qp	1.2 / 11.7 / 27.9	11.8	H / 2.0 / 0.0	-31.7	N/A
650.00	19.4 Qp	3.0 / 20.2 / 28.4	14.2	V / 1.0 / 0.0	-31.8	N/A
575.00	19.9 Qp	2.8 / 19.4 / 28.4	13.7	V / 1.0 / 0.0	-32.3	N/A
602.65	19.4 Qp	2.9 / 19.5 / 28.4	13.4	H / 2.0 / 0.0	-32.6	N/A
500.00	20.1 Qp	2.6 / 18.8 / 28.4	13.1	V / 1.0 / 0.0	-32.9	N/A
19.45	25.4 Qp	0.4 / 10.3 / 0.0	36.2	V / 1.0 / 0.0	-33.3	N/A
524.91	19.2 Qp	2.6 / 19.0 / 28.4	12.5	H / 2.0 / 0.0	-33.5	N/A
4500.00	24.1 Av	6.6 / 30.1 / 40.5	20.3	H / 1.0 / 0.0	N/A	-33.7
2.26	25.4 Qp	0.1 / 10.2 / 0.0	35.7	H / 1.0 / 0.0	-33.8	N/A
450.00	19.2 Qp	2.4 / 17.2 / 28.1	10.7	H / 2.0 / 0.0	-35.3	N/A
975.01	18.6 Qp	3.7 / 23.8 / 27.4	18.7	V / 1.0 / 0.0	-35.3	N/A
225.00	25.1 Qp	1.6 / 11.1 / 27.2	10.6	H / 2.0 / 0.0	-35.4	N/A
0.103	60.6 Qp	0.1 / 11.0 / 0.0	71.7	H / 1.0 / 0.0	-35.6	N/A
425.00	19.4 Qp	2.3 / 16.6 / 28.0	10.3	V / 1.0 / 0.0	-35.7	N/A
200.00	21.9 Qp	1.5 / 11.5 / 27.4	7.5	V / 1.0 / 0.0	-36.0	N/A
374.86	19.8 Qp	2.1 / 15.7 / 27.5	10.0	H / 2.0 / 0.0	-36.0	N/A
300.00	19.9 Qp	1.9 / 14.4 / 27.1	9.1	H / 2.0 / 0.0	-36.9	N/A
350.00	17.8 Qp	2.1 / 15.2 / 27.3	7.7	V / 1.0 / 0.0	-38.3	N/A
275.00	18.2 Qp	1.8 / 13.4 / 27.0	6.4	V / 1.0 / 0.0	-39.6	N/A
0.0100	66.1 Qp	0.0 / 18.5 / 0.0	84.6	V / 1.0 / 0.0	-43.0	N/A
0.369	40.8 Qp	0.1 / 10.4 / 0.0	51.2	H / 1.0 / 0.0	-45.1	N/A
0.254	43.1 Qp	0.1 / 10.5 / 0.0	53.7	V / 1.0 / 0.0	-45.8	N/A
0.446	38.2 Qp	0.1 / 10.4 / 0.0	48.7	V / 1.0 / 0.0	-45.9	N/A
0.184	43.2 Qp	0.1 / 10.7 / 0.0	54.0	H / 1.0 / 0.0	-48.3	N/A

15.247 (b)(2), (c)/15.205 Test Data

Test Repor	t #: 3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C	
Test Meth	od: FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	%	
EUT Mode	I#: ES1501	EUT Power:	3 VDC	Air Pressure:	81	 kPa	
EUT Seria	I #: 01564224			Page:			
Manufactu	rer: Inovonics			Leve	Level Key		
EUT Descripti	on: Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band	
Notes: Ren	novable Battery(ES1501)	ble Battery(ES1501)				road Band	
				Av - Average			

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

"In this case, the maximum time that the carrier would dwell on any hopping channel is 18.8 mS in a 100 mS window. Therefore, the maximum Duty Factor correction factor of 14.52 dB was utilized in the calculations for the final measurement."

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated.

the DTCF	is calculated a	as follows 20*log ₁₀ (duty	cycle in 10	0mS) "not to exceed 2	:0dB"			
Part 15.24	<mark>7</mark> and <mark>15.205</mark>	Respectively						
Determinin	g worst case	axis for EUT.						
Axis 1, EU	T Flat on table	е						
Low Chan	nel							
902.41	85.0 Pk	3.6 / 23.2 / 0.0	<mark>111.8</mark>	V / 1.0 / 152.0	<mark>0</mark>	<mark>111.8</mark>	<mark>119</mark>	<mark>-7.2</mark>
902.41	88.0 Pk	3.6 / 23.2 / 0.0	<mark>114.7</mark>	H / 1.0 / 40.0	<mark>0</mark>	<mark>114.7</mark>	<mark>119</mark>	<mark>-4.3</mark>
Mid Chann	iel							
<mark>914.83</mark>	88.4 Pk	3.6 / 23.2 / 0.0	<mark>115.2</mark>	H / 1.0 / 51.0	<mark>0</mark>	<mark>115.2</mark>	<mark>119</mark>	<mark>-3.8</mark>
914.83	83.6 Pk	3.6 / 23.2 / 0.0	<mark>110.4</mark>	V / 1.1 / 242.0	<mark>0</mark>	<mark>110.4</mark>	<mark>119</mark>	<mark>-8.6</mark>
High Chan	nel			_			_	
<mark>927.62</mark>	79.7 Pk	3.6 / 23.2 / 0.0	106.5	V / 1.1 / 240.0	0	<mark>106.5</mark>	<mark>119</mark>	<mark>-12.5</mark>
927.62	82.8 Pk	3.6 / 23.2 / 0.0	<mark>109.7</mark>	H / 1.1 / 42.0	<mark>0</mark>	<mark>109.7</mark>	<mark>119</mark>	<mark>-9.3</mark>
Axis 2, EU	T on its side							
High Chan	nel			_			_	
927.62	83.5 Pk	3.6 / 23.2 / 0.0	110.3	H / 1.5 / 210.0	<mark>0</mark>	<mark>110.3</mark>	<mark>119</mark>	<mark>-8.7</mark>
927.62	77.0 Pk	3.6 / 23.2 / 0.0	<mark>103.8</mark>	V / 1.0 / 22.0	<mark>0</mark>	<mark>103.8</mark>	<mark>119</mark>	<mark>-15.2</mark>
Mid Chann	iel							
914.83	81.1 Pk	3.6 / 23.2 / 0.0	107.9	V / 1.0 / 46.0	<mark>0</mark>	<mark>107.9</mark>	<mark>119</mark>	<mark>-11.1</mark>
<mark>914.83</mark>	87.5 Pk	3.6 / 23.2 / 0.0	<mark>114.3</mark>	H / 1.0 / 337.0	0	<mark>114.3</mark>	<mark>119</mark>	<mark>-4.7</mark>
Low Chani	nel							
902.41	90.0 Pk	3.6 / 23.2 / 0.0	<mark>116.8</mark>	H / 1.0 / 25.0	0	<mark>116.8</mark>	<mark>119</mark>	<mark>-2.2</mark>
902.41	83.2 Pk	3.6 / 23.2 / 0.0	110	V / 1.1 / 20.0	0	<mark>110.0</mark>	<mark>119</mark>	<mark>-9</mark>
Axis 3, EU	T standing up)						
Low Chani	nel							
902.41	87.5 Pk	3.6 / 23.2 / 0.0	<mark>114.3</mark>	V / 1.1 / 0.0	0	<mark>114.3</mark>	<mark>119</mark>	<mark>-4.7</mark>
902.41	88.1 Pk	3.6 / 23.2 / 0.0	<mark>114.9</mark>	H / 1.1 / 112.0	0	<mark>114.9</mark>	<mark>119</mark>	<mark>-4.1</mark>

Project File: 3090365 Page 21 of 45

Test Report #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test Method:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	 %
EUT Model #:	ES1501	EUT Power:	3 VDC	Air Pressure:	81	− kPa
EUT Serial #:	01564224			Page:		
Manufacturer:	Inovonics			Leve	el Key	
EUT Description:	Water Meter Transmitter			Pk – Peak	Nb – Na	arrow Band
Notes: Remova	ble Battery(ES1501)			Qp – QuasiPeak	Bb – Br	road Band
				Av - Average		
				· •		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

"In this case, the maximum time that the carrier would dwell on any hopping channel is 18.8 mS in a 100 mS window. Therefore, the maximum Duty Factor correction factor of 14.52 dB was utilized in the calculations for the final measurement."

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement - Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated.

the DTCF is calculated as follows 20*log₁₀(duty cycle in 100mS) "not to exceed 20dB"

		0.5()	cycle in 10	UmS) "not to exceed 20	Jab			
		Respectively						
Mid Chann								
<mark>914.83</mark>	<mark>87.2 Pk</mark>	3.6 / 23.2 / 0.0	<mark>114</mark>	H / 1.0 / 152.0	<mark>0</mark>	<mark>114.0</mark>	<mark>119</mark>	<mark>-5</mark>
<mark>914.83</mark>	86.0 Pk	3.6 / 23.2 / 0.0	<mark>112.7</mark>	V / 1.1 / 343.0	<mark>0</mark>	<mark>112.7</mark>	<mark>119</mark>	<mark>-6.3</mark>
High Chan	nel							
<mark>927.62</mark>	82.8 Pk	3.6 / 23.2 / 0.0	<mark>109.6</mark>	V / 1.1 / 88.0	<mark>0</mark>	<mark>109.6</mark>	<mark>119</mark>	<mark>-9.4</mark>
<mark>927.62</mark>	82.7 Pk	3.6 / 23.2 / 0.0	<mark>109.5</mark>	H / 1.1 / 155.0	<mark>0</mark>	<mark>109.5</mark>	<mark>119</mark>	<mark>-9.5</mark>
Axis 2 Dete	ermined to be	worst case.						
EUT place	d in worst cas	se position for remainin	g testing.					
Low chann	el		a					
1804.74	<mark>69.9 Pk</mark>	3.1 / 25.0 / 35.1	<mark>62.9</mark>	V / 1.0 / 197.0	<mark>-14.52</mark>	<mark>48.38</mark>	<mark>99</mark>	<mark>-50.62</mark>
1804.74	68.7 Pk	3.1 / 25.0 / 35.1	<mark>61.7</mark>	H / 1.0 / 189.0	<mark>-14.52</mark>	<mark>47.18</mark>	<mark>99</mark>	<mark>-51.82</mark>
2707.1	64.4 Pk	4.2 / 26.9 / 37.5	<mark>58</mark>	V / 1.0 / 197.0	- 14.52	43.48	<mark>54</mark>	-10.52
2707.1	61.1 Pk	4.2 / 26.9 / 37.5	<mark>54.7</mark>	H / 1.1 / 191.0	- 14.52	<mark>40.18</mark>	<mark>54</mark>	-13.82
3609.43	61.0 Pk	5.0 / 28.9 / 37.9	<mark>57</mark>	V / 1.0 / 346.0	-14.52	42.48	<mark>54</mark>	-11.52
3609.43	57.5 Pk	5.0 / 28.9 / 37.9	<mark>53.5</mark>	H / 1.9 / 146.0	- 14.52	38.98	<mark>54</mark>	-15.02
4511.79	61.0 Pk	6.6 / 30.2 / 40.5	<mark>57.3</mark>	V / 1.2 / 20.0	-14.52	<mark>42.78</mark>	<mark>54</mark>	-11.22
4511.79	62.0 Pk	6.6 / 30.2 / 40.5	<mark>58.2</mark>	H / 1.6 / 75.0	- 14.52	<mark>43.68</mark>	<mark>54</mark>	-10.32
5414.12	58.4 Pk	6.9 / 31.9 / 40.2	<mark>56.9</mark>	V / 1.2 / 331.0	-14.52	<mark>42.38</mark>	<mark>54</mark>	-11.62
5414.78	60.2 Pk	6.9 / 31.9 / 40.2	<mark>58.7</mark>	H / 1.5 / 128.0	- 14.52	<mark>44.18</mark>	<mark>54</mark>	-9.82
<mark>6316.37</mark>	<mark>62.9 Pk</mark>	8.2 / 32.1 / 40.9	<mark>62.2</mark>	V / 1.1 / 300.0	<mark>-14.52</mark>	<mark>47.68</mark>	<mark>99</mark>	<mark>-51.32</mark>
6316.37	57.4 Pk	8.2 / 32.1 / 40.9	<mark>56.8</mark>	H / 1.4 / 210.0	<mark>-14.52</mark>	<mark>42.28</mark>	<mark>99</mark>	<mark>-56.72</mark>
<mark>7218.73</mark>	53.8 Pk	8.1 / 33.5 / 40.7	<mark>54.8</mark>	V / 1.3 / 260.0	<mark>-14.52</mark>	<mark>40.28</mark>	<mark>99</mark>	<mark>-58.72</mark>
<mark>7218.73</mark>	51.2 Pk	8.1 / 33.5 / 40.7	<mark>52.3</mark>	H / 1.7 / 97.0	<mark>-14.52</mark>	<mark>37.78</mark>	<mark>99</mark>	<mark>-61.22</mark>
8121.07	66.7 Pk	8.3 / 34.4 / 46.8	62.6	V / 1.8 / 203.0	-14.52	48.08	<mark>54</mark>	<mark>-5.92</mark>
8121.07	64.5 Pk	8.3 / 34.4 / 46.8	60.5	H / 1.6 / 332.0	-14.52	45.98	<mark>54</mark>	-8.02
9023.4	61.7 Pk	8.5 / 35.2 / 48.5	56.9	V / 1.5 / 193.0	-14.52	42.38	<mark>54</mark>	-11.62
9023.4	58.1 Pk	8.5 / 35.2 / 48.5	53.3	H / 1.5 / 70.0	-14.52	38.78	54	-15.22

Project File: 3090365 Page 22 of 45

Test Repo	ort #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test Met	thod:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	%
EUT Mod	del #:	ES1501	EUT Power:	3 VDC	Air Pressure:	81	kPa
EUT Ser	rial #:	01564224	_		Page:		
Manufact	turer:	Inovonics			Leve	el Key	
EUT Descrip	ption:	Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band
Notes: Re	emovab	ole Battery(ES1501)			Qp – QuasiPeak	Bb – Bi	road Band
					Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

"In this case, the maximum time that the carrier would dwell on any hopping channel is 18.8 mS in a 100 mS window. Therefore, the maximum Duty Factor correction factor of 14.52 dB was utilized in the calculations for the final measurement."

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement - Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated. the DTCF is calculated as follows 20*log₁₀(duty cycle in 100mS) "not to exceed 20dB"

			,					
Part 15.247	and 15.205 and	Respectively						
Mid Chann								
<mark>1829.54</mark>	69.7 Pk	3.1 / 25.1 / 35.8	<mark>62.1</mark>	H / 1.2 / 331.0	<mark>-14.52</mark>	<mark>47.58</mark>	<mark>99</mark>	-51.42
1829.54	70.3 Pk	3.1 / 25.1 / 35.8	<mark>62.8</mark>	V / 1.2 / 332.0	<mark>-14.52</mark>	<mark>48.28</mark>	<mark>99</mark>	<mark>-50.72</mark>
2744.28	67.2 Pk	4.3 / 27.0 / 37.7	60.8	H / 1.9 / 342.0	-14.52	<mark>46.28</mark>	<mark>54</mark>	-7.72
2744.28	71.0 Pk	4.3 / 27.0 / 37.7	64.6	V / 1.1 / 337.0	-14.52	50.08	<mark>54</mark>	-3.92
3659.03	59.5 Pk	5.1 / 29.0 / 37.7	<mark>55.8</mark>	H / 1.9 / 142.0	-14.52	41.28	<mark>54</mark>	-12.72
3659.47	64.8 Pk	5.1 / 29.0 / 37.7	61.2	V / 1.2 / 331.0	-14.52	46.68	<mark>54</mark>	-7.32
4573.78	55.9 Pk	6.7 / 30.3 / 40.5	52.5	H / 1.9 / 110.0	-14.52	37.98	<mark>54</mark>	-16.02
4574.32	65.7 Pk	6.7 / 30.3 / 40.5	62.2	V / 1.2 / 348.0	-14.52	47.68	<mark>54</mark>	-6.32
5488.52	65.1 Pk	6.7 / 32.0 / 40.3	<mark>63.5</mark>	H / 1.7 / 215.0	<mark>-14.52</mark>	<mark>48.98</mark>	<mark>99</mark>	<mark>-50.02</mark>
5489.18	62.7 Pk	6.7 / 32.0 / 40.3	<mark>61.1</mark>	V / 2.1 / 222.0	<mark>-14.52</mark>	<mark>46.58</mark>	<mark>99</mark>	<mark>-52.42</mark>
6403.18	58.9 Pk	8.3 / 32.0 / 40.8	<mark>58.4</mark>	V / 1.4 / 293.0	<mark>-14.52</mark>	<mark>43.88</mark>	<mark>99</mark>	-55.12
<mark>6403.96</mark>	52.4 Pk	8.3 / 32.0 / 40.8	<mark>52</mark>	H / 1.4 / 134.0	<mark>-14.52</mark>	<mark>37.48</mark>	<mark>99</mark>	<mark>-61.52</mark>
7317.93	55.8 Pk	8.2 / 33.8 / 40.4	57.3	H / 1.5 / 160.0	-14.52	42.78	<mark>54</mark>	-11.22
7317.93	59.5 Pk	8.2 / 33.8 / 40.4	<mark>61</mark>	V / 1.0 / 220.0	-14.52	46.48	<mark>54</mark>	-7.52
8232.66	57.0 Pk	8.4 / 34.5 / 47.1	52.8	H / 1.7 / 320.0	-14.52	38.28	<mark>54</mark>	-15.72
8233.66	59.5 Pk	8.4 / 34.5 / 47.1	55.2	V / 1.6 / 240.0	-14.52	40.68	<mark>54</mark>	-13.32
9147.39	60.4 Pk	8.8 / 35.3 / 48.1	56.4	H / 1.6 / 176.0	- 14.52	41.88	<mark>54</mark>	-12.12
9147.39	61.8 Pk	8.8 / 35.3 / 48.1	57.7	V / 2.1 / 305.0	-14.52	43.18	<mark>54</mark>	-10.82
ligh Chanr	nel							
<mark>1855.13</mark>	69.1 Pk	3.1 / 25.3 / 35.8	<mark>61.7</mark>	H / 1.1 / 135.0	<mark>-14.52</mark>	<mark>47.18</mark>	<mark>99</mark>	<mark>-51.82</mark>
1855.15	71.8 Pk	3.1 / 25.3 / 35.8	<mark>64.4</mark>	V / 1.0 / 0.0	<mark>-14.52</mark>	<mark>49.88</mark>	<mark>99</mark>	<mark>-49.12</mark>
2782.68	63.1 Pk	4.3 / 27.1 / 37.7	56.8	H / 1.1 / 187.0	-14.52	42.28	<mark>54</mark>	-11.72
2782.69	68.3 Pk	4.3 / 27.1 / 37.7	<mark>62</mark>	V / 1.1 / 342.0	-14.52	47.48	<mark>54</mark>	<mark>-6.52</mark>
3710.23	64.8 Pk	5.2 / 29.1 / 37.5	<mark>61.7</mark>	V / 1.0 / 335.0	-14.52	47.18	<mark>54</mark>	-6.82
3710.23	56.6 Pk	5.2 / 29.1 / 37.5	53.4	H / 2.2 / 182.0	-14.52	38.88	<mark>54</mark>	-15.12
4637.77	60.7 Pk	6.9 / 30.5 / 40.4	57.6	V / 1.2 / 11.0	-14.52	43.08	<mark>54</mark>	-10.92
4637.77	56.5 Pk	6.9 / 30.5 / 40.4	53.4	H / 1.8 / 12.0	-14.52	38.88	<mark>54</mark>	-15.12

Project File: 3090365 Page 23 of 45

Test Repor	rt #: 3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test Meth	nod: FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	%
EUT Mode	el #: ES1501	EUT Power:	3 VDC	Air Pressure:	81	kPa
EUT Seria	al #: 01564224			Page:		
Manufactu	rer: Inovonics			Leve	el Key	
EUT Descript	ion: Water Meter Transmitte	er		Pk – Peak	Nb – N	arrow Band
Notes: Rer	movable Battery(ES1501)			Qp – QuasiPeak	Bb – B	road Band
				Av - Average		

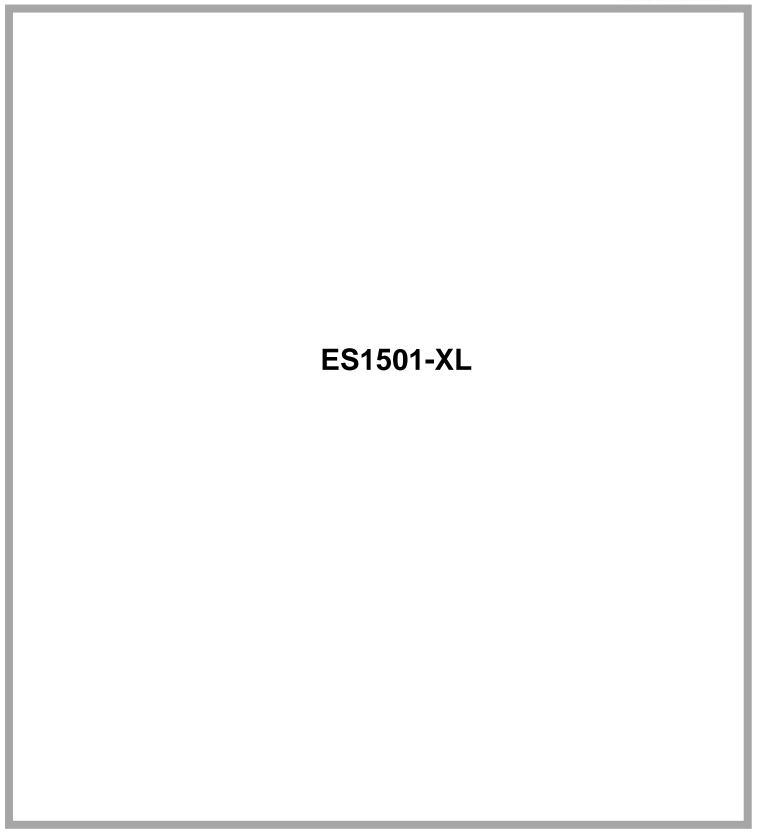
FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

"In this case, the maximum time that the carrier would dwell on any hopping channel is 18.8 mS in a 100 mS window. Therefore, the maximum Duty Factor correction factor of 14.52 dB was utilized in the calculations for the final measurement."

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:


Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated. the DTCF is calculated as follows 20*log₁₀(duty cycle in 100mS) "not to exceed 20dB"

Part 15.24	7 and 15.205	Respectively						
5565.31	69.5 Pk	6.8 / 32.0 / 40.6	<mark>67.8</mark>	V / 1.5 / 336.0	<mark>-14.52</mark>	<mark>53.28</mark>	<mark>99</mark>	<mark>-45.72</mark>
5565.31	67.0 Pk	6.8 / 32.0 / 40.6	<mark>65.3</mark>	H / 1.5 / 130.0	<mark>-14.52</mark>	<mark>50.78</mark>	<mark>99</mark>	<mark>-48.22</mark>
6492.77	54.0 Pk	8.5 / 32.0 / 40.3	<mark>54.2</mark>	V / 1.0 / 298.0	<mark>-14.52</mark>	<mark>39.68</mark>	<mark>99</mark>	<mark>-59.32</mark>
<mark>6492.77</mark>	50.8 Pk	8.5 / 32.0 / 40.3	<mark>50.9</mark>	H / 1.4 / 293.0	<mark>-14.52</mark>	<mark>36.38</mark>	<mark>99</mark>	<mark>-62.62</mark>
7420.31	56.2 Pk	8.2 / 34.0 / 40.0	58.4	V / 1.5 / 140.0	-14.52	43.88	<mark>54</mark>	-10.12
7420.31	52.3 Pk	8.2 / 34.0 / 40.0	54.5	H / 1.7 / 156.0	-14.52	39.98	<mark>54</mark>	-14.02
8347.86	62.8 Pk	8.4 / 34.5 / 47.6	58.2	V / 1.5 / 232.0	-14.52	43.68	<mark>54</mark>	-10.32
8347.86	60.2 Pk	8.4 / 34.5 / 47.6	55.6	H / 1.7 / 161.0	-14.52	41.08	54	-12.92
<mark>9275.4</mark>	52.9 Pk	9.0 / 35.4 / 48.5	<mark>48.8</mark>	V / 2.3 / 316.0	<mark>-14.52</mark>	<mark>34.28</mark>	<mark>99</mark>	<mark>-64.72</mark>
007C E	EO O DI	0 0 / 25 4 / 40 5	40.0	11/46/4760	44.50	22.60	00	CE 22

Project File: 3090365 Page 24 of 45

Test Rep	oort #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test Me	ethod:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	%
EUT Mo	del #:	ES1501-XL	EUT Power:	3 VDC	Air Pressure:	81	kPa
EUT Se	erial #:	01564027			Page:		
Manufac	cturer:	Inovonics			Lev	el Key	
EUT Descri	iption:	Water Meter Transmitter			Pk – Peak	Nb – Na	arrow Band
Notes: R	Removab	ole Battery(ES1501)			Qp – QuasiPeak	Bb – Br	road Band
					Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

"In this case, the maximum time that the carrier would dwell on any hopping channel is 18.8 mS in a 100 mS window. Therefore, the maximum Duty Factor correction factor of 14.52 dB was utilized in the calculations for the final measurement."

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated.

the DTCF is calculated as follows 20*log₁₀(duty cycle in 100mS) "not to exceed 20dB"

the DTCF	is calculated a	as follows 20*log ₁₀ (dut	y cycle in 10	0mS) "not to exceed 20d	dB"			
Part 15.24	<mark>7</mark> and 15.205	Respectively						
Determinir	ng worst case	position						
	T Flat on table							
Low chann	nel							
902.3 <mark>7</mark>	85.8 Pk	3.6 / 23.2 / 0.0	<mark>112.6</mark>	V / 1.7 / 115.0	<mark>0</mark>	<mark>112.6</mark>	<mark>119</mark>	<mark>-6.4</mark>
902.3 <mark>7</mark>	90.5 Pk	3.6 / 23.2 / 0.0	<mark>117.3</mark>	H / 1.0 / 44.0	<mark>0</mark>	<mark>117.3</mark>	<mark>119</mark>	<mark>-1.7</mark>
Mid Chanr	nel							
<mark>914.78</mark>	89.5 Pk	3.6 / 23.2 / 0.0	<mark>116.3</mark>	H / 1.0 / 44.0	0	<mark>116.3</mark>	<mark>119</mark>	<mark>-2.7</mark>
<mark>914.78</mark>	84.1 Pk	3.6 / 23.2 / 0.0	<mark>110.9</mark>	V / 2.1 / 120.0	0	110.9	<mark>119</mark>	<mark>-8.1</mark>
High Chan	inel					_		
<mark>927.58</mark>	84.5 Pk	3.6 / 23.2 / 0.0	<mark>111.3</mark>	V / 1.2 / 120.0	0	<mark>111.3</mark>	<mark>119</mark>	<mark>-7.7</mark>
<mark>927.58</mark>	87.0 Pk	3.6 / 23.2 / 0.0	<mark>113.8</mark>	H / 1.0 / 46.0	0	<mark>113.8</mark>	<mark>119</mark>	<mark>-5.2</mark>
Axis 2, EU	T on its side							
High Chan	inel							
927.58	86.2 Pk	3.6 / 23.2 / 0.0	<mark>113</mark>	H / 1.0 / 39.0	0	<mark>113</mark>	<mark>119</mark>	<mark>-6</mark>
<mark>927.58</mark>	79.8 Pk	3.6 / 23.2 / 0.0	106.6	V / 1.3 / 123.0	0	106.6	<mark>119</mark>	<mark>-12.4</mark>
Mid Chanr	nel							
<mark>914.78</mark>	79.0 Pk	3.6 / 23.2 / 0.0	<mark>105.8</mark>	V / 1.3 / 25.0	0	<mark>105.8</mark>	<mark>119</mark>	<mark>-13.2</mark>
914.78	87.8 Pk	3.6 / 23.2 / 0.0	<mark>114.5</mark>	H / 1.0 / 46.0	0	<mark>114.5</mark>	<mark>119</mark>	<mark>-4.5</mark>
Low Chan	nel							
902.37	89.5 Pk	3.6 / 23.2 / 0.0	<mark>116.3</mark>	H / 1.0 / 34.0	0	<mark>116.3</mark>	<mark>119</mark>	<mark>-2.7</mark>
902.37	82.8 Pk	3.6 / 23.2 / 0.0	<mark>109.6</mark>	V / 1.8 / 190.0	0	<mark>109.6</mark>	<mark>119</mark>	<mark>-9.4</mark>
Axis 3, EU	T standing up				_		-	
Low Chan								
902.37	89.0 Pk	3.6 / 23.2 / 0.0	<mark>115.8</mark>	V / 1.0 / 125.0	0	<mark>115.8</mark>	<mark>119</mark>	-3.2
902.37	87.7 Pk	3.6 / 23.2 / 0.0	114.4	H / 1.0 / 50.0	0	<mark>114.4</mark>	<mark>119</mark>	-4.6

Project File: 3090365 Page 26 of 45

Test Report #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test Method:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	%
EUT Model #:	ES1501-XL	EUT Power:	3 VDC	Air Pressure:	81	kPa
EUT Serial #:	01564027			-		
Manufacturer:	Inovonics			Leve	el Key	
EUT Description:	Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band
Notes: Remova	ble Battery(ES1501)			Qp – QuasiPeak	Bb – Bı	oad Band
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

"In this case, the maximum time that the carrier would dwell on any hopping channel is 18.8 mS in a 100 mS window. Therefore, the maximum Duty Factor correction factor of 14.52 dB was utilized in the calculations for the final measurement."

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement - Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated.

the DTCF is calculated as follows 20*log₁₀(duty cycle in 100mS) "not to exceed 20dB"

Part 15.247	7 and 15.205	Respectively						
Mid Chann	el							
<mark>914.78</mark>	88.4 Pk	3.6 / 23.2 / 0.0	<mark>115.2</mark>	H / 1.0 / 63.0	0	<mark>115.2</mark>	<mark>119</mark>	-3.8
<mark>914.78</mark>	89.2 Pk	3.6 / 23.2 / 0.0	<mark>116</mark>	V / 1.0 / 128.0	0	<mark>116</mark>	<mark>119</mark>	<mark>-3</mark>
ligh Chan	nel		<u> </u>					
<mark>927.58</mark>	85.8 Pk	3.6 / 23.2 / 0.0	<mark>112.7</mark>	V / 1.0 / 128.0	0	<mark>112.7</mark>	<mark>119</mark>	<mark>-6.3</mark>
<mark>927.58</mark>	85.0 Pk	3.6 / 23.2 / 0.0	<mark>111.9</mark>	H / 1.0 / 50.0	0	<mark>111.9</mark>	<mark>119</mark>	<mark>-7.1</mark>
Axis 1 dete	ermined to be	worst case. EUT now	n Axis 1 for	remaining testing.				
ow Chanr								
1804.72	<mark>62.2 Pk</mark>	3.1 / 25.0 / 35.1	<mark>55.2</mark>	V / 1.4 / 170.0	<mark>-14.52</mark>	<mark>40.68</mark>	<mark>99</mark>	<mark>-58.32</mark>
1804.72	<mark>64.5 Pk</mark>	3.1 / 25.0 / 35.1	<mark>57.5</mark>	H / 1.0 / 79.0	<mark>-14.52</mark>	<mark>42.98</mark>	<mark>99</mark>	<mark>-56.02</mark>
2707.07	63.5 Pk	4.2 / 26.9 / 37.5	57.1	V / 1.0 / 68.0	-14.52	<mark>42.58</mark>	<mark>54</mark>	-11.42
2707.07	58.6 Pk	4.2 / 26.9 / 37.5	<mark>52.2</mark>	H / 1.6 / 34.0	<mark>-14.52</mark>	37.68	<mark>54</mark>	-16.32
3609.41	50.5 Pk	5.0 / 28.9 / 37.9	<mark>46.5</mark>	V / 1.2 / 195.0	-14.52	<mark>31.98</mark>	<mark>54</mark>	-22.02
3609.41	49.5 Pk	5.0 / 28.9 / 37.9	<mark>45.4</mark>	H / 1.8 / 355.0	- 14.52	30.88	<mark>54</mark>	-23.12
4511.76	55.0 Pk	6.6 / 30.2 / 40.5	51.3	H / 1.0 / 353.0	-14.52	<mark>36.78</mark>	<mark>54</mark>	-17.22
4511.76	54.7 Pk	6.6 / 30.2 / 40.5	<mark>51</mark>	V / 2.2 / 152.0	- 14.52	36.48	<mark>54</mark>	-17.52
5414.1	45.0 Pk	6.9 / 31.9 / 40.2	<mark>43.6</mark>	H / 1.9 / 328.0	-14.52	<mark>29.08</mark>	<mark>54</mark>	-24.92
5414.1	50.4 Pk	6.9 / 31.9 / 40.2	<mark>48.9</mark>	V / 1.0 / 339.0	- 14.52	34.38	<mark>54</mark>	-19.62
<mark>6316.37</mark>	<mark>57.3 Pk</mark>	8.2 / 32.1 / 40.9	<mark>56.7</mark>	H / 1.9 / 291.0	<mark>-14.52</mark>	<mark>42.18</mark>	<mark>99</mark>	<mark>-56.82</mark>
<mark>6316.37</mark>	63.7 Pk	8.2 / 32.1 / 40.9	63.1	V / 1.0 / 340.0	<mark>-14.52</mark>	<mark>48.58</mark>	<mark>99</mark>	<mark>-50.42</mark>
<mark>7218.72</mark>	46.9 Pk	8.1 / 33.5 / 40.7	<mark>47.9</mark>	H / 1.4 / 192.0	<mark>-14.52</mark>	<mark>33.38</mark>	<mark>99</mark>	<mark>-65.62</mark>
<mark>7218.72</mark>	53.0 Pk	8.1 / 33.5 / 40.7	<mark>54</mark>	V / 1.6 / 346.0	<mark>-14.52</mark>	<mark>39.48</mark>	<mark>99</mark>	<mark>-59.52</mark>
8121.07	66.6 Pk	8.3 / 34.4 / 46.8	62.5	V / 1.3 / 0.0	-14.52	<mark>47.98</mark>	<mark>54</mark>	-6.02
8121.07	59.4 Pk	8.3 / 34.4 / 46.8	55.3	H / 1.0 / 286.0	-14.52	40.78	<mark>54</mark>	-13.22
9023.4	56.9 Pk	8.5 / 35.2 / 48.5	<mark>52</mark>	V / 1.2 / 354.0	-14.52	37.48	<mark>54</mark>	-16.52
9023.4	51.5 Pk	8.5 / 35.2 / 48.5	46.6	H / 1.4 / 125.0	-14.52	32.08	<mark>54</mark>	-21.92

Project File: 3090365 Page 27 of 45

Test Report #:	3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test Method:	FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	
EUT Model #: ES1501-XL		EUT Power:	3 VDC	Air Pressure:	81	kPa
EUT Serial #:	01564027	<u> </u>		_		
Manufacturer:	Inovonics			Leve	el Key	
EUT Description:	Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band
Notes: Remova	ble Battery(ES1501)			Qp – QuasiPeak	Bb – B	road Band
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

"In this case, the maximum time that the carrier would dwell on any hopping channel is 18.8 mS in a 100 mS window. Therefore, the maximum Duty Factor correction factor of 14.52 dB was utilized in the calculations for the final measurement."

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated.

l	the DTCF is calculated as follows 20 log ₁₀ (duty cycle in 100ms) not to exceed 20dB
I	Part 15.247 and 15.205 Respectively

Mid Chann	əl							
<mark>1829.54</mark>	56.1 Pk	3.1 / 25.1 / 35.8	<mark>48.6</mark>	H / 1.3 / 21.0	<mark>-14.52</mark>	<mark>34.08</mark>	<mark>99</mark>	<mark>-64.92</mark>
1829.54	54.2 Pk	3.1 / 25.1 / 35.8	<mark>46.7</mark>	V / 1.0 / 115.0	<mark>-14.52</mark>	<mark>32.18</mark>	<mark>99</mark>	<mark>-66.82</mark>
2744.27	63.9 Pk	4.3 / 27.0 / 37.7	57.5	H / 1.1 / 235.0	-14.52	42.98	54	-11.02
2744.27	68.5 Pk	4.3 / 27.0 / 37.7	62	V / 1.0 / 108.0	-14.52	47.48	54	-6.52
3659.01	52.6 Pk	5.1 / 29.0 / 37.7	48.9	H / 1.8 / 357.0	-14.52	34.38	54	-19.62
3659.01	52.9 Pk	5.1 / 29.0 / 37.7	49.2	V / 2.3 / 13.0	-14.52	34.68	54	-19.32
4573.76	53.6 Pk	6.7 / 30.3 / 40.5	50.2	V / 1.0 / 343.0	-14.52	35.68	<mark>54</mark>	-18.32
4573.76	52.6 Pk	6.7 / 30.3 / 40.5	49.2	H / 1.0 / 238.0	-14.52	34.68	54	-19.32
<mark>5488.49</mark>	52.0 Pk	6.7 / 32.0 / 40.3	<mark>50.5</mark>	V / 1.7 / 359.0	<mark>-14.52</mark>	<mark>35.98</mark>	<mark>99</mark>	<mark>-63.02</mark>
<mark>5488.49</mark>	47.5 Pk	6.7 / 32.0 / 40.3	<mark>45.9</mark>	H / 1.0 / 354.0	<mark>-14.52</mark>	<mark>31.38</mark>	<mark>99</mark>	<mark>-67.62</mark>
6403.16	58.4 Pk	8.3 / 32.0 / 40.8	<mark>57.9</mark>	V / 1.1 / 346.0	<mark>-14.52</mark>	<mark>43.38</mark>	<mark>99</mark>	<mark>-55.62</mark>
6403.16	54.3 Pk	8.3 / 32.0 / 40.8	<mark>53.9</mark>	H / 1.0 / 112.0	<mark>-14.52</mark>	<mark>39.38</mark>	<mark>99</mark>	<mark>-59.62</mark>
7317.91	55.8 Pk	8.2 / 33.8 / 40.4	57.3	V / 1.8 / 323.0	-14.52	42.78	<mark>54</mark>	-11.22
7317.91	48.9 Pk	8.2 / 33.8 / 40.4	<mark>50.4</mark>	H / 1.5 / 119.0	-14.52	35.88	<mark>54</mark>	-18.12
8232.66	58.3 Pk	8.4 / 34.5 / 47.1	<mark>54</mark>	V / 1.5 / 0.0	-14.52	39.48	<mark>54</mark>	-14.52
8233.66	52.5 Pk	8.4 / 34.5 / 47.1	48.3	H / 1.1 / 271.0	- 14.52	<mark>33.78</mark>	<mark>54</mark>	-20.22
9147.39	57.6 Pk	8.8 / 35.3 / 48.1	53.6	V / 2.2 / 45.0	- 14.52	39.08	<mark>54</mark>	-14.92
9147.39	53.6 Pk	8.8 / 35.3 / 48.1	<mark>49.6</mark>	H / 1.6 / 148.0	- 14.52	35.08	<mark>54</mark>	-18.92
High Chani	nel		<u> </u>					
1855.13	<mark>62.5 Pk</mark>	3.1 / 25.3 / 35.8	<mark>55.1</mark>	V / 1.0 / 30.0	<mark>-14.52</mark>	<mark>40.58</mark>	<mark>99</mark>	<mark>-58.42</mark>
1855.13	61.7 Pk	3.1 / 25.3 / 35.8	<mark>54.3</mark>	H / 1.2 / 268.0	<mark>-14.52</mark>	<mark>39.78</mark>	<mark>99</mark>	<mark>-59.22</mark>
2782.67	63.8 Pk	4.3 / 27.1 / 37.7	57.4	V / 1.8 / 10.0	-14.52	42.88	<mark>54</mark>	-11.12
2782.67	64.5 Pk	4.3 / 27.1 / 37.7	58.1	H / 1.1 / 33.0	-14.52	43.58	<mark>54</mark>	-10.42
3710.22	51.7 Pk	5.2 / 29.1 / 37.5	48.5	V / 1.4 / 67.0	-14.52	33.98	<mark>54</mark>	-20.02
3710.22	52.8 Pk	5.2 / 29.1 / 37.5	49.6	H / 2.2 / 343.0	-14.52	35.08	<mark>54</mark>	-18.92
4637.77	54.0 Pk	6.9 / 30.5 / 40.4	50.9	H / 1.6 / 95.0	-14.52	36.38	<mark>54</mark>	-17.62
4637.77	53.9 Pk	6.9 / 30.5 / 40.4	50.8	V / 1.1 / 15.0	-14.52	36.28	<mark>54</mark>	-17.72

Project File: 3090365 Page 28 of 45

Voice: 303 786 7999

Fax: 303 449 6160

Test Report	#: 3090365	Test Area:	Pinewood Site 1 (3m)	Temperature:	18.0	°C
Test Metho	od: FCC Part 15.209	Test Date:	07-Jan-2006	Relative Humidity:	26	 %
EUT Model #: ES1501-XL		EUT Power: 3 VDC		Air Pressure:	81	kPa
EUT Serial	#: 01564027			_		
Manufactur	er: Inovonics			Leve	el Key	
EUT Description	on: Water Meter Transmitter			Pk – Peak	Nb – N	arrow Band
Notes: Rem	ovable Battery(ES1501)			Qp – QuasiPeak	Bb – B	road Band
				Av - Average		

FREQ	LEVEL	CABLE / ANT / PREAMP	FINAL	POL / HGT / AZ	Duty Cycle Correction	Final Corrected	Limit	DELTA
(MHz)	(dBuV)	(dB) (dB\m) (dB)	(dBuV)	(m) (DEG)	(dB)	(dBuV/m)	(dBuV/m)	(dB)

The following duty cycle was declared by the manufacturer.

"In this case, the maximum time that the carrier would dwell on any hopping channel is 18.8 mS in a 100 mS window. Therefore, the maximum Duty Factor correction factor of 14.52 dB was utilized in the calculations for the final measurement."

Averaging method for pulsed signals and calculation in accordance to FCC CFR47 Part 15.35 utilized to calculate field strength emissions.

The testing performed in accordance to FCC CFR47 Part 15.205 (restricted bands of operation) and 15.247 emissions and delta limits were calculated as follows:

Final Corrected Peak Measurement – Duty Cycle Correction Factor* = Final Calculated Emission

The Final Calculated Emission was then compared to the Limits in CFR47 Part 15.209 and 15.247 and the emission/limit delta was calculated. the DTCF is calculated as follows 20*log₁₀(duty cycle in 100mS) "not to exceed 20dB"

54.4 Pk	6.8 / 32.0 / 40.6	52.7	V / 2.0 / 0.0	-14.52	<mark>38.18</mark>	99	-60.82
52.5 Pk	6.8 / 32.0 / 40.6	50.7	H / 1.5 / 323.0	-14.52	36.18	99	-62.82
50.9 Pk	8.5 / 32.0 / 40.3	<mark>51</mark>	H / 1.1 / 279.0	<mark>-14.52</mark>	36.48	99	-62.52
53.0 Pk	8.5 / 32.0 / 40.3	<mark>53.1</mark>	V / 1.0 / 330.0	<mark>-14.52</mark>	<mark>38.58</mark>	<mark>99</mark>	-60.42
46.6 Pk	8.2 / 34.0 / 40.0	48.8	H / 1.5 / 187.0	-14.52	34.28	54	-19.72
55.3 Pk	8.2 / 34.0 / 40.0	57.5	V / 1.4 / 347.0	-14.52	42.98	54	-11.02
59.6 Pk	8.4 / 34.5 / 47.6	55	H / 1.7 / 119.0	-14.52	40.48	<mark>54</mark>	-13.52
63.8 Pk	8.4 / 34.5 / 47.6	59.2	V / 1.2 / 10.0	-14.52	44.68	<mark>54</mark>	-9.32
48.0 Pk	9.0 / 35.4 / 48.5	<mark>43.9</mark>	H / 1.9 / 237.0	<mark>-14.52</mark>	<mark>29.38</mark>	99	<mark>-69.62</mark>
52.3 Pk	9.0 / 35.4 / 48.5	<mark>48.2</mark>	V / 1.5 / 20.0	<mark>-14.52</mark>	<mark>33.68</mark>	<mark>99</mark>	<mark>-65.32</mark>
	52.5 Pk 50.9 Pk 53.0 Pk 46.6 Pk 55.3 Pk 59.6 Pk 63.8 Pk 48.0 Pk	52.5 Pk 6.8 / 32.0 / 40.6 50.9 Pk 8.5 / 32.0 / 40.3 53.0 Pk 8.5 / 32.0 / 40.3 46.6 Pk 8.2 / 34.0 / 40.0 55.3 Pk 8.2 / 34.0 / 40.0 59.6 Pk 8.4 / 34.5 / 47.6 63.8 Pk 8.4 / 34.5 / 47.6 48.0 Pk 9.0 / 35.4 / 48.5	52.5 Pk 6.8/32.0/40.6 50.7 50.9 Pk 8.5/32.0/40.3 51 53.0 Pk 8.5/32.0/40.3 53.1 46.6 Pk 8.2/34.0/40.0 48.8 55.3 Pk 8.2/34.0/40.0 57.5 59.6 Pk 8.4/34.5/47.6 55 63.8 Pk 8.4/34.5/47.6 59.2 48.0 Pk 9.0/35.4/48.5 43.9	52.5 Pk 6.8/32.0/40.6 50.7 H/1.5/323.0 50.9 Pk 8.5/32.0/40.3 51 H/1.1/279.0 53.0 Pk 8.5/32.0/40.3 53.1 V/1.0/330.0 46.6 Pk 8.2/34.0/40.0 48.8 H/1.5/187.0 55.3 Pk 8.2/34.0/40.0 57.5 V/1.4/347.0 59.6 Pk 8.4/34.5/47.6 55 H/1.7/119.0 63.8 Pk 8.4/34.5/47.6 59.2 V/1.2/10.0 48.0 Pk 9.0/35.4/48.5 43.9 H/1.9/237.0	52.5 Pk 6.8/32.0/40.6 50.7 H/1.5/323.0 -14.52 50.9 Pk 8.5/32.0/40.3 51 H/1.1/279.0 -14.52 53.0 Pk 8.5/32.0/40.3 53.1 V/1.0/330.0 -14.52 46.6 Pk 8.2/34.0/40.0 48.8 H/1.5/187.0 -14.52 55.3 Pk 8.2/34.0/40.0 57.5 V/1.4/347.0 -14.52 59.6 Pk 8.4/34.5/47.6 55 H/1.7/119.0 -14.52 63.8 Pk 8.4/34.5/47.6 59.2 V/1.2/10.0 -14.52 48.0 Pk 9.0/35.4/48.5 43.9 H/1.9/237.0 -14.52	52.5 Pk 6.8/32.0/40.6 50.7 H/1.5/323.0 -14.52 36.18 50.9 Pk 8.5/32.0/40.3 51 H/1.1/279.0 -14.52 36.48 53.0 Pk 8.5/32.0/40.3 53.1 V/1.0/330.0 -14.52 38.58 46.6 Pk 8.2/34.0/40.0 48.8 H/1.5/187.0 -14.52 34.28 55.3 Pk 8.2/34.0/40.0 57.5 V/1.4/347.0 -14.52 42.98 59.6 Pk 8.4/34.5/47.6 55 H/1.7/119.0 -14.52 40.48 63.8 Pk 8.4/34.5/47.6 59.2 V/1.2/10.0 -14.52 44.68 48.0 Pk 9.0/35.4/48.5 43.9 H/1.9/237.0 -14.52 29.38	52.5 Pk 6.8/32.0/40.6 50.7 H/1.5/323.0 -14.52 36.18 99 50.9 Pk 8.5/32.0/40.3 51 H/1.1/279.0 -14.52 36.48 99 53.0 Pk 8.5/32.0/40.3 53.1 V/1.0/330.0 -14.52 38.58 99 46.6 Pk 8.2/34.0/40.0 48.8 H/1.5/187.0 -14.52 34.28 54 55.3 Pk 8.2/34.0/40.0 57.5 V/1.4/347.0 -14.52 42.98 54 59.6 Pk 8.4/34.5/47.6 55 H/1.7/119.0 -14.52 40.48 54 63.8 Pk 8.4/34.5/47.6 59.2 V/1.2/10.0 -14.52 44.68 54 48.0 Pk 9.0/35.4/48.5 43.9 H/1.9/237.0 -14.52 29.38 99

5541 Central Avenue, Suite 110

Boulder, Colorado 80301

Project Report

Technician Mike Spataro **Project** 3090365

Capital Asset I	D Manufacturer	Model #	Serial #	Description	Test Performed	Service Type	Service Date	Service Due
3	Hewlett-Packard	85650A	2811A01300	Q.P Adapter	R Radiated Emissions	For Cal	11/8/2005	11/8/2006
106	TENSOR	4105	2020	Ridged Guide Antenna 1-18GHz	R Radiated Emissions	For Cal	5/9/2005	5/9/2006
135	EMCO	3146	9402-3775	Log Periodic Antenna (200-1000MHz)	R Radiated Emissions	For Cal	9/30/2005	9/30/2006
138	EMC TEST SYSTEMS	3109	3142	Biconical Antenna 30-300MHz	R Radiated Emissions	For Cal	9/30/2005	9/30/2006
202	Avantek	AWT-18037	1002	RF Pre-Amplifier (8-18 GHz)	R Radiated Emissions	For Ver	4/4/2005	4/4/2006
203	Avantek	AFT97-8434-10F	1007	RF Pre-Amplifier (4-8 GHz)	R Radiated Emissions	For Ver	4/4/2005	4/4/2006
209	Hewlett-Packard	85662A	2403A08749	Display Section	R Radiated Emissions	For Cal	8/8/2005	8/8/2006
210	Hewlett-Packard	8566B	2410A00154	Spectrum Analyzer (dc-22 GHz)	R Radiated Emissions	For Cal	8/8/2005	8/8/2006
213	Mini-Circuits Lab	ZHL-42	N052792-2	Amplifier	R Radiated Emissions	For Ver	5/6/2005	5/6/2006
248	Hewlett-Packard	8447F	3113A05545	9 kHz- 1.3GHz Pre Amp	R Radiated Emissions	For Ver	5/6/2005	5/6/2006
259	Hewlett-Packard	E7405A	My44211889	Spectrum Analyzer	R Radiated Emissions	For Cal	12/14/2005	12/14/2006

Voice: 303 786 7999

Fax: 303 449 6160

Appendix B
, pps. am 2
Test Plan
and
Constructional Data Form
To be supplied by the customer
To be cappined by the cuctome.

315 CTC Boulevard, Louisville, CO 80027 | ph. 303.939.9336 | fx. 303.939.8977 | www.inovonicswireless.com

July 13, 2004

Todd Seeley IA Labs 5451 Central Ave. Boulder, CO 80301

Dear Todd.

Pursuant to section 15.247 of the FCC rules Inovonics transmitters are limited to 0.25 Watts maximum transmitted power. These devices contain integrated antennas and it is therefore impossible to measure the transmitted power in a conducted manner without significantly modifying the devices.

At the test lab the field strength is measured using an antenna located 3 meters from the device under test. The rules do not explicitly state the field strength at 3 meters corresponding to 0.25 Watts, so it must be calculated as follows:

The test facility measures the transmitted field strength, E, having units of Volts/meter, or the logarithmic equivalent. The transmitted power density as measured by the antenna is then $\frac{E^2}{n}$, where η is the intrinsic impedance of free space.

Assuming isotropic radiation from the product, the Effective Isotropic Radiated Power (EIRP) is found by multiplying the above power density by the area of a sphere having a radius of 3 meters,

$$P_{HRP} = \frac{E^2}{\eta} 4\pi R^2 \qquad (1)$$

Solving for E,

$$E = \frac{1}{2R} \left(\frac{\eta P_{ERP}}{\pi} \right)^{\frac{N}{2}}$$
 (2)

Voice: 303 786 7999

Rev.No 1

Given that $P_{\text{EIRP}}=0.25$ Watts (FCC limit), R=3 meters, and $\eta=377$ Ohms, E=0.913 V/m =119.2 dB μ V/m.

Remember the above assumption of isotropic radiation- all real antennas have non-isotropic radiation patterns. Using the 119.2 dB μ V/m limit guarantees that the total RF power transmitted by the device is below the 0.25 Watt limit.

Also, according the part 15.35 we are allowed a relaxation of the general radiation limits found in 15.209 while using a peak detector, as applied to the harmonics of the fundamental. Inovonics EchoStream security transmitters have a transmission pulse duration of 20 ms, which corresponds to a duty cycle of 0.2 per 15.35(c). This duty cycle allows for a 14 dB relaxation of the general radiation limits from 54 dB $\mu\text{V/m}$ (500 $\mu\text{V/m}$, per 15.209(a)) to 68 dB $\mu\text{V/m}$ for peak measurements.

Sincerely,

Steven Dunbar RF Engineer

Project File: 3090365 Page 33 of 45

Fax: 303 449 6160

Voice: 303 786 7999

Request for Estimate & Test Plan

Laboratory/Agent Information:

Agent/Test Lab:	International Approvals Laboratories, LLC
Contact:	Todd Seeley
Title:	Principal Engineer (Services Development Focus)
Phone Number:	(303) 402-5272
Cell Number:	(303) 503-2491
Fax Number:	(303) 449-6160
Email Address:	todd@ialabs.com

Client Information:

License Holder:	Inovonics Wireless Corporation			
Address:	B15 CTC Boulevard, Louisville, CO 80027			
Contact:	David Henke			
Title:	Project Engineer			
Phone Number:	303-209-7163			
Fax Number:	303-939-8977			
Email Address:	dave@inovonics.com			

Please provide all pertinent information below and email this Form to Todd and Amy at todd@ialabs.com and Amy@ialabs.com for a quotation:

Estimates Paguastadi

Estimates Requested:					
EMC Testing					
Requesting Estimate					
☐ Pre-Compliance Scans	☐ Engineering Test				
Radio Device Testing and Certification					
Requesting Estimate	☐ No Estimate Required				
	☐ Industry Canada Certification (Receivers required)				
☐ Class 2 Notification Under the R&TTED					
Safety Testing and Certification					
Requesting Estimate					
□ NRTL Listing	1 Day Pre-Assessment (conducted at your facility)				
Letter of Findings	☐ CB Report Covering all country Deviations				
☐ CE Report to Cover the LVD ☐ CB Report Covering - Specify Countries:					
Please list all applicable standards that you would like your device certified under:					
	•				

Project File: 3090365 Page 34 of 45

Rev.No 1

General Product Information:

Product/Model Number(s):	S1501, ES1501-XL, ES1210					
Description of product(s):	Frequency-hopping, spread-spectrum transmitters					
Intended Use:	☐ Household ☐ Commercial ☐ Industrial ☐ Hospital ☐ Life Supporting					
Intended Location:	☑ Dry ☑ Damp ☐ Wet ☐ Hazardous Location					
Product Type:	☑ Prototype ☑ Production Sample☑ Manufacturing Design Change: Please Describe					
If there is more than one product what are the differences?	ES1501 and ES1501-XL are used to monitor water meter usage and have inverted L antennas. ES1501-XL has a permanent battery; whereas, the ES1501 has a removable battery. ES1210 is used for security applications and has an inverted F antenna.					
Is the Product Enclosure:	☐ Metal ☐ Plastic ☐ Both					
Size: Length:3.5 inch	es Width:1.75 inches Height:1 inches Weight:2.0 ounces					
What Voltages/Current do the EUT run at?	Rated Voltage:3VDC Rated Current:25maDC (when transmitting) # of Phases/Conductors:none # of Power Cords:none					
Are their multiple suppliers power supplies?	s of Yes No If Yes Please Describe:					
Are there Multiple Modes of Operation?	 ✓ Yes ☐ No If Yes Please Describe ES1501, ES1501-XL Normal Mode: Transmissions once per hour Rapid TX Mode: Transmissions once per minute Shipping Mode: No transmissions or microprocessor activity ES1210 Normal Mode: Transmissions once per three minutes and whenever alarm condition occurs 					
Can all modes of operation be operated simultaneous						
In which countries will you selling the product?	be US					

EMC Information: FCC/ICES (US & Canada) CE / EMC / MMD BSMI (Taiwan) What EMC certifications are desired? VCCI (Japan) SII (Israel) AS/NZS (Australia/New Zealand) Other: Please Specify Highest frequency utilized for device operation: List of Clock Frequencies: What is the time that it takes for the device to complete a full cycle of operation? (time required to identify any degradation in performance) Total Number of I/O Cables: # Greater than 3m (9.75 feet) in Length # Greater than 30m (97.5 feet) in Length # of cables at a longer length (specify) Number of Dedicated Earth Equalization **Ports** Number of Ethernet and/or **Telecommunications Ports** When the device is a compilation of subsystems (in separate chassis) how many interconnecting I/O's are greater than 1 meter in length between the Subsystem chassis? For medical devices: ☐ Yes ☐ No Describe: Are there any coupled or direct patient contact points on the device?

Fax: 303 449 6160

Voice: 303 786 7999

Rev.No 1

Radio Information:

What Radio certifications are desired?	 ☐ FCC (USA) (FCC Part 15, 15.249) ☐ Industry Canada ☐ ETSI (R&TTE) ☐ Other: Please Specify 				
Operating Frequency:	902-928 MHZ (US ISM band)				
RF Output Power:	17 dBm				
Is there an RF Conducted Port?	☐ Yes ⊠No Description:				
Number of Antennas & Description: (Internal, External, Known Gain, etc.)	ES1501, ES1501-XL: Inverted L ES1210: Inverted F				
Modulation Technique:	FSK				
Number of Channels/Number of Discrete frequencies per Channel:	1/25				
Can the device be operated in CW Mode?	☐ Yes ☐ No (But can put in CW mode for testing)				
What is the lowest utilized frequency within the device?	902 MHz				

Notes: Please ensure to bring a notch filter covering your fundamental operating frequency.

Safety Information: Has the device been tested and certified ☐ Yes ⊠ No for product safety before? A. If it has been previously tested, to Standard tested to: which standard and by which organization? Organization tested by: ☐ Yes □ No B. Can you provide the test report? An approved off the shelf power supply Is the power supply OR A Custom Model that will need evaluation/ certification No

How Many? One per transmitter What technology is used? (i.e., lasers, X 900 MHz RF Ray, etc.) Output Power: Beam Divergence Angle: Class: Wavelength: Laser: Is the product a Medical Device? Yes ⊠ No Is it an In Vitro Diagnostic Device? Yes ⊠ No Testing location: (to be filled in by IALabs)

What Type? Lithium

Fax: 303 449 6160

Voice: 303 786 7999

Does the device contain batteries?

Additional Information:

This information is required to be filled in to act as a test plan and constructional data form required to be supplied as part of the test report in accordance to the required standards. This information is not required to obtain a quote.

Support Equipment:

IALabs requires our customers provide all support equipment necessary to fully operate the EUT. This includes any filters required for testing radio devices.

Item	Description	Manufacturer	Model No.
1	(We will bring filter that you have already characterized.)		
2			
3			
4			

Information:				
Function*	Type of Shield	Length	Connectors	Connection**

^{*} Function examples (Ethernet, RS232, USB, Analog, physiological parameter, etc.)

Monitoring the EUT:

Please provide instructions below on how to observe the EUT to verify proper operation in all modes. (including software revision)

Any other information required: (Notes, Photos, Block Diagrams, Drawings, etc.) A minimum of a block diagram showing the equipment under test and its support equipment.						

Project File: 3090365 Page 39 of 45 Voice: 303 786 7999 Fax: 303 449 6160

^{**} Connection examples (Outside Plant, Patient Coupled, Ring Voltage, etc.)

For International Approvals Laboratories, Use Only. Please do not fill in the following Information.

Quoting Engineer: todd							
Emissions Testing Required							
□Class A □Class B ⊠Radio Device □Group 1 □Group 2							
FCC Part 15 GES-003 GVCCI							
FCC Part 18	BSMI			CISPR 22/EN 55022			
CISPR 11/EN 55011		IEC/E	N 61326	Ī	 IEC/EN61000-6-3		
☐ IEC/EN61000-6-4		CNS1			AS/NZS 3548		
IEC/EN61000-3-2			N61000-3-3		ETSI/EN 301 489		
	eak output powe			15.209 1	testing - pay attention to 15.205		
OATS Testing Volta					3 1 · y · · · · · · · · · · · · · · · · ·		
☐ 100VAC/50 Hz		120V	AC/60Hz] 230VAC/50Hz		
☐ 110VAC/60Hz			AC/60Hz	17	240VAC/50Hz		
Other:			10,00112	<u> </u>			
Immunity Product	Family Stand	dard					
☐ CISPR24/EN 55024			N 61000-6-1	TF] IEC/EN 61000-6-2		
☐ IEC/EN 60601-1-2	Δrt Hand		N 61326	+	CISPR14/ EN 55014-2		
ETSI/EN 301 489	JAIL HAHU.		srael Frequencies		_ OIOI IXI7/ LIN 00014-2		
Other:	<u> </u>		naci i icqueiides				
Immunity Methods							
immunity wethous							
☐ EN61000-4-2	4kV/8kV		☐ 8kV	□ O±h	O.F.		
☐ EN61000-4-2	6kV/8kV		☐ 12kV	☐ Oth	er.		
			☐ 15kV				
	□ 0) //re		1 kHz Modulation				
☐ EN61000-4-3	☐ 3V/m		400 Hz	☐ Oth	Other:		
	☐ 10V/m		Modulation	_			
			2 Hz Modulation				
☐ EN61000-4-4	0.5 kV		☐ 2.0 kV	☐ Oth	er:		
	☐ 1.0 kV ☐ 0.5 kV		☐ 2.0 kV				
☐ EN61000-4-5	☐ 0.5 kV		☐ 2.0 kV ☐ 4.0 kV	Oth	er:		
	1.0 KV						
	☐ 3Vrms		1 kHz Modulation 400 Hz				
☐ EN61000-4-6			☐ 400 H2 Modulation	Oth	er:		
	☐ 10Vrms		2 Hz Modulation				
	☐ 1A/m		Z HZ WOODIIAUON				
☐ EN61000-4-8	☐ 1A/m ☐ 30A/m		☐ 400A/m	Oth	er:		
	050/ 0.5 Oveles						
	☐ 30% 0.5 C	•	☐ 30% 25 Cycles				
☐ EN61000-4-11	☐ 60% 5 Cyc		☐ >95% 250 Cycles	Oth	er:		
			☐ >95% 1 Cycle				
Test Reports Requested							
☐ Emissions ☐ Engineering Data Only ☐ ETSI "Radio"							
☐ Immunity ☐ FCC/Industry Canada "Radio" ☐ Other:							
start with intentional 3 orthogonal axis - follow setup in public release for peak output measurements go to spurious output - follow public announcement for spurious							
go to spurious output - Ioii	80 to sparrous output - 10110w public ainiounicement for sparrous						
Set all transmitters on table	and tast for 15	000 chow	ald he presented this off	arnoon fo	r frag list if no frag's take 6 poiss		
floor points per band	. and test 101 13.2	LUZ - SIIOU	na oe prescannea ans art	CITIOOH 10.	r freq list - if no freq's - take 6 noise		
	1 1000 10000 N #						
up to 30M - 30-1000M and 1000-10000M							

Project File: 3090365 Page 40 of 45 Voice: 303 786 7999 Fax: 303 449 6160

Appendix C
Measurement Protocol
And
Test Procedures

MEASUREMENT PROTOCOL

GENERAL INFORMATION

Test Methodology

Conducted and radiated emission testing is performed according to the procedures in ANSI C63.4 & CNS13438.

Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral into it's characteristic impedance or left unterminated. When appropriate, the cables are manually manipulated with respect to each other to obtain maximum emissions from the unit.

CONDUCTED EMISSIONS

The final level, expressed in $dB_{\mu}V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the applicable limit.

To convert between $dB\mu V$ and μV , the following conversions apply:

- $dB\mu V = 20(log \mu V)$
- $\mu V = Inverse log(dB\mu V/20)$

RADIATED EMISSIONS

The final level, expressed in $dB\mu V/m$, is arrived at by taking the reading from the spectrum analyzer (Level $dB\mu V$) and adding the antenna correction factor and cable loss factor (Factor dB) to it. This result then has the applicable limit subtracted from it to provide the Delta which gives the tabular data as shown in the data sheets in Attachment B. The amplifier gain is automatically accounted for by using an analyzer offset.

Example: At a Test Frequency of 30 MHz, with a peak reading on the spectrum analyzer or measuring receiver of 14 dB μ V:

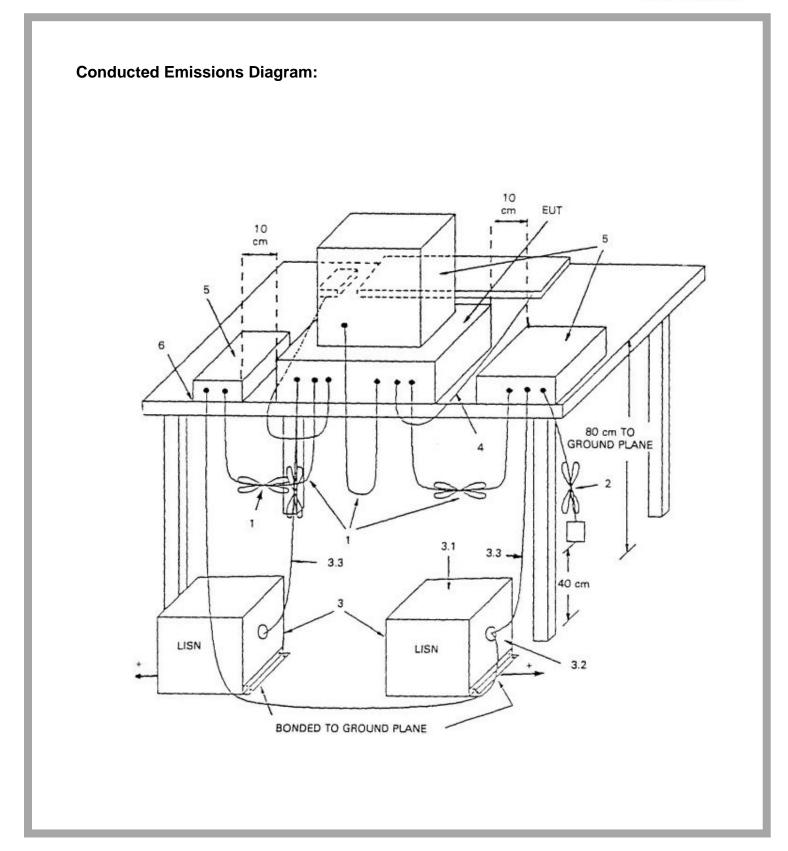
Measured Level	+	Transducer & Cable Loss factor	ı	Corrected Reading	Specification Limit	-	Corrected Reading	II	Delta Specification
(dBµV)		(dB)		(dBµV/m)	(dBµV/m)		(dB _µ V/m)		
14.0		14.9		28.9	40.0		28.9		-11.1

Rev.No 1

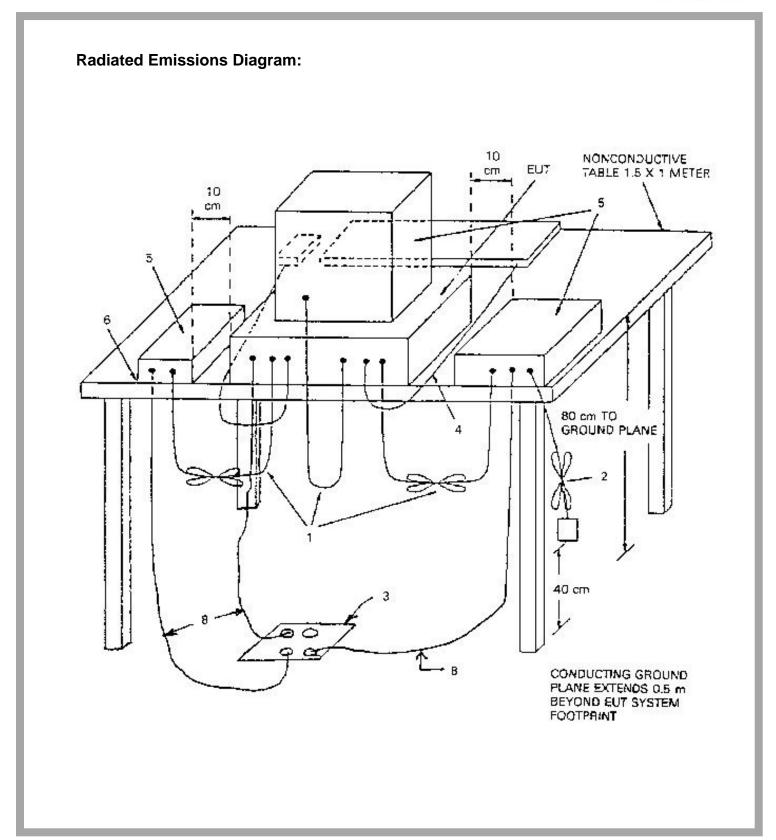
DETAILS OF TEST PROCEDURES

General Standard Information

The test methods used comply with ANSI C63.4-1992 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."


Conducted Emissions

Conducted emissions on the 50 Hz and/or 60 Hz power interface of the EUT are measured in the frequency range of 150 kHz to 30 MHz. The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection, and a Line Impedance Stabilization Network (LISN), with $50~\Omega/50~\mu H$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. In some cases, a pre-scan using a spectrum analyzer is initially performed on the units comprising the system under test to locate the highest emissions. If the minimum passing margin appears to be less than 20 dB with a peak mode measurement, the emissions are re-measured using a tuned receiver or spectrum analyzer with quasi-peak and average detection and recorded on the data sheets.


Radiated Emissions

Radiated emissions from the EUT are measured in the frequency range of 30 to 22GHz using a spectrum analyzer and appropriate broadband linearly polarized antennas. Measurements between 30 MHz and 1000 MHz are made with 120 kHz/6 dB bandwidth and quasi-peak detection and measurements above 1000 MHz are made with a 1 MHz/6 dB bandwidth and peak detection. Table top equipment is placed on a 1.0 X 1.5 meter non-conducting table 80 centimeters above the ground plane. Floor standing equipment is placed directly on the turntable/ground plane. Interface cables that are closer than 40 centimeters to the ground plane are bundled in the center in a serpentine fashion so they are at least 40 centimeters from the ground plane. Cables to simulators/testers (if used in this test) are routed through the center of the table and to a screen room located outside the test area. The antenna is positioned 3, 10 or 30 meters horizontally from the EUT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarizations and the EUT are rotated 360 degrees.

